Bulthoff, H.H.,
Little, J.J., and
Poggio, T.A.,
A Parallel Algorithm for Real-time Computation of Optical Flow,
Nature(337), No. 6207, 1989, pp. 549-553.
BibRef
8900
And: A2, A1, A3:
A Parallel Motion Algorithm Consistent with
Psychophysics and Physiology,
Motion89(165-172).
BibRef
And:
Parallel Optical Flow Computation,
DARPA87(915-920).
A new algorithm is proposed based on work of Tikhonov that enforces
local constraints. This is implemented in parallel on the
Connection Machine.
BibRef
Little, J.J.,
Bulthoff, H.H.,
Poggio, T.,
Parallel Optical Flow Using Local Voting,
ICCV88(454-459).
IEEE DOI
BibRef
8800
Bandari, E., and
Little, J.J.,
Cooperative analysis of multiple frames by visual echoes,
ICIP94(III: 766-770).
IEEE DOI
9411
BibRef
Earlier:
Visual Echo Analysis,
ICCV93(220-225).
IEEE DOI
BibRef
Earlier:
Spatial-Quefrency Approach to Optical Echo Analysis,
CVPR92(850-852).
IEEE DOI Cepstral filtering
(Fourier(Fourier X)) applied to optical flow computations.
BibRef
Fleet, D.J.,
Langley, K.,
Recursive Filters For Optical-Flow,
PAMI(17), No. 1, January 1995, pp. 61-67.
IEEE DOI An attempt to get real time computation of optical flow.
BibRef
9501
Valentinotti, F.,
Dicaro, G.,
Crespi, B.,
Real-Time Parallel Computation of Disparity and Optical-Flow
Using Phase Difference,
MVA(9), No. 3, 1996, pp. 87-96.
Springer DOI
9611
BibRef
Smith, S.M.[Stephen M.],
Brady, J.M.,
ASSET-2: Real-Time Motion Segmentation and Shape Tracking,
PAMI(17), No. 8, August 1995, pp. 814-820.
IEEE DOI
BibRef
9508
And: A1 only:
ICCV95(237-244).
IEEE DOI Hardware, real-time tracking of regions of similar flow vectors.
Find clusters of flow vectors. In the example, the cluster is constant
for a wide range of values. They give a good indication of the effect
of the threshold.
BibRef
Smith, S.M.,
ASSET-2: Real-Time Motion Segmentation and Object Tracking,
RealTimeImg(4), No. 1, February 1998, pp. 21-40.
9805
BibRef
Smith, S.M.[Stephen M.],
Integrated Real-Time Motion Segmentation and 3D Interpretation,
ICPR96(III: 49-55).
IEEE DOI
9608
BibRef
And:
Defence Research AgencyUK, TR96SMS1, 1996.
BibRef
Liu, H.C.[Hong-Che],
Hong, T.H.[Tsai-Hong],
Herman, M.[Martin],
Chellappa, R.[Rama],
Motion-Model-Based Boundary Extraction and a Real-Time Implementation,
CVIU(70), No. 1, April 1998, pp. 87-100.
DOI Link
BibRef
9804
Earlier:
Motion-Model-Based Boundary Extraction,
SCV95(587-592).
IEEE DOI
BibRef
And:
UMDTR3414, 1995.
WWW Link. Boundaries within optical flow.
See also General Motion Model and Spatiotemporal Filters for Computing Optical-Flow, A.
BibRef
Camus, T.A.[Ted A.],
Coombs, D.[David],
Herman, M.[Martin],
Hong, T.H.[Tsai-Hong],
Real-Time Single-Workstation Obstacle Avoidance Using Only Wide-Field
Flow Divergence,
Videre(1), No. 3, Summer 1999, pp. xx-yy.
BibRef
9900
Earlier:
ICPR96(III: 323-330).
IEEE DOI
9608
(National Institute of Standard and Technology, USA)
BibRef
Camus, T.A.,
Real-Time Quantized Optical Flow,
RealTimeImg(3), 1997, pp. 71-86.
BibRef
9700
Earlier:
CAMP95(xx).
Implementation of algorithm.
Code, Optic Flow.
