Huang, C.L.,
Huang, Y.M.,
Facial Expression Recognition Using Model-Based Feature Extraction
and Action Parameter(s) Classification,
JVCIR(8), 1997, pp. 278-290.
BibRef
9700
Essa, I.A.[Irfan A.], and
Pentland, A.P.[Alex P.],
Coding, Analysis, Interpretation, and Recognition
of Facial Expressions,
PAMI(19), No. 7, July 1997, pp. 757-763.
IEEE DOI
9708
BibRef
Earlier:
Facial Expression Recognition Using Image Motion,
MBR97(Chapter 12). MIT.
BibRef
Earlier:
Facial Expression Recognition Using a Dynamic Model and Motion Energy,
ICCV95(360-367).
IEEE DOI
BibRef
And:
Vismod-307, 1995.
HTML Version. and
PS File. Spatio-temporal technique for expression recognition.
Rather than use the heuristic (psychological system) FACS, use a
probabilistic scheme to characterize motion and muscle activation.
BibRef
Essa, I.A.,
Pentland, A.P.,
A Vision System for Observing and Extracting Facial Action Parameters,
CVPR94(76-83).
IEEE DOI
BibRef
9400
And:
Vismod-247, 1993.
HTML Version. and
PS File.
BibRef
Essa, I.A.[Irfan A.],
Darrell, T.J.[Trevor J.],
Pentland, A.P.[Alex P.],
Tracking Facial Motion,
Vismod-272, 1994.
HTML Version. and
PS File.
BibRef
9400
Essa, I.A.[Irfan A.],
Analysis, Interpretation and Synthesis of Facial Expressions,
Vismod-303, 1994.
HTML Version. and
PS File.
BibRef
9400
Zhang, L.[Liang],
Automatic Adaptation of a Face Model Using Action Units for Semantic
Coding of Videophone Sequences,
CirSysVideo(8), No. 6, October 1998, pp. 781.
IEEE Top Reference.
BibRef
9810
Earlier:
Estimation of the Mouth Features Using Deformable Templates,
ICIP97(III: 328-331).
IEEE DOI
9710
Lipreading.
BibRef
Donato, G.[Gianluca],
Bartlett, M.S.[Marian Stewart],
Hager, J.C.[Joseph C.],
Ekman, P.[Paul],
Sejnowski, T.J.[Terrence J.],
Classifying Facial Actions,
PAMI(21), No. 10, October 1999, pp. 974-989.
IEEE DOI Uses the FACS (
See also Facial Action Coding System: A Technique for the Measurement of Facial Movement, The. ) coding system.
96% for 12 facial actions.
BibRef
9910
Bartlett, M.S.,
Hager, J.C.,
Ekman, P.,
Sejnowski, T.J.,
Measuring Facial Expressions by Computer Image Analysis,
Psychophysiology(36), 1999, pp. 253-264.
BibRef
9900
Fleet, D.J.[David J.],
Black, M.J.[Michael J.],
Yacoob, Y.[Yaser],
Jepson, A.D.[Allan D.],
Design and Use of Linear Models for Image Motion Analysis,
IJCV(36), No. 3, February-March 2000, pp. 171-193.
DOI Link
0003
PDF File.
See also Probabilistic Detection and Tracking of Motion Boundaries.
See also Recognizing Facial Expressions in Image Sequences Using Local Parameterized Models of Image Motion.
See also Estimating Optical-Flow in Segmented Images Using Variable-Order Parametric Models with Local Deformations.
BibRef
Black, M.J.[Michael J.],
Explaining Optical Flow Events with Parameterized Spatio-temporal
Models,
CVPR99(I: 326-332).
IEEE DOI Generative Spatio-Temporal model. Basis for flow fields.
Used for facial expressions.
BibRef
9900
Black, M.J.,
Yacoob, Y.,
Jepson, A.D.,
Fleet, D.J.,
Learning Parameterized Models of Image Motion,
CVPR97(561-567).
IEEE DOI
9704
Several applications.
BibRef
Tian, Y.L.[Ying-Li],
Kanade, T.[Takeo],
Cohn, J.F.[Jeffrey F.],
Recognizing Action Units for Facial Expression Analysis,
PAMI(23), No. 2, February 2001, pp. 97-115.
IEEE DOI
0102
BibRef
And:
CMU-RI-TR-99-40, December, 1999.
HTML Version.
