11.2.3.1 Surfaces and Range Data, Normal Vector, Surface Normal

Chapter Contents (Back)
Surface Normals. Normal Vector. See also Gaussian Sphere (EGI), Intrinsic Images, and Surface Orientations.

Liang, P.[Ping], and Taubes, C.H.[Colfford H.],
Orientation-Based Differential Geometric Representations for Computer Vision Applications,
PAMI(16), No. 3, March 1994, pp. 249-258.
IEEE DOI BibRef 9403
And: SPIE(1570), 1991, pp. 96-102. Extended Gaussian Image. Support Functions. Generalized Gaussian Image representations. Maps surface normals of constant Gaussian Curvature patches for convex and non-convex objects to recover oriented smooth surfaces (no translation). BibRef

Page, D.L., Sun, Y., Koschan, A.F., Paik, J.K., Abidi, M.A.,
Normal Vector Voting: Crease Detection and Curvature Estimation on Large, Noisy Meshes,
GM(64), No. 3-4, May 2002, pp. 199-229.
DOI Link 0309
BibRef
Earlier: A1, A3, A2, A4, A5:
Robust Crease Detection and Curvature Estimation of Piecewise Smooth Surfaces from Triangle Mesh Approximations Using Normal Voting,
CVPR01(I:162-167).
IEEE DOI 0110
Curvature computations on a triangular mesh. BibRef

Sun, Y., Page, D.L., Paik, J.K., Koschan, A.F.[Andreas F.], Abidi, M.A.[Mongi A.],
Triangle mesh-based edge detection and its application to surface segmentation and adaptive surface smoothing,
ICIP02(III: 825-828).
IEEE DOI 0210
BibRef
And:
Triangle mesh-based surface modeling using adaptive smoothing and implicit surface texture integration,
3DPVT02(588-597).
IEEE DOI 0206
BibRef

Tasdizen, T.[Tolga], Whitaker, R.T.[Ross T.],
Higher-Order Nonlinear Priors for Surface Reconstruction,
PAMI(26), No. 7, July 2004, pp. 878-891.
IEEE Abstract. 0406
BibRef
Earlier:
Anisotropic diffusion of surface normals for feature preserving surface reconstruction,
3DIM03(353-360).
IEEE DOI 0311
BibRef
And:
Cramer-Rao bounds for nonparametric surface reconstruction from range data,
3DIM03(70-77).
IEEE DOI 0311
Bayesian approach to surface reconstruction. Likelihood term: tie data to surface estimate, and prior: ensure smoothness. BibRef

Gerber, S.[Samuel], Tasdizen, T.[Tolga], Whitaker, R.T.[Ross T.],
Dimensionality reduction and principal surfaces via Kernel Map Manifolds,
ICCV09(529-536).
IEEE DOI 0909
BibRef

Prakhya, S.M.[Sai Manoj], Liu, B.B.[Bing-Bing], Lin, W.S.[Wei-Si],
Detecting keypoint sets on 3D point clouds via Histogram of Normal Orientations,
PRL(83, Part 1), No. 1, 2016, pp. 42-48.
Elsevier DOI 1609
Keypoint detection BibRef

Lachaud, J.O.[Jacques-Olivier], Provençal, X.[Xavier], Roussillon, T.[Tristan],
Two Plane-Probing Algorithms for the Computation of the Normal Vector to a Digital Plane,
JMIV(59), No. 1, September 2017, pp. 23-39.
Springer DOI 1708
BibRef
Earlier:
Computation of the Normal Vector to a Digital Plane by Sampling Significant Points,
DGCI16(194-205).
WWW Link. 1606
BibRef

Coeurjolly, D.[David], Gueth, P.[Pierre], Lachaud, J.O.[Jacques-Olivier],
Digital Surface Regularization by Normal Vector Field Alignment,
DGCI17(197-209).
Springer DOI 1711
BibRef

Lachaud, J.O.[Jacques-Olivier],
Convergent Geometric Estimators with Digital Volume and Surface Integrals,
DGCI16(3-17).
WWW Link. 1606
BibRef

Mura, C.[Claudio], Wyss, G.[Gregory], Pajarola, R.[Renato],
Robust normal estimation in unstructured 3D point clouds by selective normal space exploration,
VC(34), No. 6-8, June 2018, pp. 961-971.
Springer DOI 1806
BibRef

Sanchez, J.[Julia], Denis, F.[Florence], Coeurjolly, D.[David], Dupont, F.[Florent], Trassoudaine, L.[Laurent], Checchin, P.[Paul],
Robust normal vector estimation in 3D point clouds through iterative principal component analysis,
PandRS(163), 2020, pp. 18-35.
Elsevier DOI 2005
Normal vector, Point cloud, Sharp features, M-estimator, Weighted PCA BibRef

Lachaud, J.O.[Jacques-Olivier], Meyron, J.[Jocelyn], Roussillon, T.[Tristan],
An Optimized Framework for Plane-Probing Algorithms,
JMIV(62), No. 5, June 2020, pp. 718-736.
Springer DOI 2007
BibRef


Liao, S.[Shuai], Gavves, E.[Efstratios], Snoek, C.G.M.[Cees G. M.],
Spherical Regression: Learning Viewpoints, Surface Normals and 3D Rotations on N-Spheres,
CVPR19(9751-9759).
IEEE DOI 2002
BibRef