WWW Link.
BibRef
Coombs, D.[David],
Herman, M.[Martin],
Hong, T.[Tsai],
Nashman, M.[Marilyn],
Real-Time Obstacle Avoidance Using Central Flow Divergence and
Peripheral Flow,
ICCV95(276-283).
IEEE DOI
BibRef
9500
And:
NISTIR5605, February 1995.
PS File. And for the report
PS File.
BibRef
Herman, M.[Martin],
Coombs, D.[David],
Hong, T.[Tsai], and
Nashman, M.[Marilyn],
Vision-Based Mobility Using Optical Flow,
SPIEInternational Technical Working Group Newsletter, No. 2,
Robotics and Machine Perception, Vol. 3,
September 1994, pp. 4-5.
BibRef
9409
Nishikawa, T.[Tsuyoshi],
Tsuboi, Y.[Yoshiro],
Takahashi, M.[Masafumi],
System and method for estimating motion vector in macro block,
US_Patent6,031,582, Feb 29, 2000
WWW Link.
BibRef
0002
Nishikawa, T.[Tsuyoshi],
System for estimating motion vector with instant estimation
of motion vector,
US_Patent6,148,108, Nov 14, 2000
WWW Link.
BibRef
0011
Iwamoto, S.[Sadahiro],
Checkley, Jr., D.M.[David M.],
Trivedi, M.M.[Mohan M.],
REFLICS: Real-time Flow Imaging and Classification System,
MVA(13), No. 1, 2001, pp. 1-13.
Springer DOI Monitoring oceans from real time camera.
0108
BibRef
Earlier: A1, A3, A2:
ICPR00(Vol IV: 689-692).
IEEE DOI
0009
BibRef
Björkman, M.[Marten],
Eklundh, J.O.[Jan-Olof],
Real-Time Epipolar Geometry Estimation of Binocular Stereo Heads,
PAMI(24), No. 3, March 2002, pp. 425-432.
IEEE DOI
0202
Continuous calibration of external parameters.
BibRef
Björkman, M.[Marten],
Eklundh, J.O.[Jan-Olof],
A Real-Time System for Epipolar Geometry and Ego-Motion Estimation,
CVPR00(II: 506-513).
IEEE DOI
0005
BibRef
Bjorkman, M.,
Eklundh, J.O.,
Real-Time Epipolar Geometry Estimation and Disparity,
ICCV99(234-241).
IEEE DOI
BibRef
9900
Chong, C.P.,
Salama, C.A.T.,
Smith, K.C.,
An imager with built-in image-velocity computation capability,
CirSysVideo(2), No. 3, September 1992, pp. 306-312.
IEEE Top Reference.
0206
BibRef
Chong, C.P.,
Salama, C.A.T.,
Smith, K.C.,
A novel technique for image-velocity computation,
CirSysVideo(2), No. 3, September 1992, pp. 313-318.
IEEE Top Reference.
0206
BibRef
Martín, J.L.[José L.],
Zuloaga, A.[Aitzol],
Cuadrado, C.[Carlos],
Lázaro, J.[Jesús],
Bidarte, U.[Unai],
Hardware implementation of optical flow constraint equation using FPGAs,
CVIU(98), No. 3, June 2005, pp. 462-490.
Elsevier DOI
0505
BibRef
Diaz, J.[Javier],
Ros, E.[Eduardo],
Pelayo, F.,
Ortigosa, E.M.,
Mota, S.,
FPGA-based real-time optical-flow system,
CirSysVideo(16), No. 2, February 2006, pp. 274-279.
IEEE DOI
0604
BibRef
Diaz, J.[Javier],
Ros, E.[Eduardo],
Mota, S.,
Pelayo, F.,
Ortigosa, E.M.,
Subpixel motion computing architecture,
VISP(153), No. 6, December 2006, pp. 869-880.
DOI Link
0702
BibRef
Diaz, J.[Javier],
Ros, E.[Eduardo],
Agis, R.[Rodrigo],
Bernier, J.L.[Jose Luis],
Superpipelined high-performance optical-flow computation architecture,
CVIU(112), No. 3, December 2008, pp. 262-273.