BibRef
And:
Recognizing Upper Face Action Units for Facial Expression Analysis,
CVPR00(I: 294-301).
IEEE DOI
0005
Analyze expressions using permanent facial features and transient features.
Describe expressions in terms of action units rather than prototypical
expressions.
Compares results with:
See also Measuring Facial Expressions by Computer Image Analysis.
See also Classifying Facial Actions.
See also Automated Face Analysis by Feature Point Tracking Has High Concurrent Validity with Manual FACS Coding. and
See also Detection, Tracking, and Classification of Action Units in Facial Expression.
BibRef
Tian, Y.L.,
Kanade, T.,
Cohn, J.F.,
Recognizing Facial Actions by Combining Geometric Features and Regional
Appearance Patterns,
CMU-RI-TR-01-01, January 2001.
PDF File.
0102
BibRef
Tian, Y.L.[Ying-Li],
Kanade, T.[Takeo],
Cohn, J.F.[Jeffrey F.],
Evaluation of gabor-wavelet-based facial action unit recognition in
image sequences of increasing complexity,
AFGR02(218-223).
IEEE DOI
0206
BibRef
Earlier:
Recognizing Lower Face Action Units in Facial Expression,
AFGR00(484-490).
IEEE DOI
0003
BibRef
And:
Multi-State Based Facial Feature Tracking and Detection,
CMU-RI-TR-99-18, August, 1999.
HTML Version.
BibRef
Cohn, J.F.[Jeffrey F.],
Kanade, T.[Takeo],
Use of automated facial image analysis for measurement
of emotion expression,
EmotionElicitation06(xx-yy).
HTML Version.
BibRef
0600
Cohn, J.F.[Jeffrey F.],
Ambadar, Z., and
Ekman, P.,
Observer-based measurement of facial expression with
the Facial Action Coding System,
EmotionElicitation06(xx-yy).
HTML Version.
BibRef
0600
Wang, T.H.[Te-Hsun],
Lien, J.J.J.[Jenn-Jier James],
Facial expression recognition system based on rigid and non-rigid
motion separation and 3D pose estimation,
PR(42), No. 5, May 2009, pp. 962-977.
Elsevier DOI
0902
Facial expression recognition; FACS action units; Rigid and non-rigid
motion separation; 3D pose estimation; Perspective projection
See also view-based statistical system for multi-view face detection and pose estimation, A.
BibRef
Lai, T.H.[Tzung-Heng],
Wang, T.H.[Te-Hsun],
Lien, J.J.J.[Jenn-Jier James],
Incremental Perspective Motion Model for Rigid and Non-rigid Motion
Separation,
PSIVT07(613-624).
Springer DOI
0712
Motion extraction in facial expression analysis.
BibRef
Lien, J.J.J.[James J.J.],
Kanade, T.[Takeo],
Cohn, J.F.[Jeffrey F.],
Li, C.C.[Ching-Chung],
Automated Facial Expression Recognition Based on FACS Action Units,
AFGR98(390-395).
IEEE DOI
BibRef
9800
Lien, J.J.J.,
Automatic Recognition of Facial Expressions Using Hidden Markov Models
and Estimation of Expression Intensity,
CMU-RI-TR-98-31, April, 1998.
HTML Version.
BibRef
9804
Lien, J.J.J.[James J.J.],
Kanade, T.[Takeo],
Cohn, J.F.[Jeffrey F.],
Li, C.C.[Ching-Chung],
Zlochower, A.J.[Adena J.],
Subtly Different Facial Expression Recognition and
Expression Intensity Estimation,
CVPR98(853-859).
IEEE DOI
PDF File.
BibRef
9800
Cohn, J.F.,
Zlochower, A.J.,
Lien, J.J.J.,
Kanade, T.,
Automated Face Analysis by Feature Point Tracking Has High
Concurrent Validity with Manual FACS Coding,
Psychophysiology(36), 1999, pp. 35-43.
PDF File.
BibRef
9900
Earlier:
Feature-Point Tracking by Optical Flow Discriminates Subtle Differences
in Facial Expression,
AFGR98(396-401).
IEEE DOI
BibRef
CMU Facial Expression Database,
1999
Dataset, Faces.
Dataset, Facial Expression.
HTML Version. Includes annotation.
