Wilson, T.A.,
Rogers, S.K.,
Kabrisky, M.,
Perceptual-Based Image Fusion for Hyperspectral Data,
GeoRS(35), No. 4, July 1997, pp. 1007-1017.
IEEE Top Reference.
9708
BibRef
Chen, C.M.,
Hepner, G.F.,
Forster, R.R.,
Fusion of hyperspectral and radar data using the IHS transformation to
enhance urban surface features,
PandRS(58), No. 1, June 2003, pp. 19-30.
Elsevier DOI
0307
BibRef
Hardie, R.C.,
Eismann, M.T.,
Wilson, G.L.,
MAP Estimation for Hyperspectral Image Resolution Enhancement Using an
Auxiliary Sensor,
IP(13), No. 9, September 2004, pp. 1174-1184.
IEEE DOI
0409
BibRef
Eismann, M.T.,
Hardie, R.C.,
Hyperspectral Resolution Enhancement Using High-Resolution
Multispectral Imagery With Arbitrary Response Functions,
GeoRS(43), No. 3, March 2005, pp. 455-465.
IEEE Abstract.
0501
BibRef
Jimenez, L.O.,
Rivera-Medina, J.L.,
Rodriguez-Diaz, E.,
Arzuaga-Cruz, E.,
Ramirez-Velez, M.,
Integration of Spatial and Spectral Information by Means of
Unsupervised Extraction and Classification for Homogenous Objects
Applied to Multispectral and Hyperspectral Data,
GeoRS(43), No. 4, April 2005, pp. 844-851.
IEEE Abstract.
0501
BibRef
Gu, Y.,
Zhang, Y.,
Zhang, J.,
Integration of Spatial-Spectral Information for Resolution Enhancement
in Hyperspectral Images,
GeoRS(46), No. 5, May 2008, pp. 1347-1358.
IEEE DOI
0804
BibRef
Hemissi, S.,
Farah, I.R.,
Ettabaa, K.S.[K. Saheb],
Solaiman, B.,
Multi-Spectro-Temporal Analysis of Hyperspectral Imagery Based on 3-D
Spectral Modeling and Multilinear Algebra,
GeoRS(51), No. 1, January 2013, pp. 199-216.
IEEE DOI
1301
BibRef
Licciardi, G.,
Pacifici, F.,
Tuia, D.,
Prasad, S.,
West, T.,
Giacco, F.,
Thiel, C.,
Inglada, J.,
Christophe, E.,
Chanussot, J.,
Gamba, P.,
Decision Fusion for the Classification of Hyperspectral Data:
Outcome of the 2008 GRS-S Data Fusion Contest,
GeoRS(47), No. 11, November 2009, pp. 3857-3865.
IEEE DOI
0911
BibRef
Zhao, H.,
Jia, G.,
Li, N.,
Transformation From Hyperspectral Radiance Data to Data of Other
Sensors Based on Spectral Superresolution,
GeoRS(48), No. 11, November 2010, pp. 3903-3912.
IEEE DOI
1011
BibRef
Bakos, K.L.,
Gamba, P.,
Hierarchical Hybrid Decision Tree Fusion of Multiple Hyperspectral Data
Processing Chains,
GeoRS(49), No. 1, January 2011, pp. 388-394.
IEEE DOI
1101
Fusion of results of different techniques.
BibRef
Renhorn, I.[Ingmar],
Enhanced hyperspectral imaging for urban reconnaissance,
SPIE(Newsroom), May 7, 2013
DOI Link
1308
Combining images from airborne sensors enables accurate classification
of materials and infrastructure in urban areas, enabling defense
applications.
BibRef
Wei, Q.[Qi],
Bioucas-Dias, J.M.,
Dobigeon, N.[Nicolas],
Tourneret, J.Y.[Jean-Yves],
Hyperspectral and Multispectral Image Fusion Based on a Sparse
Representation,
GeoRS(53), No. 7, July 2015, pp. 3658-3668.
IEEE DOI
1503
Bayes methods
BibRef
Earlier: A1, A3, A4, Only:
Bayesian fusion of multispectral and hyperspectral images with
unknown sensor spectral response,
ICIP14(698-702)
IEEE DOI
1502
Decision support systems
BibRef
Wei, Q.[Qi],
Dobigeon, N.[Nicolas],
Tourneret, J.Y.[Jean-Yves],
Fast Fusion of Multi-Band Images Based on Solving a Sylvester
Equation,
IP(24), No. 11, November 2015, pp. 4109-4121.
