Heitz, F., and
Bouthemy, P.,
Multimodal Estimation of
Discontinuous Optical Flow Using Markov Random Fields,
PAMI(15), No. 12, December 1993, pp. 1217-1232.
IEEE DOI
BibRef
9312
Earlier:
Multimodal Motion Estimation and Segmentation Using
Markov Random Fields,
ICPR90(I: 378-383).
IEEE DOI
BibRef
Crivelli, T.[Tomás],
Bouthemy, P.[Patrick],
Cernuschi-Frías, B.[Bruno],
Yao, J.F.[Jian-Feng],
Simultaneous Motion Detection and Background Reconstruction with a
Conditional Mixed-State Markov Random Field,
IJCV(94), No. 3, September 2011, pp. 295-316.
WWW Link.
1101
BibRef
Crivelli, T.[Tomás],
Piriou, G.[Gwenaelle],
Bouthemy, P.[Patrick],
Cernuschi-Frías, B.[Bruno],
Yao, J.F.[Jian-Feng],
Simultaneous Motion Detection and Background Reconstruction with a
Mixed-State Conditional Markov Random Field,
ECCV08(I: 113-126).
Springer DOI
0810
BibRef
Crivelli, T.[Tomás],
Cernuschi-Frías, B.[Bruno],
Bouthemy, P.[Patrick],
Yao, J.F.[Jian-Feng],
Motion Textures: Modeling, Classification, and Segmentation Using
Mixed-State Markov Random Fields,
SIIMS(6), No. 4, 2013, pp. 2484-2520.
DOI Link
1402
BibRef
Crivelli, T.,
Cernuschi-Frias, B.,
Bouthemy, P.,
Yao, J.F.,
Mixed-State Markov Random Fields for Motion Texture Modeling and
Segmentation,
ICIP06(1857-1860).
0610
IEEE DOI
BibRef
Crivelli, T.[Tomas],
Fradet, M.[Matthieu],
Conze, P.H.[Pierre-Henri],
Robert, P.[Philippe],
Perez, P.[Patrick],
Robust Optical Flow Integration,
IP(24), No. 1, January 2015, pp. 484-498.
IEEE DOI
1502
BibRef
Earlier: A1, A3, A4, A2, A5:
Multi-step flow fusion:
Towards accurate and dense correspondences in long video shots,
BMVC12(107).
DOI Link
1301
image motion analysis
BibRef
Crivelli, T.[Tomas],
Conze, P.H.[Pierre-Henri],
Robert, P.[Philippe],
Perez, P.[Patrick],
From optical flow to dense long term correspondences,
ICIP12(61-64).
IEEE DOI
1302
BibRef
Heitz, F.,
Perez, P.,
Bouthemy, P.,
Multiscale Minimization of Global Energy Functions in Some
Visual Recovery Problems,
CVGIP(59), No. 1, January 1994, pp. 125-134.
DOI Link
BibRef
9401
Earlier:
Parallel Visual Motion Analysis Using Multiscale Markov Random Fields,
Motion91(30-35).
Multigrid approach to avoid local minimums, pyramid of
primitives, not observations.
BibRef
Odobez, J.M., and
Bouthemy, P.,
Robust Multiresolution Estimation of Parametric Motion Models,
JVCIR(6), No. 4, December 1995, pp. 348-365.
For software:
WWW Link.
BibRef
9512
And:
MRF-based motion segmentation exploiting a 2D motion model robust
estimation,
ICIP95(III: 628-631).
IEEE DOI
9510
BibRef
Earlier:
Detection of multiple moving objects using multiscale MRF with camera
motion compensation,
ICIP94(II: 257-261).
IEEE DOI
9411
BibRef
Memin, E.,
Perez, P.,
Dense Estimation and Object-Based Segmentation of the
Optical-Flow with Robust Techniques,
IP(7), No. 5, May 1998, pp. 703-719.
IEEE DOI
9805
BibRef
Mémin, E.[Etienne],
Pérez, P.[Patrick],
Hierarchical Estimation and Segmentation of Dense Motion Fields,
IJCV(46), No. 2, February 2002, pp. 129-155.
DOI Link
0201
See also Dense Estimation of Fluid Flows.
BibRef
Memin, E.,
Perez, P.,
Joint Estimation-Segmentation of Optic Flow,
ECCV98(II: 563).
Springer DOI
BibRef
9800
And:
A Multigrid Approach for Hierarchical Motion Estimation,
ICCV98(933-938).
IEEE DOI
BibRef
And:
Robust Discontinuity-Preserving Model for Estimating Optical Flow,
ICPR96(I: 920-924).
