Allbed, A.[Amal],
Kumar, L.[Lalit],
Sinha, P.[Priyakant],
Mapping and Modelling Spatial Variation in Soil Salinity in the Al
Hassa Oasis Based on Remote Sensing Indicators and Regression
Techniques,
RS(6), No. 2, 2014, pp. 1137-1157.
DOI Link
1403
BibRef
Moreira, L.C.J.[Luis Clenio J.],
dos Santos Teixeira, A.[Adunias],
Soares Galvăo, L.[Lęnio],
Laboratory Salinization of Brazilian Alluvial Soils and the Spectral
Effects of Gypsum,
RS(6), No. 4, 2014, pp. 2647-2663.
DOI Link
1405
BibRef
Nawar, S.[Said],
Buddenbaum, H.[Henning],
Hill, J.[Joachim],
Kozak, J.[Jacek],
Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy
and Landsat Data Using Two Quantitative Methods (PLSR and MARS),
RS(6), No. 11, 2014, pp. 10813-10834.
DOI Link
1412
BibRef
Wu, Y.[Yueru],
Wang, W.Z.[Wei-Zhen],
Zhao, S.J.[Shao-Jie],
Liu, S.[Suhua],
Dielectric Properties of Saline Soils and an Improved Dielectric
Model in C-Band,
GeoRS(53), No. 1, January 2015, pp. 440-452.
IEEE DOI
1410
curve fitting
BibRef
Nurmemet, I.[Ilyas],
Ghulam, A.[Abduwasit],
Tiyip, T.[Tashpolat],
Elkadiri, R.[Racha],
Ding, J.L.[Jian-Li],
Maimaitiyiming, M.[Matthew],
Abliz, A.[Abdulla],
Sawut, M.[Mamat],
Zhang, F.[Fei],
Abliz, A.[Abdugheni],
Sun, Q.[Qian],
Monitoring Soil Salinization in Keriya River Basin, Northwestern
China Using Passive Reflective and Active Microwave Remote Sensing
Data,
RS(7), No. 7, 2015, pp. 8803.
DOI Link
1506
BibRef
Xu, C.[Chi],
Zeng, W.Z.[Wen-Zhi],
Huang, J.S.[Jie-Sheng],
Wu, J.W.[Jing-Wei],
van Leeuwen, W.J.D.[Willem J.D.],
Prediction of Soil Moisture Content and Soil Salt Concentration from
Hyperspectral Laboratory and Field Data,
RS(8), No. 1, 2016, pp. 42.
DOI Link
1602
BibRef
Bai, L.[Lin],
Wang, C.Z.[Cui-Zhen],
Zang, S.Y.[Shu-Ying],
Zhang, Y.H.[Yu-Hong],
Hao, Q.[Qiannan],
Wu, Y.X.[Yue-Xiang],
Remote Sensing of Soil Alkalinity and Salinity in the
Wuyu'er-Shuangyang River Basin, Northeast China,
RS(8), No. 2, 2016, pp. 163.
DOI Link
1603
BibRef
Xu, L.[Lu],
Wang, Q.[Quan],
Retrieval of Soil Water Content in Saline Soils from Emitted Thermal
Infrared Spectra Using Partial Linear Squares Regression,
RS(7), No. 11, 2015, pp. 14646.
DOI Link
1512
BibRef
da Rocha Neto, O.C.[Odílio Coimbra],
dos Santos Teixeira, A.[Adunias],
Leăo, d.A.[de_Oliveira_Raimundo Alípio],
Moreira, L.C.J.[Luis Clenio Jario],
Galvăo, L.S.[Lęnio Soares],
Hyperspectral Remote Sensing for Detecting Soil Salinization Using
ProSpecTIR-VS Aerial Imagery and Sensor Simulation,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Lugassi, R.[Rachel],
Goldshleger, N.[Naftaly],
Chudnovsky, A.[Alexandra],
Studying Vegetation Salinity:
From the Field View to a Satellite-Based Perspective,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Yang, X.,
Yu, Y.,
Estimating Soil Salinity Under Various Moisture Conditions: An
Experimental Study,
GeoRS(55), No. 5, May 2017, pp. 2525-2533.
