Tsai, P.S.[Ping-Sing],
Shah, M.[Mubarak],
Keiter, K.[Katharine],
Kasparis, T.[Takis],
Cyclic Motion Detection for Motion Based Recognition,
PR(27), No. 12, December 1994, pp. 1591-1603.
Elsevier DOI
Cyclic Motion. Of walking person.
BibRef
9412
Cutler, R.[Ross],
Davis, L.S.[Larry S.],
Robust Real-Time Periodic Motion Detection, Analysis, and Applications,
PAMI(22), No. 8, August 2000, pp. 781-796.
IEEE DOI
0010
BibRef
Earlier:
Robust Periodic Motion and Motion Symmetry Detection,
CVPR00(II: 615-622).
IEEE DOI
0005
BibRef
Earlier:
Real-Time Periodic Motion Detection, Analysis, and Applications,
CVPR99(II: 326-332).
IEEE DOI
BibRef
Earlier:
View-Based Detection and Analysis of Periodic Motion,
DARPA98(237-242).
BibRef
And: A2, A1:
ICPR98(Vol I: 495-500).
IEEE DOI
9808
Track objects, self-similarity measure for periodic motion is also periodic.
Mostly human motion -- walking.
See also Backpack: Detection of People Carrying Objects Using Silhouettes.
BibRef
Ran, Y.[Yang],
Weiss, I.[Isaac],
Zheng, Q.F.[Qin-Fen],
Davis, L.S.[Larry S.],
Pedestrian Detection via Periodic Motion Analysis,
IJCV(71), No. 2, February 2007, pp. 143-160.
Springer DOI
0609
BibRef
Earlier:
An Efficient and Robust Human Classification Algorithm using Finite
Frequencies Probing,
OTCBVS04(132).
IEEE DOI
0502
Detect based on gait. Color and IR.
See also Real-Time Human Detection, Tracking, and Verification in Uncontrolled Camera Motion Environments.
BibRef
Ran, Y.[Yang],
Zheng, Q.F.[Qin-Fen],
Weiss, I.,
Davis, L.S.,
Abd-Almageed, W.,
Zhao, L.[Liang],
Pedestrian Classification from Moving Platforms Using Cyclic Motion
Pattern,
ICIP05(II: 854-857).
IEEE DOI
0512
BibRef
Xu, D.L.[Dao-Lin],
Li, Z.G.[Zhi-Gang],
Bishop, S.R.[Steven R.],
Galvanetto, U.[Ugo],
Estimation of periodic-like motions of chaotic evolutions using
detected unstable periodic patterns,
PRL(23), No. 1-3, January 2002, pp. 245-252.
Elsevier DOI
0201
BibRef
Magee, D.R.[Derek R.],
Boyle, R.D.[Roger D.],
Detecting lameness using 'Re-sampling Condensation' and 'multi-stream
cyclic hidden Markov models',
IVC(20), No. 8, June 2002, pp. 581-594.
Elsevier DOI
0206
BibRef
Earlier:
Detecting Lameness in Livestock using Resampling Condensation and
Multi-stream Cyclic Hidden Markov Models,
BMVC00(xx-yy).
PDF File.
0009
BibRef
Boyd, J.E.[Jeffrey E.],
Synchronization of oscillations for machine perception of gaits,
CVIU(96), No. 1, October 2004, pp. 35-59.
Elsevier DOI
0409
BibRef
Earlier:
Video Phase-Locked Loops in Gait Recognition,
ICCV01(I: 696-703).
IEEE DOI
0106
Synchronize model with changes in image.
BibRef
Chang, C.[Cheng],
Ansari, R.,
Khokhar, A.A.,
Efficient tracking of cyclic human motion by component motion,
SPLetters(11), No. 12, December 2004, pp. 941-944.
IEEE Abstract.
0412
BibRef
Earlier:
Cyclic articulated human motion tracking by sequential ancestral
simulation,
CVPR04(II: 45-52).