IEEE DOI
1509
belief networks
BibRef
Wei, Q.[Qi],
Dobigeon, N.[Nicolas],
Tourneret, J.Y.[Jean-Yves],
Bioucas-Dias, J.M.,
Godsill, S.,
R-FUSE: Robust Fast Fusion of Multiband Images Based on Solving a
Sylvester Equation,
SPLetters(23), No. 11, November 2016, pp. 1632-1636.
IEEE DOI
1609
frequency-domain analysis
BibRef
Wei, Q.[Qi],
Bioucas-Dias, J.,
Dobigeon, N.[Nicolas],
Tourneret, J.Y.,
Chen, M.,
Godsill, S.,
Multiband Image Fusion Based on Spectral Unmixing,
GeoRS(54), No. 12, December 2016, pp. 7236-7249.
IEEE DOI
1612
Gaussian noise
BibRef
Bieniarz, J.,
Cerra, D.,
Avbelj, J.,
Reinartz, P.,
Müller, R.,
Hyperspectral Image Resolution Enhancement Based on Spectral Unmixing
and Information Fusion,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Cerra, D.,
Bieniarz, J.,
Avbelj, J.,
Reinartz, P.,
Müller, R.,
Spectral Matching through Data Compression,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Wang, H.Z.[Hong-Zhou],
Glennie, C.L.[Craig L.],
Fusion of waveform LiDAR data and hyperspectral imagery for land
cover classification,
PandRS(108), No. 1, 2015, pp. 1-11.
Elsevier DOI
1511
Full waveform LiDAR
BibRef
Li, Y.H.[Yong-Hong],
Wu, A.S.[Ai-Sheng],
Xiong, X.X.[Xiao-Xiong],
Inter-Comparison of S-NPP VIIRS and Aqua MODIS Thermal Emissive Bands
Using Hyperspectral Infrared Sounder Measurements as a Transfer
Reference,
RS(8), No. 1, 2016, pp. 72.
DOI Link
1602
BibRef
Lin, B.,
Tao, X.,
Xu, M.,
Dong, L.,
Lu, J.,
Bayesian Hyperspectral and Multispectral Image Fusions via Double
Matrix Factorization,
GeoRS(55), No. 10, October 2017, pp. 5666-5678.
IEEE DOI
1710
Bayes methods, estimation theory, hyperspectral imaging,
image fusion, inference mechanisms, matrix decomposition,
mean square error methods, optical transfer function,
BibRef
Lin, B.,
Tao, X.,
Lu, J.,
Hyperspectral Image Denoising via Matrix Factorization and Deep Prior
Regularization,
IP(29), No. 1, 2020, pp. 565-578.
IEEE DOI
1910
cellular neural nets, Gaussian noise, hyperspectral imaging,
image denoising, impulse noise,
convolutional neural networks (CNN)
BibRef
Lin, C.H.,
Ma, F.,
Chi, C.Y.,
Hsieh, C.H.,
A Convex Optimization-Based Coupled Nonnegative Matrix Factorization
Algorithm for Hyperspectral and Multispectral Data Fusion,
GeoRS(56), No. 3, March 2018, pp. 1652-1667.
IEEE DOI
1804
computational complexity, image fusion, image resolution,
inverse problems, iterative methods, matrix decomposition,
hyperspectral data
BibRef
Ablin, R.,
Sulochana, C.H.[C. Helen],
Iterative-based visualization-oriented fusion scheme for hyperspectral
images,
SIViP(12), No. 4, May 2018, pp. 757-765.
WWW Link.
1805
BibRef
Han, X.L.[Xiao-Lin],
Yu, J.[Jing],
Luo, J.Q.[Ji-Qiang],
Sun, W.D.[Wei-Dong],
Hyperspectral and Multispectral Image Fusion Using Cluster-Based
Multi-Branch BP Neural Networks,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Han, X.L.[Xiao-Lin],
Yu, J.[Jing],
Xue, J.H.[Jing-Hao],
Sun, W.D.[Wei-Dong],
Hyperspectral and Multispectral Image Fusion Using Optimized Twin
Dictionaries,
IP(29), 2020, pp. 4709-4720.