IEEE DOI
1705
salinity (geophysical), soil, SSC estimated error,
exponent function, laboratory experiment,
land desertification processes, large-scale SSC mapping,
mean-square error, remote sensing technology,
soil reflectance spectra, soil salinity,
various moisture conditions, Moisture, Remote sensing,
Salinity (geophysical), Soil moisture, Surface waves,
Hyperspectral imaging, parameter estimation, predictive models,
salinity, soil moisture, soil properties, spectral analysis, spectroscopy
BibRef
Liu, L.[Lanfa],
Ji, M.[Min],
Buchroithner, M.[Manfred],
A Case Study of the Forced Invariance Approach for Soil Salinity
Estimation in Vegetation-Covered Terrain Using Airborne Hyperspectral
Imagery,
IJGI(7), No. 2, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Nurmemet, I.[Ilyas],
Sagan, V.[Vasit],
Ding, J.L.[Jian-Li],
Halik, Ü.[Ümüt],
Abliz, A.[Abdulla],
Yakup, Z.[Zaytungul],
A WFS-SVM Model for Soil Salinity Mapping in Keriya Oasis,
Northwestern China Using Polarimetric Decomposition and Fully PolSAR
Data,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Fan, X.W.[Xing-Wang],
Liu, Y.B.[Yuan-Bo],
Tao, J.M.[Jin-Mei],
Weng, Y.L.[Yong-Ling],
Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with
Partial Least Square Regression,
RS(7), No. 1, 2015, pp. 488-511.
DOI Link
1502
BibRef
Bannari, A.[Abderrazak],
El-Battay, A.[Ali],
Bannari, R.[Rachid],
Rhinane, H.[Hassan],
Sentinel-MSI VNIR and SWIR Bands Sensitivity Analysis for Soil
Salinity Discrimination in an Arid Landscape,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Meissner, T.[Thomas],
Wentz, F.J.[Frank J.],
Le Vine, D.M.[David M.],
The Salinity Retrieval Algorithms for the NASA Aquarius Version 5 and
SMAP Version 3 Releases,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Fu, C.B.[Cheng-Biao],
Gan, S.[Shu],
Yuan, X.P.[Xi-Ping],
Xiong, H.G.[Hei-Gang],
Tian, A.H.[An-Hong],
Determination of Soil Salt Content Using a Probability Neural Network
Model Based on Particle Swarm Optimization in Areas Affected and
Non-Affected by Human Activities,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Hoa, P.V.[Pham Viet],
Giang, N.V.[Nguyen Vu],
Binh, N.A.[Nguyen An],
Hai, L.V.H.[Le Vu Hong],
Pham, T.D.[Tien-Dat],
Hasanlou, M.[Mahdi],
Bui, D.T.[Dieu Tien],
Soil Salinity Mapping Using SAR Sentinel-1 Data and Advanced Machine
Learning Algorithms: A Case Study at Ben Tre Province of the Mekong
River Delta (Vietnam),
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Li, X.J.[Xiao-Jie],
Ren, J.H.[Jian-Hua],
Zhao, K.[Kai],
Liang, Z.W.[Zheng-Wei],
Correlation between Spectral Characteristics and Physicochemical
Parameters of Soda-Saline Soils in Different States,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Hu, J.[Jie],
Peng, J.[Jie],
Zhou, Y.[Yin],
Xu, D.Y.[Dong-Yun],
Zhao, R.Y.[Rui-Ying],
Jiang, Q.S.[Qing-Song],
Fu, T.T.[Ting-Ting],
Wang, F.[Fei],
Shi, Z.[Zhou],
Quantitative Estimation of Soil Salinity Using UAV-Borne
Hyperspectral and Satellite Multispectral Images,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Wang, S.[Sijia],
Chen, Y.H.[Yun-Hao],
Wang, M.G.[Ming-Guo],
Zhao, Y.F.[Yi-Fei],
Li, J.[Jing],
SPA-Based Methods for the Quantitative Estimation of the Soil Salt
Content in Saline-Alkali Land from Field Spectroscopy Data: A Case
Study from the Yellow River Irrigation Regions,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Zhang, S.M.[Su-Ming],
Zhao, G.X.[Geng-Xing],
A Harmonious Satellite-Unmanned Aerial Vehicle-Ground Measurement
Inversion Method for Monitoring Salinity in Coastal Saline Soil,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Wang, S.[Sijia],
Chen, Y.H.[Yun-Hao],
Wang, M.G.[Ming-Guo],
Li, J.[Jing],
Performance Comparison of Machine Learning Algorithms for Estimating
the Soil Salinity of Salt-Affected Soil Using Field Spectral Data,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Wang, J.J.[Jian-Jun],
Sun, Q.[Quan],
Shang, J.L.[Jia-Li],
Zhang, J.H.[Jia-Hua],
Wu, F.[Fei],
Zhou, G.S.[Gui-Sheng],
Dai, Q.G.[Qi-Gen],
A New Approach for Estimating Soil Salinity Using A Low-Cost Soil
Sensor In Situ: A Case Study in Saline Regions of China's East Coast,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Tian, A.,
Fu, C.,
Yau, H.,
Su, X.,
Xiong, H.,
A New Methodology of Soil Salinization Degree Classification by
Probability Neural Network Model Based on Centroid of Fractional
Lorenz Chaos Self-Synchronization Error Dynamics,
GeoRS(58), No. 2, February 2020, pp. 799-810.