IEEE DOI
9608
(IRISA/INRIA, F)
BibRef
Avenel, C.[Christophe],
Mémin, E.[Etienne],
Pérez, P.[Patrick],
Stochastic Level Set Dynamics to Track Closed Curves Through Image Data,
JMIV(49), No. 2, June 2014, pp. 296-316.
WWW Link.
1405
BibRef
Earlier:
Stochastic Filtering of Level Sets for Curve Tracking,
ICPR10(3553-3556).
IEEE DOI
1008
BibRef
Earlier:
Tracking Closed Curves with Non-linear Stochastic Filters,
SSVM09(576-587).
Springer DOI
0906
BibRef
Hellier, P.,
Barillot, C.,
Memin, E.,
Perez, P.,
Hierarchical estimation of a dense deformation field for 3-D robust
registration,
MedImg(20), No. 5, May 2001, pp. 388-402.
IEEE Top Reference.
0110
BibRef
Giachetti, A.[Andrea],
Torre, V.[Vincent],
The Use of Optical-Flow for the Analysis of Nonrigid Motions,
IJCV(18), No. 3, June 1996, pp. 255-279.
Springer DOI
9608
BibRef
Earlier:
Refinement of Optical Flow Estimation and Detection of Motion Edges,
ECCV96(II:151-160).
Springer DOI
BibRef
Earlier:
Optical Flow and Deformable Objects,
ICCV95(706-711).
IEEE DOI Multi-scale technique. Simple edge detection from flow field.
BibRef
Giachetti, A.,
Campani, M.,
Torre, V.,
The Use of Optical Flow for the Autonomous Navigation,
ECCV94(A:146-151).
Springer DOI
BibRef
9400
Ghosal, S.,
Vanek, P.,
A Fast Scalable Algorithm for Discontinuous Optical-Flow Estimation,
PAMI(18), No. 2, February 1996, pp. 181-194.
IEEE DOI
Multi-Scale.
Regularization. Interpolation and regularization depends on the strength and direction
of the gradient.
BibRef
9602
Ghosal, S.[Sugata],
Mehrotra, R.[Rarv],
Robust Optical-Flow Estimation Using Semi-Invariant Local Features,
PR(30), No. 2, February 1997, pp. 229-237.
Elsevier DOI
9704
BibRef
Earlier:
Robust Optical Flow Estimation,
ICIP94(II: 780-784).
IEEE DOI
9411
moments as invariants.
BibRef
Worring, M.,
Smeulders, A.W.M.,
Staib, L.H.,
Duncan, J.S.,
Parameterized Feasible Boundaries in Gradient Vector-Fields,
CVIU(63), No. 1, January 1996, pp. 135-144.
DOI Link
BibRef
9601
Mizuki, M.M.[Marcelo M.],
Masaki, I.[Ichiro],
Chandrakasan, A.[Anantha],
Horn, B.K.P.[Berthold K.P.],
Method and apparatus for motion estimation in a video signal,
US_Patent5,838,828, Nov 17, 1998
WWW Link.
BibRef
9811
Desai, U.Y.[Ujjaval Y.],
Mizuki, M.M.[Marcelo M.],
Masaki, I.[Ichiro],
Horn, B.K.P.[Berthold K.P.],
Edge and Mean Based Image Compression,
MIT AI Memo-1584, 1995.
WWW Link.
BibRef
9500
Patras, I.,
Worring, M.,
van den Boomgaard, R.[Rein],
Dense Motion Estimation Using Regularization Constraints on Local
Parametric Models,
IP(13), No. 11, November 2004, pp. 1432-1443.
IEEE DOI
0411
Optic flow. Motion within segmented patches parameterized.
Three frame approach.
BibRef
Patras, I.,
Worring, M.,
Regularized patch motion estimation,
ICPR02(I: 323-326).
IEEE DOI
0211
BibRef
Patras, I.,
Hendriks, E.A.,
Lagendijk, R.L.,
Probabilistic Confidence Measures for Block Matching Motion Estimation,
CirSysVideo(17), No. 8, August 2007, pp. 988-995.
IEEE DOI
0710
BibRef
Earlier:
Confidence measures for block matching motion estimation,
ICIP02(II: 277-280).
IEEE DOI
0210
BibRef
Francois, E.,
Chupeau, B.,
Depth-Based Segmentation,
CirSysVideo(7), No. 1, February 1997, pp. 237-240.
IEEE Top Reference.
9703
BibRef
Francois, E.,
Vial, J.F.,
Chupeau, B.,
Coding Algorithm with Region-Based Motion Compensation,
CirSysVideo(7), No. 1, February 1997, pp. 97-108.