IEEE DOI
0408
BibRef
Earlier:
Robust tracking of cyclic nonrigid motion,
ICIP03(III: 337-340).
IEEE DOI
0312
BibRef
Ormoneit, D.[Dirk],
Black, M.J.[Michael J.],
Hastie, T.[Trevor],
Kjellström, H.[Hedvig],
Representing cyclic human motion using functional analysis,
IVC(23), No. 14, 12 December 2005, pp. 1264-1276.
Elsevier DOI
PDF File.
0601
BibRef
Grahn, J.,
Kjellstrom, H.,
Using SVM for Efficient Detection of Human Motion,
PETS05(231-238).
IEEE DOI
0602
BibRef
Branzan Albu, A.[Alexandra],
Yazdi, M.[Mehran],
Bergevin, R.[Robert],
Detection of cyclic human activities based on the morphological
analysis of the inter-frame similarity matrix,
RealTimeImg(11), No. 3, June 2005, pp. 219-232.
Elsevier DOI
0508
BibRef
Earlier: A2, A1, A3:
Morphological analysis of spatio-temporal patterns for the segmentation
of cyclic human activities,
ICPR04(IV: 240-243).
IEEE DOI
0409
BibRef
Branzan Albu, A.[Alexandra],
Bergevin, R.,
Quirion, S.,
Generic temporal segmentation of cyclic human motion,
PR(41), No. 1, January 2008, pp. 6-21.
Elsevier DOI
0710
Human motion analysis; Periodicity analysis; Temporal segmentation
BibRef
Jean, F.[Frederic],
Bergevin, R.[Robert],
Branzan Albu, A.[Alexandra],
Computing and evaluating view-normalized body part trajectories,
IVC(27), No. 9, 3 August 2009, pp. 1272-1284.
Elsevier DOI
0906
BibRef
Earlier:
Trajectories normalization for viewpoint invariant gait recognition,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Earlier:
Computing View-normalized Body Parts Trajectories,
CRV07(89-96).
IEEE DOI
0705
BibRef
Earlier:
Body Tracking in HumanWalk from Monocular Video Sequences,
CRV05(144-151).
IEEE DOI
0505
Body parts trajectories; View-invariance; Normalization; Gait
BibRef
Jean, F.[Frederic],
Branzan Albu, A.[Alexandra],
Bergevin, R.[Robert],
Towards view-invariant gait modeling:
Computing view-normalized body part trajectories,
PR(42), No. 11, November 2009, pp. 2936-2949.
Elsevier DOI
0907
Gait; View-invariance; Normalization; Body part trajectories
BibRef
Jean, F.[Frederic],
Bergevin, R.[Robert],
Branzan Albu, A.[Alexandra],
Human gait characteristics from unconstrained walks and viewpoints,
VS11(1883-1888).
IEEE DOI
1201
BibRef
Havasi, L.[László],
Szlávik, Z.[Zoltán],
Szirányi, T.[Tamás],
Higher order symmetry for non-linear classification of human walk
detection,
PRL(27), No. 7, May 2006, pp. 822-829.
Elsevier DOI
0604
BibRef
Earlier:
Eigenwalks: Walk Detection and Biometrics from Symmetry Patterns,
ICIP05(III: 289-292).
IEEE DOI
0512
Simplified symmetry; Pedestrian detection; Tracking; Surveillance;
Kernel Fisher discriminant analysis; Gait analysis
BibRef
Havasi, L.[László],
Szlávik, Z.[Zoltán],
Szirányi, T.[Tamás],
Detection of Gait Characteristics for Scene Registration in Video
Surveillance System,
IP(16), No. 2, February 2007, pp. 503-510.
IEEE DOI
0702
BibRef
Meng, Q.G.[Qing-Gang],
Li, B.H.[Bai-Hua],
Holstein, H.[Horst],
Recognition of human periodic movements from unstructured information
using a motion-based frequency domain approach,
IVC(24), No. 8, August 2006, pp. 795-809.