IEEE DOI
2001
Soil, Hyperspectral imaging, Chaotic communication,
Neural networks, Soil measurements, Dynamic error,
soil spectral reflectance
BibRef
Wu, B.,
Li, X.,
Zhao, K.,
Jiang, T.,
Zheng, X.,
Li, X.,
Gu, L.,
Wang, X.,
A Nondestructive Conductivity Estimating Method for Saline-Alkali
Land Based on Ground Penetrating Radar,
GeoRS(58), No. 4, April 2020, pp. 2605-2614.
IEEE DOI
2004
Ground penetrating radar, Soil, Conductivity, Correlation,
Land surface, Soil measurements, Conductivity measurement,
saline-alkali soil
BibRef
Wang, Z.[Zheng],
Zhang, F.[Fei],
Zhang, X.L.[Xian-Long],
Chan, N.W.[Ngai Weng],
Kung, H.T.[Hsiang-Te],
Zhou, X.H.[Xiao-Hong],
Wang, Y.S.[Yi-Shan],
Quantitative Evaluation of Spatial and Temporal Variation of Soil
Salinization Risk Using GIS-Based Geostatistical Method,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Ding, J.L.[Jian-Li],
Yang, S.T.[Sheng-Tian],
Shi, Q.[Qian],
Wei, Y.[Yang],
Wang, F.[Fei],
Using Apparent Electrical Conductivity as Indicator for Investigating
Potential Spatial Variation of Soil Salinity across Seven Oases along
Tarim River in Southern Xinjiang, China,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Bannari, A.[Abderrazak],
Al-Ali, Z.M.[Zahra M.],
Assessing Climate Change Impact on Soil Salinity Dynamics between
1987-2017 in Arid Landscape Using Landsat TM, ETM+ and OLI Data,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Moussa, I.[Issaka],
Walter, C.[Christian],
Michot, D.[Didier],
Boukary, I.A.[Issifou Adam],
Nicolas, H.[Hervé],
Pichelin, P.[Pascal],
Guéro, Y.[Yadji],
Soil Salinity Assessment in Irrigated Paddy Fields of the Niger
Valley Using a Four-Year Time Series of Sentinel-2 Satellite Images,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Li, H.Y.[Hong-Yi],
Liu, X.[Xinlu],
Hu, B.[Bifeng],
Biswas, A.[Asim],
Jiang, Q.S.[Qing-Song],
Liu, W.Y.[Wei-Yang],
Wang, N.[Nan],
Peng, J.[Jie],
Field-Scale Characterization of Spatio-Temporal Variability of Soil
Salinity in Three Dimensions,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Wang, N.[Nan],
Xue, J.[Jie],
Peng, J.[Jie],
Biswas, A.[Asim],
He, Y.[Yong],
Shi, Z.[Zhou],
Integrating Remote Sensing and Landscape Characteristics to Estimate
Soil Salinity Using Machine Learning Methods: A Case Study from
Southern Xinjiang, China,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Peng, J.[Jie],
Li, S.[Shuo],
Makar, R.S.[Randa S.],
Li, H.Y.[Hong-Yi],
Feng, C.H.[Chun-Hui],
Luo, D.[Defang],
Shen, J.L.[Jia-Li],
Wang, Y.[Ying],
Jiang, Q.S.[Qing-Song],
Fang, L.C.[Lin-Chuan],
Proximal Soil Sensing of Low Salinity in Southern Xinjiang, China,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Wang, Y.[Yu],
Xie, M.[Modong],
Hu, B.[Bifeng],
Jiang, Q.S.[Qing-Song],
Shi, Z.[Zhou],
He, Y.F.[Yin-Feng],
Peng, J.[Jie],
Desert Soil Salinity Inversion Models Based on Field In Situ
Spectroscopy in Southern Xinjiang, China,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Szatmári, G.[Gábor],
