Delalieux, S.,
Auwerkerken, A.,
Verstraeten, W.,
Somers, B.,
Valcke, R.,
Lhermitte, S.,
Keulemans, J.,
Coppin, P.,
Hyperspectral Reflectance and Fluorescence Imaging to Detect Scab
Induced Stress in Apple Leaves,
RS(1), No. 4, December 2009, pp. 858-874.
DOI Link
1203
BibRef
Marx, A.[Alexander],
Detection and Classification of Bark Beetle Infestation in Pure Norway
Spruce Stands with Multi-temporal RapidEye Imagery and Data Mining
Techniques,
PFG(2010), No. 4, 2010, pp. 243-252.
WWW Link.
1211
BibRef
Ortiz, S.,
Breidenbach, J.,
Kändler, G.,
Early Detection of Bark Beetle Green Attack Using TerraSAR-X and
RapidEye Data,
RS(5), No. 4, April 2013, pp. 1912-1931.
DOI Link
1305
BibRef
Neigh, C.S.R.[Christopher S.R.],
Bolton, D.K.[Douglas K.],
Diabate, M.[Mouhamad],
Williams, J.J.[Jennifer J.],
Carvalhais, N.[Nuno],
An Automated Approach to Map the History of Forest Disturbance from
Insect Mortality and Harvest with Landsat Time-Series Data,
RS(6), No. 4, 2014, pp. 2782-2808.
DOI Link
1405
BibRef
Adelabu, S.[Samuel],
Mutanga, O.[Onisimo],
Adam, E.[Elhadi],
Evaluating the impact of red-edge band from Rapideye image for
classifying insect defoliation levels,
PandRS(95), No. 1, 2014, pp. 34-41.
Elsevier DOI
1408
Random forest
BibRef
Immitzer, M.[Markus],
Atzberger, C.[Clement],
Early Detection of Bark Beetle Infestation in Norway Spruce (Picea
abies, L.) using WorldView-2 Data,
PFG(2014), No. 5, 2014, pp. 351-367.
DOI Link
1411
BibRef
Liang, L.[Lu],
Chen, Y.L.[Yan-Lei],
Hawbaker, T.J.[Todd J.],
Zhu, Z.L.[Zhi-Liang],
Gong, P.[Peng],
Mapping Mountain Pine Beetle Mortality through Growth Trend Analysis
of Time-Series Landsat Data,
RS(6), No. 6, 2014, pp. 5696-5716.
DOI Link
1407
BibRef
Näsi, R.[Roope],
Honkavaara, E.[Eija],
Lyytikäinen-Saarenmaa, P.[Päivi],
Blomqvist, M.[Minna],
Litkey, P.[Paula],
Hakala, T.[Teemu],
Viljanen, N.[Niko],
Kantola, T.[Tuula],
Tanhuanpää, T.[Topi],
Holopainen, M.[Markus],
Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping
Bark Beetle Damage at Tree-Level,
RS(7), No. 11, 2015, pp. 15467.
DOI Link
1512
BibRef
Anderson, T.[Taylor],
Dragicevic, S.[Suzana],
A Geosimulation Approach for Data Scarce Environments: Modeling
Dynamics of Forest Insect Infestation across Different Landscapes,
IJGI(5), No. 2, 2016, pp. 9.
DOI Link
1603
BibRef
Murfitt, J.[Justin],
He, Y.H.[Yu-Hong],
Yang, J.[Jian],
Mui, A.[Amy],
de Mille, K.[Kevin],
Ash Decline Assessment in Emerald Ash Borer Infested Natural Forests
Using High Spatial Resolution Images,
RS(8), No. 3, 2016, pp. 256.
DOI Link
1604
BibRef
Hais, M.[Martin],
Wild, J.[Jan],
Berec, L.[Ludek],
Bruna, J.[Josef],
Kennedy, R.[Robert],
Braaten, J.[Justin],
Brož, Z.[Zdenek],
Landsat Imagery Spectral Trajectories: Important Variables for
Spatially Predicting the Risks of Bark Beetle Disturbance,
RS(8), No. 8, 2016, pp. 687.