Elsevier DOI
0608
Human periodic motion classification; Motion-based recognition;
Moving light displays (MLDs); Motion power spectral analysis
BibRef
Li, B.H.[Bai-Hua],
Holstein, H.,
Recognition of human periodic motion: A frequency domain approach,
ICPR02(I: 311-314).
IEEE DOI
0211
BibRef
Li, B.H.[Bai-Hua],
Meng, Q.G.[Qing-Gang],
Holstein, H.[Horst],
Articulated motion reconstruction from feature points,
PR(41), No. 1, January 2008, pp. 418-431.
Elsevier DOI
0710
Non-rigid articulated motion; Point pattern matching;
Non-rigid pose estimation; Motion tracking and object recognition
BibRef
Li, B.H.[Bai-Hua],
Meng, Q.G.[Qing-Gang],
Holstein, H.[Horst],
Reconstruction of segmentally articulated structure in freeform
movement with low density feature points,
IVC(22), No. 10, 1 September 2004, pp. 749-759.
Elsevier DOI
0409
Model based point feature matching.
BibRef
Briassouli, A.[Alexia],
Ahuja, N.[Narendra],
Extraction and Analysis of Multiple Periodic Motions in Video Sequences,
PAMI(29), No. 7, July 2007, pp. 1244-1261.
IEEE DOI
0706
BibRef
Earlier:
Estimation of Multiple Periodic Motions from Video,
ECCV06(I: 147-159).
Springer DOI
0608
Periodic motion. Applied to human and animal motions.
See also Combination of Accumulated Motion and Color Segmentation for Human Activity Analysis.
BibRef
Briassouli, A.,
Ahuja, N.,
Integration of Frequency and Space for Multiple Motion Estimation and
Shape-Independent Object Segmentation,
CirSysVideo(18), No. 5, May 2008, pp. 657-669.
IEEE DOI
0711
BibRef
Earlier:
Spatial and Fourier Error Minimization for Motion Estimation and
Segmentation,
ICPR06(I: 94-97).
IEEE DOI
0609
BibRef
Earlier:
Integrated Spatial and Frequency Domain 2D Motion Segmentation and
Estimation,
ICCV05(I: 244-250).
IEEE DOI
0510
BibRef
Earlier:
Fusion of frequency and spatial domain information for motion analysis,
ICPR04(II: 175-178).
IEEE DOI
0409
BibRef
And: A2, A1:
Joint Spatial and Frequency Domain Motion Analysis,
FGR06(197-204).
IEEE DOI
0604
BibRef
Azy, O.[Ousman],
Ahuja, N.[Narendra],
Segmentation of periodically moving objects,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Mahanta, A.K.[Anjana Kakoti],
Mazarbhuiya, F.A.[Fokrul Alom],
Baruah, H.K.[Hemanta K.],
Finding calendar-based periodic patterns,
PRL(29), No. 9, 1 July 2008, pp. 1274-1284.
Elsevier DOI
0711
Frequent item sets; Locally frequent sets; Set superimposition;
Partially periodic patterns; Superimposed intervals
BibRef
Leung, V.,
Colombo, A.[Alberto],
Orwell, J.[James],
Velastin, S.A.[Sergio A.],
Modelling periodic scene elements for visual surveillance,
IET-CV(2), No. 2, June 2008, pp. 88-98.
DOI Link
0905
BibRef
Ribnick, E.[Evan],
Papanikolopoulos, N.[Nikolaos],
3D Reconstruction of Periodic Motion from a Single View,
IJCV(90), No. 1, October 2010, pp. xx-yy.
Springer DOI
1007
See also Estimating 3D Positions and Velocities of Projectiles from Monocular Views.
BibRef
Chen, T.P.[Trista P.],
Chen, C.W.[Ching-Wei],
Popp, P.[Phillip],
Coover, B.[Bob],
Visual Rhythm Detection and Its Applications in Interactive Multimedia,
MultMedMag(18), No. 1, January-March 2011, pp. 88-95.