Elsevier DOI
0811
Image motion analysis; Real-time systems; FPGAs; Architecture of vision systems
BibRef
Tomasi, M.,
Vanegas, M.,
Barranco, F.,
Diaz, J.[Javier],
Ros, E.[Eduardo],
High-Performance Optical-Flow Architecture Based on a Multi-Scale,
Multi-Orientation Phase-Based Model,
CirSysVideo(20), No. 12, December 2010, pp. 1797-1807.
IEEE DOI
1102
BibRef
Barranco, F.[Francisco],
Tomasi, M.[Matteo],
Vanegas, M.[Mauricio],
Diaz, J.[Javier],
Granados, S.[Sara],
Ros, E.[Eduardo],
Hierarchical architecture for motion and depth estimations based on
color cues,
RealTimeIP(10), No. 2, June 2015, pp. 435-452.
Springer DOI
1506
BibRef
Tomasi, M.,
Vanegas, M.,
Barranco, F.,
Diaz, J.[Javier],
Ros, E.[Eduardo],
Massive Parallel-Hardware Architecture for Multiscale Stereo, Optical
Flow and Image-Structure Computation,
CirSysVideo(22), No. 2, February 2012, pp. 282-294.
IEEE DOI
1202
BibRef
Anguita, M.,
Diaz, J.[Javier],
Ros, E.[Eduardo],
Fernandez-Baldomero, F.J.,
Optimization Strategies for High-Performance Computing of Optical-Flow
in General-Purpose Processors,
CirSysVideo(19), No. 10, October 2009, pp. 1475-1488.
IEEE DOI
0911
BibRef
Ishii, I.,
Taniguchi, T.,
Yamamoto, K.,
Takaki, T.,
High-Frame-Rate Optical Flow System,
CirSysVideo(22), No. 1, January 2012, pp. 105-112.
IEEE DOI
1201
BibRef
Chen, L.[Lei],
Takaki, T.[Takeshi],
Ishii, I.[Idaku],
Accuracy of Gradient-Based Optical Flow Estimation in High-Frame-Rate
Video Analysis,
IEICE(E95-D), No. 4, April 2012, pp. 1130-1141.
WWW Link.
1204
BibRef
Senst, T.[Tobias],
Eiselein, V.[Volker],
Sikora, T.[Thomas],
Robust Local Optical Flow for Feature Tracking,
CirSysVideo(22), No. 9, September 2012, pp. 1377-1387.
IEEE DOI
1209
BibRef
Earlier:
II-LK: A Real-Time Implementation for Sparse Optical Flow,
ICIAR10(I: 240-249).
Springer DOI
1006
See also Detecting people carrying objects based on an optical flow motion model.
BibRef
Senst, T.,
Geistert, J.,
Sikora, T.,
Robust local optical flow:
Long-range motions and varying illuminations,
ICIP16(4478-4482)
IEEE DOI
1610
Adaptive optics
BibRef
Senst, T.[Tobias],
Evangelio, R.H.[Ruben Heras],
Keller, I.[Ivo],
Sikora, T.[Thomas],
Clustering Motion for Real-Time Optical Flow Based Tracking,
AVSS12(410-415).
IEEE DOI
1211
BibRef
Senst, T.[Tobias],
Borgmann, T.[Thilo],
Keller, I.[Ivo],
Sikora, T.[Thomas],
Cross based robust local optical flow,
ICIP14(1967-1971)
IEEE DOI
1502
Accuracy
BibRef
Senst, T.[Tobias],
Geistert, J.[Jonas],
Keller, I.[Ivo],
Sikora, T.[Thomas],
Robust local optical flow estimation using bilinear equations for
sparse motion estimation,
ICIP13(2499-2503)
IEEE DOI
1402
GPU;KLT;OpenCL;Optical flow;RLOF;feature tracking
BibRef
Senst, T.[Tobias],
Eiselein, V.[Volker],
Evangelio, R.H.[Ruben Heras],
Sikora, T.[Thomas],
Robust modified L2 local optical flow estimation and feature tracking,
WMVC11(685-690).