DOI Link
1609
BibRef
Anees, A.[Asim],
Aryal, J.[Jagannath],
O'Reilly, M.M.[Malgorzata M.],
Gale, T.J.[Timothy J.],
Wardlaw, T.[Tim],
A robust multi-kernel change detection framework for detecting leaf
beetle defoliation using Landsat 7 ETM+ data,
PandRS(122), No. 1, 2016, pp. 167-178.
Elsevier DOI
1612
Change detection
BibRef
Lin, Q.[Qinan],
Huang, H.G.[Hua-Guo],
Yu, L.F.[Lin-Feng],
Wang, J.X.[Jing-Xu],
Detection of Shoot Beetle Stress on Yunnan Pine Forest Using a
Coupled LIBERTY2-INFORM Simulation,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Housman, I.W.[Ian W.],
Chastain, R.A.[Robert A.],
Finco, M.V.[Mark V.],
An Evaluation of Forest Health Insect and Disease Survey Data and
Satellite-Based Remote Sensing Forest Change Detection Methods: Case
Studies in the United States,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Chávez, R.O.[Roberto O.],
Rocco, R.[Ronald],
Gutiérrez, Á.G.[Álvaro G.],
Dörner, M.[Marcelo],
Estay, S.A.[Sergio A.],
A Self-Calibrated Non-Parametric Time Series Analysis Approach for
Assessing Insect Defoliation of Broad-Leaved Deciduous Nothofagus
pumilio Forests,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Abdullah, H.[Haidi],
Darvishzadeh, R.[Roshanak],
Skidmore, A.K.[Andrew K.],
Heurich, M.[Marco],
Sensitivity of Landsat-8 OLI and TIRS Data to Foliar Properties of
Early Stage Bark Beetle (Ips typographus, L.) Infestation,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Safonova, A.[Anastasiia],
Tabik, S.[Siham],
Alcaraz-Segura, D.[Domingo],
Rubtsov, A.[Alexey],
Maglinets, Y.[Yuriy],
Herrera, F.[Francisco],
Detection of Fir Trees (Abies sibirica) Damaged by the Bark Beetle in
Unmanned Aerial Vehicle Images with Deep Learning,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Kloucek, T.[Tomáš],
Komárek, J.[Jan],
Surový, P.[Peter],
Hrach, K.[Karel],
Janata, P.[Premysl],
Vašícek, B.[Bedrich],
The Use of UAV Mounted Sensors for Precise Detection of Bark Beetle
Infestation,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Lin, Q.[Qinan],
Huang, H.G.[Hua-Guo],
Wang, J.X.[Jing-Xu],
Huang, K.[Kan],
Liu, Y.Y.[Yang-Yang],
Detection of Pine Shoot Beetle (PSB) Stress on Pine Forests at
Individual Tree Level using UAV-Based Hyperspectral Imagery and Lidar,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Fernandez-Carrillo, A.[Angel],
Patocka, Z.[Zdenek],
Dobrovolný, L.[Lumír],
Franco-Nieto, A.[Antonio],
Revilla-Romero, B.[Beatriz],
Monitoring Bark Beetle Forest Damage in Central Europe. A Remote
Sensing Approach Validated with Field Data,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Minarík, R.[Robert],
Langhammer, J.[Jakub],
Lendzioch, T.[Theodora],
Automatic Tree Crown Extraction from UAS Multispectral Imagery for
the Detection of Bark Beetle Disturbance in Mixed Forests,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Minarík, R.[Robert],
Langhammer, J.[Jakub],
Lendzioch, T.[Theodora],
Detection of Bark Beetle Disturbance at Tree Level Using UAS
Multispectral Imagery and Deep Learning,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Boucher, P.B.[Peter Brehm],
Hancock, S.[Steven],
Orwig, D.A.[David A],
Duncanson, L.[Laura],
Armston, J.[John],
Tang, H.[Hao],
Krause, K.[Keith],
Cook, B.[Bruce],
Paynter, I.[Ian],
Li, Z.[Zhan],
Elmes, A.[Arthur],
Schaaf, C.[Crystal],
Detecting Change in Forest Structure with Simulated GEDI Lidar
Waveforms: A Case Study of the Hemlock Woolly Adelgid (HWA; Adelges
tsugae) Infestation,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Zhong, Y.[Yuan],
Hu, B.X.[Bao-Xin],
Hall, G.B.[G. Brent],
Hoque, F.[Farah],
Xu, W.[Wei],
Gao, X.[Xin],
A Generalized Linear Mixed Model Approach to Assess Emerald Ash Borer
Diffusion,
IJGI(9), No. 7, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Hu, B.X.,
Li, J.,
Wang, J.,
Hall, G.B.,
The Early Detection of the Emerald Ash Borer (EAB) Using Advanced
Geospacial Technologies,
Geospatial14(213-219).