IEEE DOI
2003
Dictionaries, Hyperspectral imaging, Image fusion,
Spatial resolution, Optimization, Bayes methods,
spatial dictionary
BibRef
Zhang, Y.,
Huynh, C.P.,
Ngan, K.N.,
Feature Fusion With Predictive Weighting for Spectral Image
Classification and Segmentation,
GeoRS(57), No. 9, September 2019, pp. 6792-6807.
IEEE DOI
1909
Feature extraction, Image segmentation, Hyperspectral imaging,
Task analysis, Training, Convolution,
semantic segmentation
BibRef
Ren, K.[Kai],
Sun, W.W.[Wei-Wei],
Meng, X.C.[Xiang-Chao],
Yang, G.[Gang],
Du, Q.[Qian],
Fusing China GF-5 Hyperspectral Data with GF-1, GF-2 and Sentinel-2A
Multispectral Data: Which Methods Should Be Used?,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Feng, X.X.[Xiao-Xiao],
He, L.X.[Lu-Xiao],
Cheng, Q.M.[Qi-Min],
Long, X.Y.[Xiao-Yi],
Yuan, Y.X.[Yu-Xin],
Hyperspectral and Multispectral Remote Sensing Image Fusion Based on
Endmember Spatial Information,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Zhou, Y.,
Rangarajan, A.,
Gader, P.D.,
An Integrated Approach to Registration and Fusion of Hyperspectral
and Multispectral Images,
GeoRS(58), No. 5, May 2020, pp. 3020-3033.
IEEE DOI
2005
Point spread function (PSF), hyperspectral (HS) image analysis,
image fusion, nonrigid registration
BibRef
Wang, Z.,
Chen, B.,
Lu, R.,
Zhang, H.,
Liu, H.,
Varshney, P.K.,
FusionNet: An Unsupervised Convolutional Variational Network for
Hyperspectral and Multispectral Image Fusion,
IP(29), 2020, pp. 7565-7577.
IEEE DOI
2007
Hyperspectral images, multispectral images, image fusion,
probabilistic generative model, convolutional neural network, meta-learning
BibRef
Li, X.L.[Xue-Long],
Yuan, Y.[Yue],
Wang, Q.[Qi],
Hyperspectral and Multispectral Image Fusion via Nonlocal Low-Rank
Tensor Approximation and Sparse Representation,
GeoRS(59), No. 1, January 2021, pp. 550-562.
IEEE DOI
2012
Tensile stress, Bayes methods, Spatial resolution, Sparse matrices,
Machine learning, Image fusion, Hyperspectral (HS) image,
sparse representation
BibRef
Wu, S.Y.[Shi-Yong],
Zhong, R.F.[Ruo-Fei],
Li, Q.Y.[Qing-Yang],
Qiao, K.[Ke],
Zhu, Q.[Qing],
An Interband Registration Method for Hyperspectral Images Based on
Adaptive Iterative Clustering,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Zhang, X.T.[Xue-Ting],
Huang, W.[Wei],
Wang, Q.[Qi],
Li, X.L.[Xue-Long],
SSR-NET: Spatial-Spectral Reconstruction Network for Hyperspectral
and Multispectral Image Fusion,
GeoRS(59), No. 7, July 2021, pp. 5953-5965.
IEEE DOI
2106
Image reconstruction, Tensile stress, Spatial resolution,
Machine learning, Hyperspectral imaging, Image fusion,
spatial-spectral reconstruction network (SSR-NET)
BibRef
Zare, M.[Marzieh],
Helfroush, M.S.[Mohammad Sadegh],
Kazemi, K.[Kamran],
Scheunders, P.[Paul],
Hyperspectral and Multispectral Image Fusion Using Coupled
Non-Negative Tucker Tensor Decomposition,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Pan, H.[Han],
Jing, Z.L.[Zhong-Liang],
Leung, H.[Henry],
Li, M.Z.[Min-Zhe],
Hyperspectral Image Fusion and Multitemporal Image Fusion by Joint
Sparsity,
GeoRS(59), No. 9, September 2021, pp. 7887-7900.
IEEE DOI
2109
Minimization, Convex functions,
Spatiotemporal phenomena, Task analysis, Image fusion, Monitoring,
regularization framework
BibRef
Gao, J.H.[Jian-Hao],
Li, J.[Jie],
Jiang, M.H.[Meng-Hui],
Hyperspectral and Multispectral Image Fusion by Deep Neural Network
in a Self-Supervised Manner,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Liu, N.[Na],
Li, L.[Lu],
Li, W.[Wei],
Tao, R.[Ran],
Fowler, J.E.[James E.],
Chanussot, J.[Jocelyn],
Hyperspectral Restoration and Fusion With Multispectral Imagery via
Low-Rank Tensor-Approximation,
GeoRS(59), No. 9, September 2021, pp. 7817-7830.