IEEE Top Reference.
9703
BibRef
Zetzsche, C.,
Barth, E.,
Direct Detection of Flow Discontinuities by 3D Curvature Operators,
PRL(12), 1991, pp. 771-779.
BibRef
9100
Murray, D.W.,
Williams, N.S.,
Detecting the Image Boundaries Between Optical Flow Fields from
Several Moving Planar Facets,
PRL(4), 1986, pp. 87-92.
BibRef
8600
Hartley, R.I.,
Segmentation of Optical Flow Fields by Pyramid Linking,
PRL(3), 1985, pp. 253-262.
BibRef
8500
Pas, S.F.T.,
Kappers, A.M.L.,
Koenderink, J.J.,
Detection of Second-Order Structure in Optical-Flow Fields,
JOSA-A(14), No. 4, April 1997, pp. 767-778.
9704
See also Structure of Locally Orderless Images, The.
BibRef
Karlsson, S.M.[Stefan M.],
Pont, S.C.[Sylvia C.],
Koenderink, J.J.[Jan J.],
Illuminance flow over anisotropic surfaces with arbitrary viewpoint,
JOSA-A(26), No. 5, May 2009, pp. 1250-1255.
WWW Link.
0905
BibRef
Karlsson, S.M.[Stefan M.],
Pont, S.C.[Sylvia C.],
Koenderink, J.J.[Jan J.],
Zisserman, A.[Andrew],
Illuminance Flow Estimation by Regression,
IJCV(90), No. 3, December 2010, pp. 304-312.
WWW Link.
1011
BibRef
Pont, S.C.[Sylvia C.],
Koenderink, J.J.[Jan J.],
Surface Illuminance Flow,
3DPVT04(2-9).
IEEE DOI
0412
BibRef
Earlier:
Illuminance Flow,
CAIP03(90-97).
Springer DOI
0311
BibRef
Liu, H.C.[Hong-Che],
Hong, T.H.[Tsai-Hong],
Herman, M.,
Chellappa, R.,
A General Motion Model and Spatiotemporal Filters for
Computing Optical-Flow,
IJCV(22), No. 2, March 1997, pp. 141-172.
DOI Link
9706
BibRef
And:
UMDTR-3365, November 1994.
WWW Link.
BibRef
Earlier:
Spatio-temporal filters for transparent motion segmentation,
ICIP95(III: 464-467).
IEEE DOI
9510
See also Motion-Model-Based Boundary Extraction and a Real-Time Implementation.
BibRef
Ong, E.P.,
Spann, M.,
Robust Optical Flow Computation Based on Least-Median-of-Squares
Regression,
IJCV(31), No. 1, February 1999, pp. 51-82.
DOI Link
BibRef
9902
Earlier:
Robust Multiresolution Computation of Optical Flow,
ICASSP96(XX)
BibRef
Earlier:
Robust Computation of Optical Flow,
BMVC95(xx-yy).
PDF File.
9509
School of Elec. & Elect. Eng.. University of Birmingham.
Affine model, find discontinutities.
BibRef
Gibson, D.,
Spann, M.,
Robust optical flow estimation based on a sparse motion trajectory set,
IP(12), No. 4, April 2003, pp. 431-445.
IEEE DOI
0306
BibRef
Kruse, S.M.,
Scene segmentation from dense displacement vector fields using
randomized Hough transform,
SP:IC(9), No. 1, November 1996, pp. 29-41.
Elsevier DOI Rough displacement with Hough, merge similar, refine.
BibRef
9611
Eua-Anant, N.,
Udpa, L.,
Boundary Detection Using Simulation of Particle Motion in a Vector
Image Field,
IP(8), No. 11, November 1999, pp. 1560-1571.
IEEE DOI
9911
BibRef
Earlier:
Boundary Extraction Algorithm Based on Particle Motion in a
Vector Image Field,
ICIP97(II: 732-735).
IEEE DOI
BibRef
Black, M.J.[Michael J.],
Fleet, D.J.[David J.],
Probabilistic Detection and Tracking of Motion Boundaries,
IJCV(38), No. 3, July-August 2000, pp. 231-245.
DOI Link
0006
PDF File.
BibRef
Earlier:
Probabilistic Detection and Tracking of Motion Discontinuities,
ICCV99(551-558).
IEEE DOI
HTML Version.
Award, Marr Prize, HM. Bayesian framework for local motion. Generative model for discontinuities.
See also Design and Use of Linear Models for Image Motion Analysis.