Bakacsi, Z.[Zsófia],
Laborczi, A.[Annamária],
Petrik, O.[Ottó],
Pataki, R.[Róbert],
Tóth, T.[Tibor],
Pásztor, L.[László],
Elaborating Hungarian Segment of the Global Map of Salt-Affected
Soils (GSSmap): National Contribution to an International Initiative,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Wang, J.Q.[Jia-Qiang],
Peng, J.[Jie],
Li, H.Y.[Hong-Yi],
Yin, C.Y.[Cai-Yun],
Liu, W.Y.[Wei-Yang],
Wang, T.W.[Tian-Wei],
Zhang, H.P.[Hua-Ping],
Soil Salinity Mapping Using Machine Learning Algorithms with the
Sentinel-2 MSI in Arid Areas, China,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Gao, Y.[Yao],
Liu, X.Q.[Xiu-Qing],
Hou, W.T.[Wen-Tao],
Han, Y.H.[Yong-Hui],
Wang, R.[Robert],
Zhang, H.[Heng],
Characteristics of Saline Soil in Extremely Arid Regions: A Case
Study Using GF-3 and ALOS-2 Quad-Pol SAR Data in Qinghai, China,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Al-Ali, Z.M.,
Bannari, A.,
Rhinane, H.,
El-Battay, A.,
Shahid, S.A.,
Hameid, N.,
Validation and Comparison of Physical Models for Soil Salinity
Mapping over an Arid Landscape Using Spectral Reflectance
Measurements and Landsat-OLI Data,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Xie, W.P.[Wen-Ping],
Yang, J.S.[Jing-Song],
Yao, R.J.[Rong-Jiang],
Wang, X.P.[Xiang-Ping],
Spatial and Temporal Variability of Soil Salinity in the Yangtze
River Estuary Using Electromagnetic Induction,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Yu, T.[Tao],
Jiapaer, G.[Guli],
Bao, A.[Anming],
Zheng, G.X.[Guo-Xiong],
Jiang, L.L.[Liang-Liang],
Yuan, Y.[Ye],
Huang, X.R.[Xiao-Ran],
Using Synthetic Remote Sensing Indicators to Monitor the Land
Degradation in a Salinized Area,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Qi, G.H.[Guang-Hui],
Chang, C.Y.[Chun-Yan],
Yang, W.[Wei],
Gao, P.[Peng],
Zhao, G.X.[Geng-Xing],
Soil Salinity Inversion in Coastal Corn Planting Areas by the
Satellite-UAV-Ground Integration Approach,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Tian, A.H.[An-Hong],
Fu, C.B.[Cheng-Biao],
Yau, H.T.[Her-Terng],
Su, X.Y.[Xiao-Yi],
Xiong, H.G.[Hei-Gang],
Soil Salinization Level Monitoring and Classifying by Mixed Chaotic
Systems,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Xu, X.[Xibo],
Chen, Y.H.[Yun-Hao],
Wang, M.G.[Ming-Guo],
Wang, S.J.[Si-Jia],
Li, K.N.[Kang-Ning],
Li, Y.G.[Yong-Guang],
Improving Estimates of Soil Salt Content by Using Two-Date Image
Spectral Changes in Yinbei, China,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Tian, A.H.[An-Hong],
Zhao, J.[Junsan],
Tang, B.[Bohui],
Zhu, D.M.[Da-Ming],
Fu, C.B.[Cheng-Biao],
Xiong, H.G.[Hei-Gang],
Hyperspectral Prediction of Soil Total Salt Content by Different
Disturbance Degree under a Fractional-Order Differential Model with
Differing Spectral Transformations,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Naimi, S.[Salman],
Ayoubi, S.[Shamsollah],
Zeraatpisheh, M.[Mojtaba],
Dematte, J.A.M.[Jose Alexandre Melo],