IEEE DOI
2109
Tensors, Spatial resolution, Degradation, Hyperspectral imaging,
Image restoration, Interpolation, Clustering algorithms,
low-rank tensor
BibRef
Yang, L.[Lina],
Zhang, F.Q.[Feng-Qi],
Wang, P.S.P.[Patrick Shen-Pei],
Li, X.C.[Xi-Chun],
Meng, Z.Q.[Zu-Qiang],
Multi-scale spatial-spectral fusion based on multi-input fusion
calculation and coordinate attention for hyperspectral image
classification,
PR(122), 2022, pp. 108348.
Elsevier DOI
2112
Hyperspectral image(HSI), Multi-scale fusion,
Fusion calculation, Coordinate attention, Image patch, 3D convolution
BibRef
Yang, J.Q.[Jia-Qi],
Wu, C.[Chen],
Du, B.[Bo],
Zhang, L.P.[Liang-Pei],
Enhanced Multiscale Feature Fusion Network for HSI Classification,
GeoRS(59), No. 12, December 2021, pp. 10328-10347.
IEEE DOI
2112
Feature extraction, Kernel, Convolution, Radio frequency,
Data mining, Hyperspectral imaging, Support vector machines,
multiscale information
BibRef
Zhao, C.H.[Chun-Hui],
Liu, H.J.[Hong-Jiao],
Su, N.[Nan],
Wang, L.[Lu],
Yan, Y.M.[Yi-Ming],
RANet: A Reliability-Guided Aggregation Network for Hyperspectral and
RGB Fusion Tracking,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Yang, L.M.[Li-Ming],
Yang, Y.H.[Yi-Hang],
Yang, J.H.[Jing-Hui],
Zhao, N.Y.[Ning-Yuan],
Wu, L.[Ling],
Wang, L.G.[Li-Guo],
Wang, T.R.[Tian-Rui],
FusionNet: A Convolution-Transformer Fusion Network for Hyperspectral
Image Classification,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Ge, H.M.[Hai-Miao],
Wang, L.G.[Li-Guo],
Pan, H.Z.[Hai-Zhu],
Liu, Y.Z.[Yan-Zhong],
Li, C.[Cheng],
Lv, D.[Dan],
Ma, H.Y.[Hui-Yu],
Cross Attention-Based Multi-Scale Convolutional Fusion Network for
Hyperspectral and LiDAR Joint Classification,
RS(16), No. 21, 2024, pp. 4073.
DOI Link
2411
BibRef
Guo, S.[Siyu],
Chen, X.[Xi'ai],
Jia, H.[Huidi],
Han, Z.[Zhi],
Duan, Z.G.[Zhi-Gang],
Tang, Y.D.[Yan-Dong],
Fusing Hyperspectral and Multispectral Images via Low-Rank Hankel
Tensor Representation,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Ma, M.M.[Ming-Ming],
Niu, Y.[Yi],
Liu, C.[Chang],
Li, F.[Fu],
Shi, G.M.[Guang-Ming],
A Lightweight Multi-Level Information Network for Multispectral and
Hyperspectral Image Fusion,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Guo, H.[Hao],
Bao, W.X.[Wen-Xing],
Qu, K.[Kewen],
Ma, X.[Xuan],
Cao, M.[Meng],
Multispectral and Hyperspectral Image Fusion Based on Regularized
Coupled Non-Negative Block-Term Tensor Decomposition,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Guo, H.[Hao],
Bao, W.X.[Wen-Xing],
Feng, W.[Wei],
Sun, S.[Shasha],
Mo, C.H.[Chun-Hui],
Qu, K.[Kewen],
Multispectral and Hyperspectral Image Fusion Based on
Joint-Structured Sparse Block-Term Tensor Decomposition,
RS(15), No. 18, 2023, pp. 4610.