IEEE DOI
1101
BibRef
Senst, T.[Tobias],
Eiselein, V.[Volker],
Patzold, M.[Michael],
Sikora, T.[Thomas],
Efficient real-time local optical flow estimation by means of integral
projections,
ICIP11(2345-2348).
IEEE DOI
1201
BibRef
Barranco, F.,
Díaz, J.,
Pino, B.,
Ros, E.,
A multi-resolution approach for massively-parallel hardware-friendly
optical flow estimation,
JVCIR(23), No. 8, November 2012, pp. 1272-1283.
Elsevier DOI
1211
Image motion analysis; Optical flow; Field programmable gate array;
Architectures for embedded systems; Real-time systems;
Multiscale-with-warping optical flow; Efficient multiresolution optical
flow; Fusion methods for multiresolution optical flow implementaiton
BibRef
Smistad, E.[Erik],
Elster, A.C.[Anne C.],
Lindseth, F.[Frank],
Real-time gradient vector flow on GPUs using OpenCL,
RealTimeIP(10), No. 1, March 2015, pp. 67-74.
WWW Link.
1503
BibRef
Smistad, E.[Erik],
Lindseth, F.[Frank],
Multigrid gradient vector flow computation on the GPU,
RealTimeIP(12), No. 3, October 2016, pp. 593-601.
WWW Link.
1610
BibRef
Plyer, A.[Aurélien],
Le Besnerais, G.[Guy],
Champagnat, F.[Frédéric],
Massively parallel Lucas Kanade optical flow for real-time video
processing applications,
RealTimeIP(11), No. 4, April 2016, pp. 713-730.
Springer DOI
1604
BibRef
Garcia-Rodriguez, J.[Jose],
Orts-Escolano, S.[Sergio],
Angelopoulou, A.[Anastassia],
Psarrou, A.[Alexandra],
Azorin-Lopez, J.[Jorge],
Garcia-Chamizo, J.M.[Juan Manuel],
Real time motion estimation using a neural architecture implemented on
GPUs,
RealTimeIP(11), No. 4, April 2016, pp. 731-749.
Springer DOI
1604
BibRef
Seong, H.S.,
Rhee, C.E.,
Lee, H.J.,
A Novel Hardware Architecture of the Lucas-Kanade Optical Flow for
Reduced Frame Memory Access,
CirSysVideo(26), No. 6, June 2016, pp. 1187-1199.
IEEE DOI
1606
Adaptive optics
See also Iterative Image Registration Technique with an Application to Stereo Vision, An.
BibRef
Zhu, E.,
Li, Y.,
Shi, Y.,
Fast Optical Flow Estimation Without Parallel Architectures,
CirSysVideo(27), No. 11, November 2017, pp. 2322-2332.
IEEE DOI
1712
Adaptive optics, Boolean functions,
Data structures, Estimation, Optical imaging, Optical sensors,
optical flow
BibRef
Seyid, K.,
Richaud, A.,
Capoccia, R.,
Leblebici, Y.,
FPGA-Based Hardware Implementation of Real-Time Optical Flow
Calculation,
CirSysVideo(28), No. 1, January 2018, pp. 206-216.
IEEE DOI
1801
Adaptive optics, Biomedical optical imaging, Hardware,
Motion estimation, Optical imaging, Optical sensors,
reconfigurable architectures
BibRef
Rüfenacht, D.,
Taubman, D.S.[David S.],
HEVC-EPIC: Fast Optical Flow Estimation From Coded Video via
Edge-Preserving Interpolation,
IP(27), No. 6, June 2018, pp. 3100-3113.
IEEE DOI
1804
Adaptive optics, Estimation, Interpolation, Motion estimation,
Optical distortion, Optical imaging, Video compression, HEVC,
optical flow
BibRef
Young, S.I.,
Girod, B.,
Taubman, D.S.[David S.],
Fast Optical Flow Extraction From Compressed Video,
IP(29), 2020, pp. 6409-6421.