Lien, J.J.J.[James J.J.],
Kanade, T.[Takeo],
Cohn, J.F.[Jeffrey F.],
Li, C.C.[Ching-Chung],
Detection, Tracking, and Classification of Action Units in Facial
Expression,
RAS(31), 2000, pp. 131-146.
BibRef
0001
Tao, H.[Hai],
Huang, T.S.[Thomas S.],
Visual Estimation and Compression of Facial Motion Parameters:
Elements of a 3D Model-Based Video Coding System,
IJCV(50), No. 2, November 2002, pp. 111-125.
DOI Link
0210
BibRef
Earlier:
Explanation-based Facial Motion Tracking Using a Piecewise Bezier
Volume Deformation Model,
CVPR99(I: 611-617).
IEEE DOI
BibRef
Tao, H.[Hai],
Huang, T.S.[Thomas S.],
A Piecewise Bézier Volume Deformation Model and Its Applications in
Facial Motion Capture,
AIPU02(39-56).
0905
BibRef
Tao, H.[Hai],
Lopez, R.,
Huang, T.S.,
Tracking Facial Features Using Probabilistic Network,
AFGR98(166-170).
IEEE DOI
BibRef
9800
Pardŕs, M.[Montse],
Bonafonte, A.[Antonio],
Facial animation parameters extraction and expression recognition using
Hidden Markov Models,
SP:IC(17), No. 9, October 2002, pp. 675-688.
Elsevier DOI
0211
BibRef
Chuang, C.F.[Chao-Fa],
Shih, F.Y.[Frank Y.],
Recognizing facial action units using independent component analysis
and support vector machine,
PR(39), No. 9, September 2006, pp. 1795-1798.
Elsevier DOI
0606
Action unit; Independent component analysis; Support vector machine
BibRef
Buciu, I.[Ioan],
Pitas, I.[Ioannis],
NMF, LNMF, and DNMF modeling of neural receptive fields involved in
human facial expression perception,
JVCIR(17), No. 5, October 2006, pp. 958-969.
Elsevier DOI
0711
BibRef
Earlier: Erratum:
JVCIR(18), No. 1, February 2007, pp. 100.
Elsevier DOI
0711
BibRef
Earlier:
Application of non-negative and local non negative matrix factorization
to facial expression recognition,
ICPR04(I: 288-291).
IEEE DOI
0409
Image representation; Receptive fields; Facial expressions
BibRef
Nikitidis, S.[Symeon],
Tefas, A.[Anastasios],
Nikolaidis, N.[Nikos],
Pitas, I.[Ioannis],
Subclass discriminant Nonnegative Matrix Factorization for facial image
analysis,
PR(45), No. 12, December 2012, pp. 4080-4091.
Elsevier DOI
1208
BibRef
Earlier:
Facial expression recognition using clustering discriminant
Non-negative Matrix Factorization,
ICIP11(3001-3004).
IEEE DOI
1201
Nonnegative Matrix Factorization; Subclass discriminant analysis;
Multiplicative updates; Facial expression recognition; Face
recognition
BibRef
Orfanidis, G.[Georgios],
Tefas, A.[Anastasios],
Nikolaidis, N.[Nikos],
Pitas, I.[Ioannis],
Facial image clustering in stereoscopic videos using double spectral
analysis,
SP:IC(33), No. 1, 2015, pp. 86-105.
Elsevier DOI
1504
Stereoscopic video
BibRef
Nikitidis, S.[Symeon],
Tefas, A.[Anastasios],
Pitas, I.[Ioannis],
Maximum Margin Projection Subspace Learning for Visual Data Analysis,
IP(23), No. 10, October 2014, pp. 4413-4425.
IEEE DOI
1410
face recognition
BibRef
Kotsia, I.[Irene],
Pitas, I.[Ioannis],
Facial Expression Recognition in Image Sequences Using Geometric
Deformation Features and Support Vector Machines,
IP(16), No. 1, January 2007, pp. 172-187.
IEEE DOI
0701
BibRef
Earlier:
Real Time Facial Expression Recognition from Image Sequences Using
Support Vector Machines,
ICIP05(II: 966-969).
IEEE DOI
0512
BibRef
Kotsia, I.[Irene],
Zafeiriou, S.P.[Stefanos P.],
Pitas, I.[Ioannis],
Texture and shape information fusion for facial expression and facial
action unit recognition,
PR(41), No. 3, March 2008, pp. 833-851.