Ground Observations and Environmental Covariates Integration for
Mapping of Soil Salinity: A Machine Learning-Based Approach,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Fu, C.B.[Cheng-Biao],
Tian, A.H.[An-Hong],
Zhu, D.M.[Da-Ming],
Zhao, J.[Junsan],
Xiong, H.G.[Hei-Gang],
Estimation of Salinity Content in Different Saline-Alkali Zones Based
on Machine Learning Model Using FOD Pretreatment Method,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Gu, Q.Y.[Qian-Yi],
Han, Y.[Yang],
Xu, Y.P.[Ya-Ping],
Yao, H.Y.[Hai-Yan],
Niu, H.F.[Hao-Fang],
Huang, F.[Fang],
Laboratory Research on Polarized Optical Properties of
Saline-Alkaline Soil Based on Semi-Empirical Models and Machine
Learning Methods,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Jiang, X.F.[Xiao-Fang],
Duan, H.C.[Han-Chen],
Liao, J.[Jie],
Guo, P.[Pinglin],
Huang, C.[Cuihua],
Xue, X.[Xian],
Estimation of Soil Salinization by Machine Learning Algorithms in
Different Arid Regions of Northwest China,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Muhetaer, N.[Nuerbiye],
Nurmemet, I.[Ilyas],
Abulaiti, A.[Adilai],
Xiao, S.[Sentian],
Zhao, J.[Jing],
A Quantifying Approach to Soil Salinity Based on a Radar Feature
Space Model Using ALOS PALSAR-2 Data,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Wei, Q.[Qinyu],
Nurmemet, I.[Ilyas],
Gao, M.H.[Min-Hua],
Xie, B.Q.[Bo-Qiang],
Inversion of Soil Salinity Using Multisource Remote Sensing Data and
Particle Swarm Machine Learning Models in Keriya Oasis, Northwestern
China,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Rafik, A.[Abdellatif],
Ibouh, H.[Hassan],
Fels, A.E.A.E.[Abdelhafid El Alaoui El],
Eddahby, L.[Lhou],
Mezzane, D.[Daoud],
Bousfoul, M.[Mohamed],
Amazirh, A.[Abdelhakim],
Ouhamdouch, S.[Salah],
Bahir, M.[Mohammed],
Gourfi, A.[Abdelali],
Dhiba, D.[Driss],
Chehbouni, A.[Abdelghani],
Soil Salinity Detection and Mapping in an Environment under Water
Stress between 1984 and 2018 (Case of the Largest Oasis in
Africa-Morocco),
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Zhao, W.J.[Wen-Ju],
Zhou, C.[Chun],
Zhou, C.Q.[Chang-Quan],
Ma, H.[Hong],
Wang, Z.J.[Zhi-Jun],
Soil Salinity Inversion Model of Oasis in Arid Area Based on UAV
Multispectral Remote Sensing,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Measho, S.[Simon],
Li, F.[Fadong],
Pellikka, P.[Petri],
Tian, C.[Chao],
Hirwa, H.[Hubert],
Xu, N.[Ning],
Qiao, Y.F.[Yun-Feng],
Khasanov, S.[Sayidjakhon],
Kulmatov, R.[Rashid],
Chen, G.[Gang],
Soil Salinity Variations and Associated Implications for Agriculture
and Land Resources Development Using Remote Sensing Datasets in
Central Asia,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Hien, L.T.T.[Le Thi Thu],
Gobin, A.[Anne],
Lim, D.T.[Duong Thi],
Quan, D.T.[Dang Tran],
Hue, N.T.[Nguyen Thi],
Thang, N.N.[Nguyen Ngoc],
Binh, N.T.[Nguyen Thanh],
Dung, V.T.K.[Vu Thi Kim],
Linh, P.H.[Pham Ha],
Soil Moisture Influence on the FTIR Spectrum of Salt-Affected Soils,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