DOI Link
1411
BibRef
Qin, J.[Jun],
Wang, B.[Biao],
Wu, Y.[Yanlan],
Lu, Q.[Qi],
Zhu, H.C.[Hao-Chen],
Identifying Pine Wood Nematode Disease Using UAV Images and Deep
Learning Algorithms,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Klimetzek, D.[Dietrich],
Stancioiu, P.T.[Petru Tudor],
Paraschiv, M.[Marius],
Nita, M.D.[Mihai Daniel],
Ecological Monitoring with Spy Satellite Images:
The Case of Red Wood Ants in Romania,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Rodman, K.C.[Kyle C.],
Andrus, R.A.[Robert A.],
Butkiewicz, C.L.[Cori L.],
Chapman, T.B.[Teresa B.],
Gill, N.S.[Nathan S.],
Harvey, B.J.[Brian J.],
Kulakowski, D.[Dominik],
Tutland, N.J.[Niko J.],
Veblen, T.T.[Thomas T.],
Hart, S.J.[Sarah J.],
Effects of Bark Beetle Outbreaks on Forest Landscape Pattern in the
Southern Rocky Mountains, U.S.A.,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Gdulová, K.[Katerina],
Marešová, J.[Jana],
Barták, V.[Vojtech],
Szostak, M.[Marta],
Cervenka, J.[Jaroslav],
Moudrý, V.[Vítezslav],
Use of TanDEM-X and SRTM-C Data for Detection of Deforestation Caused
by Bark Beetle in Central European Mountains,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Migas-Mazur, R.[Robert],
Kycko, M.[Marlena],
Zwijacz-Kozica, T.[Tomasz],
Zagajewski, B.[Bogdan],
Assessment of Sentinel-2 Images, Support Vector Machines and Change
Detection Algorithms for Bark Beetle Outbreaks Mapping in the Tatra
Mountains,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Xia, L.[Lang],
Zhang, R.[Ruirui],
Chen, L.P.[Li-Ping],
Li, L.L.[Long-Long],
Yi, T.[Tongchuan],
Wen, Y.[Yao],
Ding, C.[Chenchen],
Xie, C.[Chunchun],
Evaluation of Deep Learning Segmentation Models for Detection of Pine
Wilt Disease in Unmanned Aerial Vehicle Images,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Pandey, P.[Piyush],
Payn, K.G.[Kitt G.],
Lu, Y.Z.[Yu-Zhen],
Heine, A.J.[Austin J.],
Walker, T.D.[Trevor D.],
Acosta, J.J.[Juan J.],
Young, S.[Sierra],
Hyperspectral Imaging Combined with Machine Learning for the
Detection of Fusiform Rust Disease Incidence in Loblolly Pine
Seedlings,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Faltan, V.[Vladimír],
Petrovic, F.[František],
Gábor, M.[Marián],
Šagát, V.[Vladimír],
Hruška, M.[Matej],
Mountain Landscape Dynamics after Large Wind and Bark Beetle
Disasters and Subsequent Logging: Case Studies from the Carpathians,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Yu, R.[Run],
Luo, Y.Q.[You-Qing],
Li, H.N.[Hao-Nan],
Yang, L.Y.[Li-Yuan],
Huang, H.G.[Hua-Guo],
Yu, L.F.[Lin-Feng],
Ren, L.[Lili],
Three-Dimensional Convolutional Neural Network Model for Early
Detection of Pine Wilt Disease Using UAV-Based Hyperspectral Images,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Hellwig, F.M.[Florian M.],
Stelmaszczuk-Górska, M.A.[Martyna A.],
Dubois, C.[Clémence],
Wolsza, M.[Marco],
Truckenbrodt, S.C.[Sina C.],
Sagichewski, H.[Herbert],
Chmara, S.[Sergej],
Bannehr, L.[Lutz],
Lausch, A.[Angela],
Schmullius, C.[Christiane],
Mapping European Spruce Bark Beetle Infestation at Its Early Phase
Using Gyrocopter-Mounted Hyperspectral Data and Field Measurements,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Kagan, D.[Dima],
Fuhrmann Alpert, G.[Galit],
Fire, M.[Michael],
Automatic large scale detection of red palm weevil infestation using
street view images,
PandRS(182), 2021, pp. 122-133.