DOI Link
2310
BibRef
Zhou, J.[Junbo],
Zeng, S.[Shan],
Xiao, Z.[Zuyin],
Zhou, J.[Jinbo],
Li, H.[Hao],
Kang, Z.[Zhen],
An Enhanced Spectral Fusion 3D CNN Model for Hyperspectral Image
Classification,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Lin, H.[Hong],
Long, J.[Jian],
Peng, Y.X.[Yuan-Xi],
Zhou, T.[Tong],
Hyperspectral Multispectral Image Fusion via Fast Matrix Truncated
Singular Value Decomposition,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Guo, A.[Anjing],
Dian, R.[Renwei],
Li, S.T.[Shu-Tao],
A Deep Framework for Hyperspectral Image Fusion Between Different
Satellites,
PAMI(45), No. 7, July 2023, pp. 7939-7954.
IEEE DOI
2306
Kernel, Satellites, Image registration, Spatial resolution, Lighting,
Hyperspectral imaging, Training, Deep learning,
observation models
BibRef
Xu, J.W.[Jun-Wei],
Wu, F.F.[Fang-Fang],
Li, X.[Xin],
Dong, W.S.[Wei-Sheng],
Huang, T.[Tao],
Shi, G.M.[Guang-Ming],
Spatially Varying Prior Learning for Blind Hyperspectral Image Fusion,
IP(32), 2023, pp. 4416-4431.
IEEE DOI
2308
Degradation, Adaptation models, Hyperspectral imaging,
Computational modeling, Estimation, Data models, Transformers,
Laplace distribution (LD) prior
BibRef
Yu, S.[Shihai],
Zhang, X.[Xu],
Song, H.H.[Hui-Hui],
Sparse Mix-Attention Transformer for Multispectral Image and
Hyperspectral Image Fusion,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Wang, X.Q.[Xu-Quan],
Zhang, F.[Feng],
Zhang, K.[Kai],
Wang, W.J.[Wei-Jie],
Dun, X.[Xiong],
Sun, J.[Jiande],
Learning spatial-spectral dual adaptive graph embedding for
multispectral and hyperspectral image fusion,
PR(151), 2024, pp. 110365.
Elsevier DOI Code:
WWW Link.
2404
Dual graph embedding, Adaptive graph learning,
Graph convolutional network, Image fusion, Hyperspectral image
BibRef
Wang, Y.H.[Yi-Hao],
Chen, J.Y.[Jian-Yu],
Mou, X.[Xuanqin],
Chen, T.Q.[Tie-Qiao],
Chen, J.Y.[Jun-Yu],
Liu, J.[Jia],
Feng, X.P.[Xiang-Peng],
Li, H.W.[Hai-Wei],
Zhang, G.[Geng],
Wang, S.[Shuang],
Li, S.Y.[Si-Yuan],
Liu, Y.P.[Yu-Peng],
Fusion of Hyperspectral and Multispectral Images with Radiance
Extreme Area Compensation,
RS(16), No. 7, 2024, pp. 1248.
DOI Link
2404
BibRef
Chen, T.[Tao],
Wang, T.T.[Ting-Ting],
Chen, H.[Huayue],
Zheng, B.[Bochuan],
Deng, W.[Wu],
Cross-Hopping Graph Networks for Hyperspectral-High Spatial
Resolution (H2) Image Classification,
RS(16), No. 17, 2024, pp. 3155.
DOI Link
2409
BibRef
Zhu, T.X.[Tian-Xing],
Liu, Q.[Qin],
Zhang, L.X.[Li-Xiang],
Hierarchical Spectral-Spatial Transformer for Hyperspectral and
Multispectral Image Fusion,
RS(16), No. 22, 2024, pp. 4127.
DOI Link
2412
BibRef
Wang, J.[Jing],
Zhu, X.[Xu],
Jing, L.H.[Lin-Hai],
Tang, Y.W.[Yun-Wei],
Li, H.[Hui],
Xiao, Z.Q.[Zheng-Qing],
Ding, H.F.[Hai-Feng],
HyperGAN: A Hyperspectral Image Fusion Approach Based on Generative
Adversarial Networks,
RS(16), No. 23, 2024, pp. 4389.
DOI Link
2501
BibRef
Bacca, J.[Jorge],
Arcos, C.[Christian],
Ramírez, J.M.[Juan Marcos],
Arguello, H.[Henry],
Middle-output deep image prior for blind hyperspectral and
multispectral image fusion,
SP:IC(132), 2025, pp. 117247.