AbdelRahman, M.A.E.[Mohamed A. E.],
Afifi, A.A.[Ahmed A.],
d'Antonio, P.[Paola],
Gabr, S.S.[Safwat S.],
Scopa, A.[Antonio],
Detecting and Mapping Salt-Affected Soil with Arid Integrated Indices
in Feature Space Using Multi-Temporal Landsat Imagery,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Yan, Y.[Yang],
Kayem, K.[Kader],
Hao, Y.[Ye],
Shi, Z.[Zhou],
Zhang, C.[Chao],
Peng, J.[Jie],
Liu, W.Y.[Wei-Yang],
Zuo, Q.[Qiang],
Ji, W.J.[Wen-Jun],
Li, B.G.[Bao-Guo],
Mapping the Levels of Soil Salination and Alkalization by Integrating
Machining Learning Methods and Soil-Forming Factors,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Hall, K.[Kashawn],
Daley, A.[Alton],
Whitehall, S.[Shanice],
Sandiford, S.[Sanola],
Gentemann, C.L.[Chelle L.],
Validating Salinity from SMAP and HYCOM Data with Saildrone Data
during EUREC4A-OA/ATOMIC,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Flores, J.L.G.[José Luis Gómez],
Rodríguez, M.R.[Mario Ramos],
Jiménez, A.G.[Alfonso González],
Farzamian, M.[Mohammad],
Galán, J.F.H.[Juan Francisco Herencia],
Bellido, B.S.[Benito Salvatierra],
Sacristan, P.C.[Pedro Cermeńo],
Vanderlinden, K.[Karl],
Depth-Specific Soil Electrical Conductivity and NDVI Elucidate
Salinity Effects on Crop Development in Reclaimed Marsh Soils,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Feizizadeh, B.[Bakhtiar],
Omarzadeh, D.[Davoud],
Alajujeh, K.M.[Keyvan Mohammadzadeh],
Blaschke, T.[Thomas],
Makki, M.[Mohsen],
Impacts of the Urmia Lake Drought on Soil Salinity and Degradation
Risk: An Integrated Geoinformatics Analysis and Monitoring Approach,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Gu, Q.Y.[Qian-Yi],
Han, Y.[Yang],
Xu, Y.P.[Ya-Ping],
Ge, H.T.[Hui-Tian],
Li, X.J.[Xiao-Jie],
Extraction of Saline Soil Distributions Using Different Salinity
Indices and Deep Neural Networks,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zhou, Y.[Yin],
Chen, S.C.[Song-Chao],
Hu, B.[Bifeng],
Ji, W.J.[Wen-Jun],
Li, S.[Shuo],
Hong, Y.S.[Yong-Sheng],
Xu, H.Y.[Han-Yi],
Wang, N.[Nan],
Xue, J.[Jie],
Zhang, X.L.[Xiang-Lin],
Xiao, Y.[Yi],
Shi, Z.[Zhou],
Global Soil Salinity Prediction by Open Soil Vis-NIR Spectral Library,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Jiang, X.F.[Xiao-Fang],
Xue, X.[Xian],
Comparing Gaofen-5, Ground, and Huanjing-1A Spectra for the
Monitoring of Soil Salinity with the BP Neural Network Improved by
Particle Swarm Optimization,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Jia, P.P.[Ping-Ping],
Zhang, J.H.[Jun-Hua],
He, W.[Wei],
Yuan, D.[Ding],
Hu, Y.[Yi],
Zamanian, K.[Kazem],
Jia, K.[Keli],
Zhao, X.N.[Xiao-Ning],
Inversion of Different Cultivated Soil Types' Salinity Using
Hyperspectral Data and Machine Learning,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Yin, S.H.[Shu-Hui],
Tian, Y.[Yuan],
Yang, L.S.[Lin-Sheng],
Wen, Q.Q.[Qi-Qian],
Wei, B.G.[Bing-Gan],