IEEE DOI
1103
BibRef
Junejo, I.N.[Imran N.],
Dexter, E.[Emilie],
Laptev, I.[Ivan],
Pérez, P.[Patrick],
View-Independent Action Recognition from Temporal Self-Similarities,
PAMI(33), No. 1, January 2011, pp. 172-185.
IEEE DOI
1011
BibRef
Earlier:
Cross-View Action Recognition from Temporal Self-similarities,
ECCV08(II: 293-306).
Springer DOI
0810
Self-similarities of actions sequences over time. Descriptor captures temporal
similarities within a sequence.
BibRef
Dexter, E.[Emilie],
Pérez, P.[Patrick],
Laptev, I.[Ivan],
Multi-view synchronization of human actions and dynamic scenes,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Laptev, I.[Ivan],
Belongie, S.J.[Serge J.],
Pérez, P.[Patrick],
Wills, J.[Josh],
Periodic Motion Detection and Segmentation via Approximate Sequence
Alignment,
ICCV05(I: 816-823).
IEEE DOI
0510
BibRef
Belongie, S.J.[Serge J.],
Wills, J.[Josh],
Structure from Periodic Motion,
SCVMA04(16-24).
Springer DOI
0405
BibRef
Zhang, Z.J.[Zhi-Jun],
Zhang, Y.[Yunong],
Acceleration-Level Cyclic-Motion Generation of Constrained Redundant
Robots Tracking Different Paths,
SMC-B(42), No. 4, August 2012, pp. 1257-1269.
IEEE DOI
1208
BibRef
Yogameena, B.,
Roomi, S.M.M.[S. Md. Mansoor],
Jyothi, R.R.,
Raju, P.S.[Priya S.],
Abhaikumar, V.V.,
People/vehicle classification by recurrent motion of skeleton features,
IET-CV(6), No. 5, 2012, pp. 442-450.
DOI Link
1210
BibRef
Mansur, A.,
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Inverse Dynamics for Action Recognition,
Cyber(43), No. 4, 2013, pp. 1226-1236.
IEEE DOI
1307
Biological system modeling
BibRef
Mansur, A.[Al],
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
View-invariant gait recognition from low frame-rate videos,
ICPR12(2383-2386).
WWW Link.
1302
BibRef
Akae, N.[Naoki],
Mansur, A.[Al],
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Video from nearly still:
An application to low frame-rate gait recognition,
CVPR12(1537-1543).
IEEE DOI
1208
BibRef
Mori, A.[Atsushi],
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Gait Recognition Using Period-Based Phase Synchronization for Low
Frame-Rate Videos,
ICPR10(2194-2197).
IEEE DOI
1008
BibRef
Lee, C.P.[Chin Poo],
Tan, A.W.C.[Alan W.C.],
Tan, S.C.A.[Shing Chi-Ang],
Gait probability image:
An information-theoretic model of gait representation,
JVCIR(25), No. 6, 2014, pp. 1489-1492.
Elsevier DOI
1407
Gait
BibRef
Azhar, F.,
Tjahjadi, T.[Tardi],
Significant Body Point Labeling and Tracking,
Cyber(44), No. 9, September 2014, pp. 1673-1685.
IEEE DOI
1410
image motion analysis
BibRef
Rida, I.[Imad],
Almaadeed, S.[Somaya],
Bouridane, A.[Ahmed],
Gait Recognition Based on Modified Phase-Only Correlation,
SIViP(10), No. 3, March 2016, pp. 463-470.
WWW Link.
1602
See also Automatic Recognition of Partial Shoeprints Based on Phase-Only Correlation.
BibRef
Rida, I.[Imad],
Bouridane, A.[Ahmed],
Al Kork, S.[Samer],
Bremond, F.[François],
Gait Recognition Based on Modified Phase Only Correlation,
ICISP14(417-424).
Springer DOI
1406
See also Automatic Recognition of Partial Shoeprints Based on Phase-Only Correlation.