Elsevier DOI
2112
Data science, Data fusion
BibRef
Zhang, Y.[Yahao],
Dian, Y.[Yuanyong],
Zhou, J.J.[Jing-Jing],
Peng, S.[Shoulian],
Hu, Y.[Yue],
Hu, L.[Lei],
Han, Z.[Zemin],
Fang, X.W.[Xin-Wei],
Cui, H.X.[Hong-Xia],
Characterizing Spatial Patterns of Pine Wood Nematode Outbreaks in
Subtropical Zone in China,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Abdollahnejad, A.[Azadeh],
Panagiotidis, D.[Dimitrios],
Surový, P.[Peter],
Modlinger, R.[Roman],
Investigating the Correlation between Multisource Remote Sensing Data
for Predicting Potential Spread of Ips typographus L. Spots in
Healthy Trees,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Xi, G.[Guilin],
Huang, X.J.[Xiao-Jun],
Xie, Y.[Yaowen],
Gang, B.[Bao],
Bao, Y.[Yuhai],
Dashzebeg, G.[Ganbat],
Nanzad, T.[Tsagaantsooj],
Dorjsuren, A.[Altanchimeg],
Enkhnasan, D.[Davaadorj],
Ariunaa, M.[Mungunkhuyag],
Detection of Larch Forest Stress from Jas's Larch Inchworm (Erannis
jacobsoni Djak) Attack Using Hyperspectral Remote Sensing,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
You, J.[Jie],
Zhang, R.[Ruirui],
Lee, J.[Joonwhoan],
A Deep Learning-Based Generalized System for Detecting Pine Wilt
Disease Using RGB-Based UAV Images,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Junttila, S.[Samuli],
Näsi, R.[Roope],
Koivumäki, N.[Niko],
Imangholiloo, M.[Mohammad],
Saarinen, N.[Ninni],
Raisio, J.[Juha],
Holopainen, M.[Markus],
Hyyppä, H.[Hannu],
Hyyppä, J.[Juha],
Lyytikäinen-Saarenmaa, P.[Päivi],
Vastaranta, M.[Mikko],
Honkavaara, E.[Eija],
Multispectral Imagery Provides Benefits for Mapping Spruce Tree
Decline Due to Bark Beetle Infestation When Acquired Late in the
Season,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Huang, J.X.[Ji-Xia],
Lu, X.[Xiao],
Chen, L.Y.[Li-Yuan],
Sun, H.[Hong],
Wang, S.H.[Shao-Hua],
Fang, G.F.[Guo-Fei],
Accurate Identification of Pine Wood Nematode Disease with a Deep
Convolution Neural Network,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Gao, B.T.[Bing-Tao],
Yu, L.F.[Lin-Feng],
Ren, L.[Lili],
Zhan, Z.Y.[Zhong-Yi],
Luo, Y.Q.[You-Qing],
Early Detection of Dendroctonus valens Infestation with Machine
Learning Algorithms Based on Hyperspectral Reflectance,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Li, X.Y.[Xiao-Yao],
Tong, T.[Tong],
Luo, T.[Tao],
Wang, J.X.[Jing-Xu],
Rao, Y.M.[Yue-Ming],
Li, L.[Linyuan],
Jin, D.[Decai],
Wu, D.[Dewei],
Huang, H.G.[Hua-Guo],
Retrieving the Infected Area of Pine Wilt Disease-Disturbed Pine
Forests from Medium-Resolution Satellite Images Using the Stochastic
Radiative Transfer Theory,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Kurihara, J.[Junichi],
Yamana, T.[Toshikazu],
Detection of Apple Valsa Canker Based on Hyperspectral Imaging,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Deforestation, Degradation .