Dynamics of Spatiotemporal Variation of Groundwater Arsenic Due to
Salt-Leaching Irrigation and Saline-Alkali Land,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Huang, X.[Xi],
Bai, T.C.[Tie-Cheng],
Guan, H.[Huade],
Wei, X.[Xiayong],
Wang, Y.[Yali],
Mao, X.M.[Xiao-Min],
An Improved Exponential Model Considering a Spectrally Effective
Moisture Threshold for Proximal Hyperspectral Reflectance Simulation
and Soil Salinity Estimation,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Tan, J.[Jiao],
Ding, J.L.[Jian-Li],
Han, L.[Lijing],
Ge, X.Y.[Xiang-Yu],
Wang, X.[Xiao],
Wang, J.[Jiao],
Wang, R.[Ruimei],
Qin, S.F.[Shao-Feng],
Zhang, Z.[Zhe],
Li, Y.K.[Yong-Kang],
Exploring PlanetScope Satellite Capabilities for Soil Salinity
Estimation and Mapping in Arid Regions Oases,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Mohamed, S.A.[Sayed A.],
Metwaly, M.M.[Mohamed M.],
Metwalli, M.R.[Mohamed R.],
AbdelRahman, M.A.E.[Mohamed A. E.],
Badreldin, N.[Nasem],
Integrating Active and Passive Remote Sensing Data for Mapping Soil
Salinity Using Machine Learning and Feature Selection Approaches in
Arid Regions,
RS(15), No. 7, 2023, pp. 1751.
DOI Link
2304
BibRef
Yang, J.Y.[Jing-Yi],
Wang, Q.J.[Qin-Jun],
Chang, D.K.[Ding-Kun],
Xu, W.T.[Wen-Tao],
Yuan, B.Q.[Bo-Qi],
A High-Precision Remote Sensing Identification Method on
Saline-Alkaline Areas Using Multi-Sources Data,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Sahbeni, G.[Ghada],
Ngabire, M.[Maurice],
Musyimi, P.K.[Peter K.],
Székely, B.[Balázs],
Challenges and Opportunities in Remote Sensing for Soil Salinization
Mapping and Monitoring: A Review,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Das, A.[Ayan],
Bhattacharya, B.K.[Bimal Kumar],
Setia, R.[Raj],
Jayasree, G.,
Sankar-Das, B.[Bhabani],
A novel method for detecting soil salinity using AVIRIS-NG imaging
spectroscopy and ensemble machine learning,
PandRS(200), 2023, pp. 191-212.
Elsevier DOI
2306
Soil salinity index, Hyperspectral remote sensing,
Ensemble machine learning, interpretable Machine learning
BibRef
Fan, X.L.[Xiang-Long],
Kang, X.Y.[Xiao-Yan],
Gao, P.[Pan],
Zhang, Z.[Ze],
Wang, J.[Jin],
Zhang, Q.[Qiang],
Zhang, M.L.[Meng-Li],
Ma, L.[Lulu],
Lv, X.[Xin],
Zhang, L.[Lifu],
Soil Salinity Estimation in Cotton Fields in Arid Regions Based on
Multi-Granularity Spectral Segmentation (MGSS),
RS(15), No. 13, 2023, pp. 3358.
DOI Link
2307
BibRef
Zhang, Z.P.[Zhuo-Peng],
Li, X.J.[Xiao-Jie],
Zhou, S.[Shuang],
Zhao, Y.[Yue],
Ren, J.H.[Jian-Hua],
Quantitative Study on Salinity Estimation of Salt-Affected Soils by
Combining Different Types of Crack Characteristics Using Ground-Based
Remote Sensing Observation,
RS(15), No. 13, 2023, pp. 3249.
DOI Link
2307
BibRef
Jiao, X.Y.[Xiang-Yu],
Shi, X.F.[Xiao-Fei],
Shen, Z.Y.[Zi-Yang],
Ni, K.[Kuiyuan],
Deng, Z.[Zhiyu],
Automatic Extraction of Saltpans on an Amendatory Saltpan Index and
Local Spatial Parallel Similarity in Landsat-8 Imagery,
RS(15), No. 13, 2023, pp. 3413.