BibRef
Li, J.[Jun],
Wang, J.J.[Jing-Jing],
Zhang, J.F.[Jun-Fei],
Qin, Q.M.[Qi-Ming],
Jindal, T.[Tanvi],
Han, J.W.[Jia-Wei],
A probabilistic approach to detect mixed periodic patterns from moving
object data,
GeoInfo(20), No. 4, October 2016, pp. 715-739.
Springer DOI
1610
Multiple periods, not a single motion.
BibRef
Runia, T.F.H.[Tom F. H.],
Snoek, C.G.M.[Cees G. M.],
Smeulders, A.W.M.[Arnold W. M.],
Repetition Estimation,
IJCV(127), No. 9, September 2019, pp. 1361-1383.
Springer DOI
1908
In video. Repeating actions.
BibRef
Ye, M.,
Yang, C.,
Stankovic, V.,
Stankovic, L.,
Cheng, S.,
Distinct Feature Extraction for Video-Based Gait Phase Classification,
MultMed(22), No. 5, May 2020, pp. 1113-1125.
IEEE DOI
2005
Feature extraction, Legged locomotion, Kinematics, Tracking,
Trajectory, Training, Foot, Feature extraction, gait phase classification
BibRef
Stergiou, A.[Alexandros],
Poppe, R.[Ronald],
Learn to cycle: Time-consistent feature discovery for action
recognition,
PRL(141), 2021, pp. 1-7.
Elsevier DOI
2101
Squeeze and recursion, Temporal gates, Temporal cyclic error,
3D-CNNs, Spatio-temporal CNNs, Action recognition
BibRef
Xu, C.[Chi],
Makihara, Y.S.[Yasu-Shi],
Li, X.[Xiang],
Yagi, Y.S.[Yasu-Shi],
Lu, J.F.[Jian-Feng],
Cross-View Gait Recognition Using Pairwise Spatial Transformer
Networks,
CirSysVideo(31), No. 1, January 2021, pp. 260-274.
IEEE DOI
2101
BibRef
Earlier:
Gait Recognition from a Single Image Using a Phase-aware Gait Cycle
Reconstruction Network,
ECCV20(XIX:386-403).
Springer DOI
2011
Gait recognition, Task analysis, Transforms, Probes, Measurement,
Support vector machines, Databases, Pairwise spatial transformer,
cross-view
BibRef
Xu, C.[Chi],
Makihara, Y.S.[Yasu-Shi],
Li, X.[Xiang],
Yagi, Y.S.[Yasu-Shi],
Lu, J.F.[Jian-Feng],
Speed Invariance vs. Stability: Cross-Speed Gait Recognition Using
Single-Support Gait Energy Image,
ACCV16(II: 52-67).
Springer DOI
1704
BibRef
Yin, J.Q.[Jian-Qin],
Wu, Y.C.[Yan-Chun],
Zhu, C.R.[Chao-Ran],
Yin, Z.J.[Zi-Jin],
Liu, H.P.[Hua-Ping],
Dang, Y.H.[Yong-Hao],
Liu, Z.Y.[Zhi-Yi],
Liu, J.[Jun],
Energy-Based Periodicity Mining With Deep Features for Action
Repetition Counting in Unconstrained Videos,
CirSysVideo(31), No. 12, December 2021, pp. 4812-4825.
IEEE DOI
2112
Videos, Feature extraction, Principal component analysis,
Motion segmentation, Market research, Task analysis, deep ConvNets
BibRef
Liu, X.L.[Xiao-Li],
Yin, J.Q.[Jian-Qin],
Guo, D.[Di],
Liu, H.P.[Hua-Ping],
Rich Action-Semantic Consistent Knowledge for Early Action Prediction,
IP(33), 2024, pp. 479-492.
IEEE DOI Code:
WWW Link.