Zeng, J.[Jin], Tong, Y.F.[Yan-Feng], Huang, Y.[Yunmu], Yan, Q.[Qiong], Sun, W.[Wenxiu], Chen, J.[Jing], Wang, Y.T.[Yong-Tian],
Deep Surface Normal Estimation With Hierarchical RGB-D Fusion,
CVPR19(6146-6155).
IEEE DOI 2002
BibRef

Ben-Shabat, Y.[Yizhak], Lindenbaum, M.[Michael], Fischer, A.[Anath],
Nesti-Net: Normal Estimation for Unstructured 3D Point Clouds Using Convolutional Neural Networks,
CVPR19(10104-10112).
IEEE DOI 2002
BibRef

Kang, H., Kim, G., Yoo, C.D.,
Few-Shot Associative Domain Adaptation for Surface Normal Estimation,
ICIP19(4619-4623)
IEEE DOI 1910
Few-shot Contextual Weighting, Kernel Associative Learning BibRef

Qi, X., Liao, R., Liu, Z., Urtasun, R., Jia, J.,
GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation,
CVPR18(283-291)
IEEE DOI 1812
Neural networks, Estimation, Computer architecture, Rough surfaces, Surface roughness, Kernel BibRef

Chen, W., Xiang, D., Deng, J.,
Surface Normals in the Wild,
ICCV17(1566-1575)
IEEE DOI 1802
image classification, image colour analysis, image segmentation, learning (artificial intelligence), Training BibRef

Xie, W., Wang, M., Qi, X., Zhang, L.,
3D Surface Detail Enhancement from a Single Normal Map,
ICCV17(2344-2352)
IEEE DOI 1802
geometry, image enhancement, image reconstruction, 3D reconstruction, 3D surface detail enhancement, angle profile, BibRef

Yoon, Y.[Youngjin], Choe, G.[Gyeongmin], Kim, N.[Namil], Lee, J.Y.[Joon-Young], Kweon, I.S.[In So],
Fine-Scale Surface Normal Estimation Using a Single NIR Image,
ECCV16(III: 486-500).
Springer DOI 1611
BibRef

Zhao, H., Yuan, D., Zhu, H., Yin, J.,
3-D point cloud normal estimation based on fitting algebraic spheres,
ICIP16(2589-2592)
IEEE DOI 1610
Biomimetics BibRef

Cruz-Bernal, A.[Alejandra], Alamanza-Ojeda, D.L.[Dora-Luz], Ibarra-Manzano, M.A.[Mario-Alberto],
Contour Detection at Range Images Using Sparse Normal Detector,
MCPR16(115-124).
Springer DOI 1608
BibRef

Wang, X.L.[Xiao-Long], Fouhey, D.F.[David F.], Gupta, A.[Abhinav],
Designing deep networks for surface normal estimation,
CVPR15(539-547)
IEEE DOI 1510
BibRef

Hedrich, J.[Jens], Paulus, D.[Dietrich], Genois, F.[Francois], Grzegorzek, M.[Marcin],
Enhanced surface normal computation by exploiting RGB-D sensory information,
MVA15(26-29)
IEEE DOI 1507
Color BibRef

Ladický, L.[Lubor], Zeisl, B.[Bernhard], Pollefeys, M.[Marc],
Discriminatively Trained Dense Surface Normal Estimation,
ECCV14(V: 468-484).
Springer DOI 1408
BibRef

Tang, S.[Shuai], Wang, X.Y.[Xiao-Yu], Lv, X.T.[Xu-Tao], Han, T.X.[Tony X.], Keller, J.[James], He, Z.H.[Zhi-Hai],
Histogram of Oriented Normal Vectors for Object Recognition with a Depth Sensor,
ACCV12(II:525-538).
Springer DOI 1304
BibRef

Petricek, T.[Tomas], Svoboda, T.[Tomas],
Area-weighted surface normals for 3D object recognition,
ICPR12(1492-1496).
WWW Link. 1302
BibRef

Postolski, M.[Michal], Janaszewski, M.[Marcin], Kenmochi, Y.[Yukiko], Lachaud, J.O.[Jacques-Olivier],
Tangent estimation along 3D digital curves,
ICPR12(2079-2082).
WWW Link. 1302
BibRef

Wang, Y.[Yilin], Dunn, E., Frahm, J.M.,
An Approach for Shape from Surface Normals with Local Discontinuity Detection,
3DIMPVT11(188-195).
IEEE DOI 1109
BibRef

Zheng, E., Wang, K., Dunn, E., Frahm, J.M.,
Minimal Solvers for 3D Geometry from Satellite Imagery,
ICCV15(738-746)
IEEE DOI 1602
Cameras BibRef

Fourey, S.[Sébastien], Malgouyres, R.[Rémy],
Normals and Curvature Estimation for Digital Surfaces Based on Convolutions,
DGCI08(xx-yy).
Springer DOI 0804
BibRef

Ho, J.[Jeffrey], Lim, J.W.[Jong-Woo], Yang, M.H.[Ming-Hsuan], Kriegman, D.J.[David J.],
Integrating Surface Normal Vectors Using Fast Marching Method,
ECCV06(III: 239-250).
Springer DOI 0608
BibRef

Kovesi, P.[Peter],
Shapelets Correlated with Surface Normals Produce Surfaces,
ICCV05(II: 994-1001).
IEEE DOI 0510
BibRef

Healey, G., Jain, R.,
Depth Recovery from Surface Normals,
ICPR84(894-896). BibRef 8400

Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Features of Surfaces and Range Data, Ridges, Edges .


Last update:Jul 28, 2020 at 14:30:08