DOI Link
2307
BibRef
Sukhova, E.[Ekaterina],
Zolin, Y.[Yuriy],
Popova, A.[Alyona],
Yudina, L.[Lyubov],
Sukhov, V.[Vladimir],
The Influence of Soil Salt Stress on Modified Photochemical
Reflectance Indices in Pea Plants,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Zhao, X.Y.[Xin-Yue],
Xi, H.Y.[Hai-Yang],
Yu, T.F.[Teng-Fei],
Cheng, W.J.[Wen-Ju],
Chen, Y.Q.[Yu-Qing],
Spatio-Temporal Variation in Soil Salinity and Its Influencing
Factors in Desert Natural Protected Forest Areas,
RS(15), No. 20, 2023, pp. 5054.
DOI Link
2310
BibRef
Cui, J.W.[Jia-Wei],
Chen, X.W.[Xiang-Wei],
Han, W.T.[Wen-Ting],
Cui, X.[Xin],
Ma, W.[Weitong],
Li, G.[Guang],
Estimation of Soil Salt Content at Different Depths Using UAV
Multi-Spectral Remote Sensing Combined with Machine Learning
Algorithms,
RS(15), No. 21, 2023, pp. 5254.
DOI Link
2311
BibRef
Zhang, H.R.[Hao-Ran],
Fu, X.[Xin],
Zhang, Y.[Yanna],
Qi, Z.S.[Zhai-Shuo],
Zhang, H.C.[Heng-Cai],
Xu, Z.H.[Zheng-He],
Mapping Multi-Depth Soil Salinity Using Remote Sensing-Enabled
Machine Learning in the Yellow River Delta, China,
RS(15), No. 24, 2023, pp. 5640.
DOI Link
2401
BibRef
Chen, H.F.[Hui-Fang],
Wu, J.W.[Jing-Wei],
Xu, C.[Chi],
Monitoring Soil Salinity Classes through Remote Sensing-Based
Ensemble Learning Concept: Considering Scale Effects,
RS(16), No. 4, 2024, pp. 642.
DOI Link
2402
BibRef
Lattus, J.M.[José Manuel],
Barber, M.E.[Matías Ernesto],
Skokovic, D.[Draen],
Pérez-Martínez, W.[Waldo],
Martínez, V.R.[Verónica Rocío],
Flores, L.[Laura],
Spaceborne Radars for Mapping Surface and Subsurface Salt Pan
Configuration: A Case Study of the Pozuelos Salt Flat in Northern
Argentina,
RS(16), No. 8, 2024, pp. 1411.
DOI Link
2405
BibRef
Wang, J.J.[Jia-Jie],
Wang, X.P.[Xiao-Peng],
Zhang, J.H.[Jia-Hua],
Shang, X.D.[Xiao-Di],
Chen, Y.[Yuyi],
Feng, Y.P.[Yi-Ping],
Tian, B.B.[Bing-Bing],
Soil Salinity Inversion in Yellow River Delta by Regularized Extreme
Learning Machine Based on ICOA,
RS(16), No. 9, 2024, pp. 1565.
DOI Link
2405
BibRef
Song, Y.Q.[Ying-Qiang],
Pan, Y.[Yinxue],
Xiang, M.[Meiyan],
Yang, W.H.[Wei-Hao],
Zhan, D.[Dexi],
Wang, X.[Xingrui],
Lu, M.[Miao],
A WebGIS-Based System for Supporting Saline-Alkali Soil Ecological
Monitoring: A Case Study in Yellow River Delta, China,
RS(16), No. 11, 2024, pp. 1948.
DOI Link
2406
BibRef
Zhou, M.G.[Meng-Ge],
Li, Y.H.[Yong-Hua],
Digital Mapping and Scenario Prediction of Soil Salinity in Coastal
Lands Based on Multi-Source Data Combined with Machine Learning
Algorithms,
RS(16), No. 14, 2024, pp. 2681.
DOI Link
2408
BibRef
Ouyang, Y.T.[Ya-Ting],
Zhang, Y.H.[Yu-Hong],
Feng, M.[Ming],
Boschetti, F.[Fabio],
Du, Y.[Yan],
Geoclimatic Distribution of Satellite-Observed Salinity Bias
Classified by Machine Learning Approach,
RS(16), No. 16, 2024, pp. 3084.
DOI Link
2408
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Sea Surface Salinity, SSS, SMOS .