2401
Videos, Semantics, Predictive models, Task analysis, Pipelines,
Feature extraction, Visualization, Action prediction,
graph neural network
BibRef
Jacquelin, N.[Nicolas],
Vuillemot, R.[Romain],
Duffner, S.[Stefan],
Periodicity counting in videos with unsupervised learning of cyclic
embeddings,
PRL(161), 2022, pp. 59-66.
Elsevier DOI
2209
Unsupervised learning, Periodicity, Repetition, Embedding, Triplet loss
BibRef
Sheng, X.X.[Xiao-Xiao],
Li, K.[Kunchang],
Shen, Z.Q.[Zhi-Qiang],
Xiao, G.[Gang],
A Progressive Difference Method for Capturing Visual Tempos on Action
Recognition,
CirSysVideo(33), No. 3, March 2023, pp. 977-987.
IEEE DOI
2303
Visualization, Videos, Spatiotemporal phenomena,
Computational modeling, Motion segmentation, Semantics, progressive difference
BibRef
Moniruzzaman, M.,
Yin, Z.Z.[Zhao-Zheng],
He, Z.H.[Zhi-Hai],
Leu, M.C.[Ming C.],
Qin, R.[Ruwen],
Jointly-Learnt Networks for Future Action Anticipation via
Self-Knowledge Distillation and Cycle Consistency,
CirSysVideo(33), No. 7, July 2023, pp. 3243-3256.
IEEE DOI
2307
Training, Uncertainty, Computational modeling,
Knowledge engineering, Task analysis, Target recognition, cycle consistency
BibRef
Li, N.[Na],
Zhao, X.B.[Xin-Bo],
A Strong and Robust Skeleton-Based Gait Recognition Method with Gait
Periodicity Priors,
MultMed(25), 2023, pp. 3046-3058.
IEEE DOI
2309
BibRef
Li, C.X.[Cheng-Xian],
Shao, M.[Ming],
Yang, Q.[Qirui],
Xia, S.[Siyu],
High-precision skeleton-based human repetitive action counting,
IET-CV(17), No. 6, 2023, pp. 700-709.
DOI Link
2310
computer vision, convolutional neural nets
BibRef
Li, X.J.[Xin-Jie\],
Xu, H.J.[Hui-Juan],
Repetitive Action Counting with Motion Feature Learning,
WACV24(6485-6494)
IEEE DOI
2404
Representation learning, Training, Noise, Dynamics, Collaboration,
Task analysis, Algorithms, Video recognition and understanding
BibRef
Bacharidis, K.[Konstantinos],
Argyros, A.[Antonis],
Repetition-aware Image Sequence Sampling for Recognizing Repetitive
Human Actions,
ACVR23(1870-1879)
IEEE DOI
2401
BibRef
Yoo, C.H.[Cheol-Hwan],
Yoo, J.H.[Jang-Hee],
Kim, H.W.[Ho-Won],
Han, B.[ByungOk],
Simple Yet Effective Approach to Repetitive Behavior Classification
based on Siamese Network,
ICPR22(2993-2999)
IEEE DOI
2212
Training, Location awareness, Smoothing methods, Manuals,
Behavioral sciences, Classification algorithms
BibRef
Zhang, Y.H.[Yun-Hua],
Shao, L.[Ling],
Snoek, C.G.M.[Cees G. M.],
Repetitive Activity Counting by Sight and Sound,
CVPR21(14065-14074)
IEEE DOI
2111
Visualization, Analytical models, Codes, Estimation,
Cameras, Pattern recognition
BibRef
Kim, W.[Woojoo],
Shin, E.[Eunsik],
Xiong, S.P.[Shu-Ping],
User Defined Walking-In-Place Gestures for Intuitive Locomotion in
Virtual Reality,
VAMR21(172-182).