IEEE DOI
2007
Adaptive optics, Optical imaging, Optimization, Motion estimation,
Video coding, Image edge detection, Optical filters, Optical flow,
HEVC
BibRef
Li, Z.,
Xiang, J.,
Gong, L.,
Blaauw, D.,
Chakrabarti, C.,
Kim, H.S.,
Low Complexity, Hardware-Efficient Neighbor-Guided SGM Optical Flow
for Low-Power Mobile Vision Applications,
CirSysVideo(29), No. 7, July 2019, pp. 2191-2204.
IEEE DOI
1907
Optical flow, Complexity theory, Estimation, Power demand,
Optimization, Transforms, Real-time systems, Optical flow,
multi-core accelerator
BibRef
da Silva Maciel, L.M.[Luiz Maurílio],
Vieira, M.B.[Marcelo Bernardes],
Sparse Optical Flow Computation Using Wave Equation-Based Energy,
IJIG(20), No. 4, October 2020, pp. 2050027.
DOI Link
2011
BibRef
Gong, R.[Rui],
Li, W.[Wen],
Chen, Y.H.[Yu-Hua],
Dai, D.X.[Deng-Xin],
Van Gool, L.J.[Luc J.],
DLOW: Domain Flow and Applications,
IJCV(129), No. 10, October 2021, pp. 2865-2888.
Springer DOI
2110
BibRef
Kroeger, T.[Till],
Timofte, R.[Radu],
Dai, D.X.[Deng-Xin],
Van Gool, L.J.[Luc J.],
Fast Optical Flow Using Dense Inverse Search,
ECCV16(IV: 471-488).
Springer DOI
1611
BibRef
Garrepalli, R.[Risheek],
Jeong, J.[Jisoo],
Ravindran, R.C.[Rajeswaran C],
Lin, J.M.[Jamie Menjay],
Porikli, F.M.[Fatih M.],
DIFT: Dynamic Iterative Field Transforms for Memory Efficient Optical
Flow,
MobileAI23(2220-2229)
IEEE DOI
2309
BibRef
Kong, L.,
Yang, J.,
Fdflownet: Fast Optical Flow Estimation Using A Deep Lightweight
Network,
ICIP20(1501-1505)
IEEE DOI
2011
Estimation, Optical imaging, Convolution, Adaptive optics,
Optical fiber networks, Computational modeling, Training,
Partial Fully Connected Structure
BibRef
Seznec, M.,
Gac, N.,
Orieux, F.,
Naik, A.S.,
An Efficiency-Driven Approach For Real-Time Optical Flow Processing
On Parallel Hardware,
ICIP20(3055-3059)
IEEE DOI
2011
Graphics processing units, Optical imaging, Convergence,
Jacobian matrices, Integrated optics, Optical sensors,
Matrix Conditioning
BibRef
Haggui, O.[Olfa],
Tadonki, C.[Claude],
Sayadi, F.[Fatma],
Ouni, B.[Bouraoui],
Memory Efficient Deployment of an Optical Flow Algorithm on GPU Using
OpenMP,
CIAP19(II:477-487).
Springer DOI
1909
BibRef
Simons, T.,
Lee, D.J.,
A New Hardware Architecture for the Ridge Regression Optical Flow
Algorithm,
Southwest18(125-128)
IEEE DOI
1809
Hardware, Field programmable gate arrays, Table lookup,
Random access memory, Adaptive optics, Smoothing methods,
hardware design
BibRef
Roxas, M.,
Oishi, T.,
Real-Time Simultaneous 3D Reconstruction and Optical Flow Estimation,
WACV18(885-893)
IEEE DOI
1806
geometry, image matching, image motion analysis,
image reconstruction, image sequences, minimisation,
BibRef
Eilertsen, G.[Gabriel],
Forssén, P.E.[Per-Erik],
Unger, J.[Jonas],
BriefMatch:
Dense Binary Feature Matching for Real-Time Optical Flow Estimation,
SCIA17(I: 221-233).
Springer DOI
1706
BibRef
Smets, S.,
Goedemé, T.,
Verhelst, M.,
Custom processor design for efficient, yet flexible Lucas-Kanade
optical flow,
DASIP16(138-145)
IEEE DOI
1704
CMOS integrated circuits
BibRef
Derome, M.[Maxime],
Plyer, A.[Aurelien],
Sanfourche, M.[Martial],
Le Besnerais, G.[Guy],
A Prediction-Correction Approach for Real-Time Optical Flow Computation
Using Stereo,
GCPR16(365-376).