BibRef
Fleet, D.J.[David J.],
Black, M.J.[Michael J.],
Nestares, O.,
Bayesian Inference of Visual Motion Boundaries,
ExploreAI02(139-174).
PDF File.
BibRef
0200
Lim, K.P.[Keng Pang],
Das, A.[Amitabha],
Chong, M.N.[Man Nang],
Estimation of Occlusion and Dense Motion Fields in a Bidirectional
Bayesian Framework,
PAMI(24), No. 5, May 2002, pp. 712-718.
IEEE DOI
0205
BibRef
Lim, K.P.,
Chong, M.N.,
Das, A.,
Low-Bit-Rate Video Coding Using Dense Motion Field and Uncovered
Background Prediction,
IP(10), No. 1, January 2001, pp. 164-166.
IEEE DOI
0101
BibRef
Earlier:
A New MRF Model for Robust Estimate of Occlusion and
Motion Vector Fields,
ICIP97(II: 843-846).
IEEE DOI
9710
BibRef
Wei, J.[Jie],
Gertner, I.[Izidor],
MRF-MAP-MFT visual object segmentation based on motion boundary field,
PRL(24), No. 16, December 2003, pp. 3125-3139.
Elsevier DOI
0310
Segmentation, not motion field.
BibRef
Jodoin, P.M.[Pierre-Marc],
Mignotte, M.[Max],
Rosenberger, C.,
Segmentation Framework Based on Label Field Fusion,
IP(16), No. 10, October 2007, pp. 2535-2550.
IEEE DOI
0711
BibRef
Earlier: A1, A3, A2:
Detecting Half-Occlusion with a Fast Region-Based Fusion Procedure,
BMVC06(I:417).
PDF File.
0609
BibRef
Mignotte, M.,
A Label Field Fusion Bayesian Model and Its Penalized Maximum Rand
Estimator for Image Segmentation,
IP(19), No. 6, June 2010, pp. 1610-1624.
IEEE DOI
1006
Markov random field fusion model. Combine several segmentation results.
See also Multiresolution Markovian Fusion Model for the Color Visualization of Hyperspectral Images, A.
BibRef
Jodoin, P.M.[Pierre-Marc],
Mignotte, M.[Max],
Optical-flow based on an edge-avoidance procedure,
CVIU(113), No. 4, April 2009, pp. 511-531.
Elsevier DOI
0903
BibRef
Earlier:
ICIP06(1253-1256).
0610
IEEE DOI Optical flow; Motion estimation; Information fusion; Mean-shift
BibRef
Ben-Shahar, O.[Ohad],
Zucker, S.W.[Steven W.],
General Geometric Good Continuation:
From Taylor to Laplace via Level Sets,
IJCV(86), No. 1, January 2010, pp. xx-yy.
Springer DOI
1001
BibRef
Earlier:
Good Continuation of General 2D Visual Features:
Dual Harmonic Models and Computational Inference,
ICCV05(II: 1643-1650).
IEEE DOI
0510
BibRef
Earlier:
On the Perceptual Organization of Texture and Shading Flows:
From a Geometrical Model to Coherence Computation,
CVPR01(I:1048-1055).
IEEE DOI
0110
BibRef
And:
Flowing toward coherence: On the geometry of texture and shading flows,
PercOrg01(xx-yy).
0106
Locally parallel patterns.
BibRef
Zucker, S.W.,
Hue flows and scene structure,
3DPVT04(704-704).
IEEE DOI
0412
BibRef
Ben-Shahar, O.,
Zucker, S.W.,
Hue fields and color curvatures:
A Perceptual Organization Approach to Color Image Denoising,
CVPR03(II: 713-720).
IEEE DOI
0307
BibRef
Ben-Shahar, O.[Ohad],
Huggins, P.S.[Patrick S.],
Zucker, S.W.[Steven W.],
On Computing Visual Flows with Boundaries:
The Case of Shading and Edges,
BMCV02(189 ff.).
Springer DOI
0303
See also Folds and Cuts: How Shading Flows Into Edges.
BibRef
Ben-Shahar, O.[Ohad],
Glaser, A.[Andreas],
Zucker, S.W.[Steven W.],
Good Continuation in Layers: Shading flows, color flows, surfaces and
shadows,
PercOrg06(176).
IEEE DOI
0609
BibRef
Jazi, M.H.[Marjan Hadian],
Bab-Hadiashar, A.[Alireza],
Hoseinnezhad, R.[Reza],
Statistical analysis of three-dimensional optical flow separability
in volumetric images,
IET-CV(9), No. 6, 2015, pp. 895-902.