Springer DOI
2108
BibRef
Celozzi, E.M.,
Ciabini, L.,
Cultrera, L.,
Pala, P.,
Berretti, S.,
Daoudi, M.,
del Bimbo, A.[Alberto],
Modelling the Statistics of Cyclic Activities by Trajectory Analysis
on the Manifold of Positive-Semi-Definite Matrices,
FG20(351-355)
IEEE DOI
2102
Skeleton, Trajectory, Training, Manifolds, Measurement, Task analysis,
Computational modeling, Human activity analysis, Riemannian manifolds
BibRef
Zhang, H.D.[Huai-Dong],
Xu, X.M.[Xue-Miao],
Han, G.Q.[Guo-Qiang],
He, S.F.[Sheng-Feng],
Context-Aware and Scale-Insensitive Temporal Repetition Counting,
CVPR20(667-675)
IEEE DOI
2008
Videos, Feature extraction, Benchmark testing, Estimation,
Training, Context modeling
BibRef
Babaee, M.[Maryam],
Li, L.W.[Lin-Wei],
Rigoll, G.[Gerhard],
Gait Energy Image Reconstruction from Degraded Gait Cycle Using Deep
Learning,
WiCV-E18(IV:654-658).
Springer DOI
1905
BibRef
Babaee, M.,
Li, L.,
Rigoll, G.,
Gait Recognition from Incomplete Gait Cycle,
ICIP18(768-772)
IEEE DOI
1809
Image reconstruction, Legged locomotion, Gait recognition,
Training, Feature extraction, Measurement,
Convolutional Neural Network
BibRef
Huang, S.,
Ying, X.,
Rong, J.,
Shang, Z.,
Zha, H.,
Camera Calibration from Periodic Motion of a Pedestrian,
CVPR16(3025-3033)
IEEE DOI
1612
BibRef
Boutaayamou, M.,
Brüls, O.,
Denoël, V.,
Schwartz, C.,
Demonceau, M.,
Garraux, G.,
Verly, J.G.,
Segmentation of gait cycles using foot-mounted 3D accelerometers,
IC3D15(1-7)
IEEE DOI
1603
accelerometers
BibRef
Levy, O.[Ofir],
Wolf, L.B.[Lior B.],
Live Repetition Counting,
ICCV15(3020-3028)
IEEE DOI
1602
Count Repetitions of an action.
BibRef
Zecha, D.[Dan],
Lienhart, R.[Rainer],
Key-Pose Prediction in Cyclic Human Motion,
WACV15(86-93)
IEEE DOI
1503
Cameras
BibRef
Camacho-Bello, C.,
Báez-Rojas, J.J.,
Krawtchouk Moments for Gait Phase Detection,
CIARP14(787-793).
Springer DOI
1411
BibRef
Sedmidubsky, J.[Jan],
Valcik, J.[Jakub],
Balazia, M.[Michal],
Zezula, P.[Pavel],
Gait Recognition Based on Normalized Walk Cycles,
ISVC12(II: 11-20).
Springer DOI
1209
BibRef
Liu, J.Y.[Jian-Yi],
Zheng, N.N.[Nan-Ning],
Partitioning Gait Cycles Adaptive to Fluctuating Periods and Bad
Silhouettes,
ICB07(347-355).
Springer DOI
0708
BibRef
Peternel, M.,
Leonardis, A.,
Visual learning and recognition of a probabilistic spatio-temporal
model of cyclic human locomotion,
ICPR04(IV: 146-149).
IEEE DOI
0409
BibRef
Zhang, Z.H.[Zong-Hua],
Troje, N.F.[Nikolaus F.],
3D Periodic Human Motion Reconstruction from 2D Motion Sequences,
GenModel04(186).
IEEE DOI
0406
BibRef
Thangali, A.[Ashwin],
Sclaroff, S.[Stan],
Periodic Motion Detection and Estimation via Space-Time Sampling,
Motion05(II: 176-182).
IEEE DOI
0502
BibRef
Zhou, H.Y.[Hui-Yu],
Wallace, A.M.,
Green, P.R.,
Tracking periodic motion using Bayesian estimation,
ICPR04(IV: 725-728).
IEEE DOI
0409
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Human ID Using Gait, Recognition of People Through Gait .