Springer DOI
1611
BibRef
Sundaram, N.[Narayanan],
Brox, T.[Thomas],
Keutzer, K.[Kurt],
Dense Point Trajectories by GPU-Accelerated Large Displacement Optical
Flow,
ECCV10(I: 438-451).
Springer DOI
1009
BibRef
Wei, Z.Y.[Zhao-Yi],
Lee, D.J.[Dah-Jye],
Nelson, B.E.[Brent E.],
Archibald, J.K.[James K.],
Real-time accurate optical flow-based motion sensor,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Pauwels, K.[Karl],
van Hulle, M.M.[Marc M.],
Realtime phase-based optical flow on the GPU,
CVGPU08(1-8).
IEEE DOI
0806
BibRef
Nagy, Y.,
Saeb, M.,
El-Sonbaty, Y.,
VHDL-Based Simulation of a Parallel Implementation of a Phase-Based
Algorithm for Optical Flow,
AVSBS06(27-27).
IEEE DOI
0611
BibRef
Dopico, A.G.[Antonio G.],
Correia, M.V.[Miguel V.],
Santos, J.A.[Jorge A.],
Nunes, L.M.[Luis M.],
Parallel Computation of Optical Flow,
ICIAR04(II: 397-404).
Springer DOI
0409
BibRef
Correia, M.V.[Miguel V.],
Campilho, A.C.[Aurélio C.],
A Pipelined Real-Time Optical Flow Algorithm,
ICIAR04(II: 372-380).
Springer DOI
0409
BibRef
Earlier:
Real-time implementation of an optical flow algorithm,
ICPR02(IV: 247-250).
IEEE DOI
0211
BibRef
Milanova, M.G.[Mariofanna G.],
Campilho, A.C.[Aurelio C.],
Correia, M.V.[Miguel V.],
Cellular Neural Networks for Motion Estimation,
ICPR00(Vol III: 819-822).
IEEE DOI
0009
BibRef
Adorni, G.,
Cagnoni, S.,
Mordonini, M.,
Cellular automata-based optical flow computation for 'just-in-time'
applications,
CIAP99(612-617).
IEEE DOI
9909
BibRef
Zuloaga, A.,
Martin, J.L.,
Ezquerra, J.,
Hardware architecture for optical flow estimation in real time,
ICIP98(III: 972-976).
IEEE DOI
9810
BibRef
Benoit, S.,
Ferrie, F.P.,
Monocular Optical Flow for Real-Time Vision Systems,
ICPR96(I: 864-868).
IEEE DOI
9608
(McGill Univ., CDN)
BibRef
Bradski, G.R.[Gary R.],
Motion detection using normal optical flow,
US_Patent6,647,131, Nov 11, 2003
WWW Link.
BibRef
0311
And:
US_Patent6,654,483, Nov 25, 2003
WWW Link.
BibRef
Davis, J.W.[James W.],
Bradski, G.R.[Gary R.],
Real-time Motion Template Gradients using Intel CVLib,
Frame-Rate99().
HTML Version.
BibRef
9900
Nesi, P.,
del Bimbo, A., and
Ben-Tzvi, D.,
Algorithms for Optical Flow Estimation in Real-Time on
Connection Machine-2,
Univ. of FlorenceTR, 1993 ??,
Systems and Informatics, Faculty of Engineering.
Parallel implementation of several optical flow algorithms.
Regularization, multiconstraint, M-C with least-squares, M-C with
maximum-likelihood.
See also Robust Algorithm for Optical-Flow Estimation, A.
BibRef
9300
del Bimbo, A., and
Nesi, P.,
Optical Flow Estimation on the Connection-Machine CM-2,
CAMP93(267-274).
BibRef
9300
del Bimbo, A., and
Nesi, P.,
A Vision System for Estimating People Flow,
Univ. of FlorenceTR. 1993 ??
BibRef
9300
Deering, M.,
Collins, C.,
Real-Time Natural Scene Analysis for a Blind Prosthesis,
IJCAI81(704-709).
BibRef
8100