Elsevier DOI
2501
Spectral image fusion, Unsupervised image fusion,
Deep image prior, Deep learning, Learning degradation models
BibRef
Wang, X.[Xiao],
Yu, C.Y.[Chun-Yao],
Zhang, X.H.[Xiao-Hong],
Liu, X.[Xue],
Zhang, Y.[Yinxing],
Fang, J.Y.[Jun-Yong],
Xiao, Q.[Qing],
An Improved Registration Method for UAV-Based Linear Variable Filter
Hyperspectral Data,
RS(17), No. 1, 2025, pp. 55.
DOI Link
2501
BibRef
Li, W.[Wei],
Li, L.[Lu],
Peng, M.[Man],
Tao, R.[Ran],
KANDiff: Kolmogorov-Arnold Network and Diffusion Model-Based Network
for Hyperspectral and Multispectral Image Fusion,
RS(17), No. 1, 2025, pp. 145.
DOI Link
2501
BibRef
Caron, G.[Guillaume],
Kessy, S.J.[Suzan Joseph],
Mukaigawa, Y.[Yasuhiro],
Funatomi, T.[Takuya],
Direct Alignment of Narrow Field-of-View Hyperspectral Data and
Full-View RGB Image,
ICIP22(3201-3205)
IEEE DOI
2211
Codes, Lighting, Imaging, Optimization, Hyperspectral imaging,
Direct alignment, hyperspectral imaging
BibRef
Prévost, C.,
Chainais, P.,
Boyer, R.,
Fast Fusion of Hyperspectral and Multispectral Images:
A Tucker Approximation Approach,
ICIP22(2076-2080)
IEEE DOI
2211
Couplings, Runtime, Image color analysis, Computational modeling,
Superresolution, Lakes, Approximation algorithms
BibRef
Liu, Z.[Zhe],
Zheng, Y.Q.[Yin-Qiang],
Han, X.H.[Xian-Hua],
Unsupervised Multispectral and Hyperspectral Image Fusion with Deep
Spatial and Spectral Priors,
MLCSA20(31-45).
Springer DOI
2103
BibRef
Wang, W.,
Zeng, W.,
Huang, Y.,
Ding, X.,
Paisley, J.,
Deep Blind Hyperspectral Image Fusion,
ICCV19(4149-4158)
IEEE DOI
2004
geophysical image processing, hyperspectral imaging,
image fusion, image reconstruction, image resolution, Training
BibRef
Mifdal, J.,
Coll, B.,
Duran, J.,
A Variational Formulation for Hyperspectral and Multispectral Image
Fusion,
ICIP18(3328-3332)
IEEE DOI
1809
Hyperspectral imaging, Geometry, Degradation, Distortion,
Data integration, Hyperspectral, image fusion, pansharpening,
nonlocal regularization
BibRef
Zhou, H.[Haoyi],
Bai, X.[Xiao],
Zhou, J.[Jun],
Yang, H.C.[Hai-Chuan],
Liu, Y.[Yun],
Learning Graph Model for Different Dimensions Image Matching,
GbRPR15(158-167).
Springer DOI
1511
To match RGB and Hyperspectral images.
BibRef
Schwind, P.,
Schneider, M.,
Müller, R.,
Improving HySpex Sensor Co-registration Accuracy using BRISK and
Sensor-model based RANSAC,
LandImaging14(371-376).
DOI Link
1411
BibRef
Kotwal, K.[Ketan],
Chaudhuri, S.[Subhasis],
A fast approach for fusion of hyperspectral images through redundancy
elimination,
ICCVGIP10(506-511).
DOI Link
1111
BibRef
Kawakami, R.[Rei],
Matsushita, Y.[Yasuyuki],
Wright, J.[John],
Ben-Ezra, M.[Moshe],
Tai, Y.W.[Yu-Wing],
Ikeuchi, K.[Katsushi],
High-resolution hyperspectral imaging via matrix factorization,
CVPR11(2329-2336).
IEEE DOI
1106
By combining
a lower-resolution hyper-spectral image and a high-resolution RGB image.
BibRef
Rhody, H.E.,
Enhancing spatial resolution for exploitation in hyperspectral imagery,
AIPR02(19-25).
IEEE DOI
0210
BibRef
Elaksher, A.,
Fusion of Hyperspectral Images and LIDAR-Based DEMs for Coastal Mapping,
ISPRS08(B3b: 725 ff).
PDF File.
0807
BibRef
Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Fusion of LANDSAT or Sentinel Images .