DOI Link
1512
BibRef
Earlier:
Statistical separability of local motions in volumetric images,
ICIP13(3855-3859)
IEEE DOI
1402
optical flow; segmentation; volumetric images
BibRef
Rao, S.[Sana],
Wang, H.Z.[Han-Zi],
Robust optical flow estimation via edge preserving filtering,
SP:IC(96), 2021, pp. 116309.
Elsevier DOI
2106
Robust optical flow estimation, Motion estimation,
Edge-preserving, Weighted guided filtering, NLTV- model
BibRef
Abdullah, A.[Abdullah],
Holler, M.[Martin],
Kunisch, K.[Karl],
Landman, M.S.[Malena Sabate],
Latent-space Disentanglement with Untrained Generator Networks for the
Isolation of Different Motion Types in Video Data,
SSVM23(326-338).
Springer DOI
2307
Multiple motions in scene.
BibRef
Lei, P.,
Li, F.,
Todorovic, S.,
Boundary Flow: A Siamese Network that Predicts Boundary Motion
Without Training on Motion,
CVPR18(3282-3290)
IEEE DOI
1812
Estimation, Optical imaging, Decoding, Image edge detection, Videos,
Task analysis, Optical propagation
BibRef
Piao, D.Z.[Dong-Zhen],
Menon, P.G.[Prahlad G.],
Mengshoel, O.J.[Ole J.],
Computing Probabilistic Optical Flow Using Markov Random Fields,
CompIMAGE14(241-247).
Springer DOI
1407
BibRef
Decombas, M.[Marc],
Riche, N.[Nicolas],
Dufaux, F.[Frederic],
Pesquet-Popescu, B.[Beatrice],
Mancas, M.[Matei],
Gosselin, B.[Bernard],
Dutoit, T.[Thierry],
Spatio-temporal saliency based on rare model,
ICIP13(3451-3455)
IEEE DOI
1402
Optical Flow; Rarity Mechanism; Saliency; Visual attention
BibRef
Ulges, A.[Adrian],
Breuel, T.M.[Thomas M.],
Segmentation by combining parametric optical flow with a color model,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Kannan, A.[Anitha],
Frey, B.J.[Brendan J.],
Jojic, N.[Nebojsa],
A Generative Model of Dense Optical Flow in Layers,
SCVMA04(104-114).
Springer DOI
0405
BibRef
Nicolescu, M.[Mircea],
Min, C.[Changki],
Medioni, G.[Gérard],
Analysis and Interpretation of Multiple Motions Through Surface
Saliency,
SCVMA04(115-126).
Springer DOI
0405
BibRef
Nestares, O.[Oscar],
Fleet, D.J.[David J.],
Probabilistic Tracking of Motion Boundaries with Spatiotemporal
Predictions,
CVPR01(II:358-365).
IEEE DOI
0110
Build on
See also Probabilistic Detection and Tracking of Motion Boundaries.
BibRef
Imamura, H.,
Kenmochi, Y.,
Kotani, K.,
Estimation of Optical Flow for Occlusion Using Extrapolation,
ICIP00(Vol I: 828-831).
IEEE DOI
0008
BibRef
Gaucher, L.,
Medioni, G.,
Accurate Motion Flow Estimation with Discontinuities,
ICCV99(695-702).
IEEE DOI
BibRef
9900
USC Computer Vision
BibRef
Papademetris, X.,
Belhumeur, P.N.[Peter N.],
Estimation of Motion Boundary Location and Optical Flow
Using Dynamic Programming,
ICIP96(I: 509-512).
IEEE DOI
BibRef
9600
Maurizot, M.,
Bouthemy, P.,
Delyon, B.,
Juditski, A.,
Odobez, J.M.,
Determination of singular points in 2D deformable flow fields,
ICIP95(III: 488-491).
IEEE DOI
9510
BibRef
Shizawa, M., and
Ito, T.,
Direct Representation and Detection of Multi-Scale,
Multi-Orientation Fields Using Local Differentiation Filters,
CVPR93(508-514).
IEEE DOI
BibRef
9300
Meygret, A., and
Thonnat, M.,
Segmentation of Optical Flow and 3D Data for the
Interpretation of Mobile Objects,
ICCV90(238-245).
IEEE DOI
BibRef
9000
Wildes, R.P.,
Singularities of the Visual Motion Field:
3D Rotation or 3D Translation,
ICPR94(A:633-636).
IEEE DOI
BibRef
9400
Chapter on Optical Flow Field Computations and Use continues in
Optical Flow Field -- Multiple Flows, Transparent Layers, Motion Layers .