Elsevier DOI
0711
BibRef
Earlier:
Fusion of Geometrical and Texture Information for Facial Expression
Recognition,
ICIP06(2649-2652).
IEEE DOI
0610
Facial expression recognition; Facial Action Unit recognition;
Discriminant Non-Negative Matrix Factorization; Multidimensional embedding;
Support Vector Machines; Radial Basis Functions; Fusion
BibRef
Kotsia, I.[Irene],
Buciu, I.[Ioan],
Pitas, I.[Ioannis],
An analysis of facial expression recognition under partial facial image
occlusion,
IVC(26), No. 7, 2 July 2008, pp. 1052-1067.
Elsevier DOI
0804
Facial expression recognition; Gabor filters;
Discriminant Non-negative Matrix Factorization; Support Vector Machines;
Partial occlusion
BibRef
Buciu, I.[Ioan],
Kotropoulos, C.[Constantine],
Pitas, I.[Ioannis],
Comparison of ICA approaches for facial expression recognition,
SIViP(3), No. 4, December 2009, pp. xx-yy.
Springer DOI
0911
BibRef
Earlier:
ICA and gabor representation for facial expression recognition,
ICIP03(II: 855-858).
IEEE DOI
0312
BibRef
Earlier:
On the stability of support vector machines for face detection,
ICIP02(III: 121-124).
IEEE DOI
0210
BibRef
Earlier:
Combining Support Vector Machines for Accurate Face Detection,
ICIP01(I: 1054-1057).
IEEE DOI
0108
BibRef
Kotsia, I.[Irene],
Patras, I.[Ioannis],
Support tucker machines,
CVPR11(633-640).
IEEE DOI
1106
BibRef
Earlier:
Multiplicative Update Rules for Multilinear Support Tensor Machines,
ICPR10(33-36).
IEEE DOI
1008
See also Relative Margin Support Tensor Machines for gait and action recognition.
BibRef
Kotsia, I.[Irene],
Zafeiriou, S.P.[Stefanos P.],
Nikolaidis, N.[Nikolaos],
Pitas, I.[Ioannis],
Texture and Shape Information Fusion for Facial Action Unit Recognition,
ACHI08(77-82).
IEEE DOI
0802
BibRef
Bishay, M.,
Patras, I.,
Fusing Multilabel Deep Networks for Facial Action Unit Detection,
FG17(681-688)
IEEE DOI
1707
Correlation, Databases, Face, Feature extraction, Gold, Neurons, Training
BibRef
Zafeiriou, S.P.[Stefanos P.],
Petrou, M.[Maria],
Sparse representations for facial expressions recognition via L1
optimization,
CVCGI10(32-39).
IEEE DOI
1006
BibRef
Yang, P.[Peng],
Liu, Q.S.[Qing-Shan],
Metaxas, D.N.[Dimitris N.],
Boosting encoded dynamic features for facial expression recognition,
PRL(30), No. 2, 15 January 2009, pp. 132-139.
Elsevier DOI
0804
BibRef
Earlier:
Similarity Features for Facial Event Analysis,
ECCV08(I: 685-696).
Springer DOI
0810
BibRef
Earlier:
Boosting Coded Dynamic Features for Facial Action Units and Facial
Expression Recognition,
CVPR07(1-6).
IEEE DOI
0706
Pattern recognition; Facial expression; Video understanding; Boosting
BibRef
Yang, P.[Peng],
Liu, Q.S.[Qing-Shan],
Metaxas, D.N.[Dimitris N.],
Dynamic soft encoded patterns for facial event analysis,
CVIU(115), No. 3, March 2011, pp. 456-465.
Elsevier DOI
1103
BibRef
Earlier:
RankBoost with L1 regularization for facial expression recognition and
intensity estimation,
ICCV09(1018-1025).
IEEE DOI
0909
Facial expression; Dynamic feature; Time resolution
BibRef
Yang, P.[Peng],
Liu, Q.S.[Qing-Shan],
Metaxas, D.N.[Dimitris N.],
Exploring facial expressions with compositional features,
CVPR10(2638-2644).
IEEE DOI
1006
BibRef
Yang, P.[Peng],
Liu, Q.S.[Qing-Shan],
Cui, X.Y.[Xin-Yi],
Metaxas, D.N.[Dimitris N.],
Facial expression recognition using encoded dynamic features,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Koelstra, S.[Sander],
Pantic, M.[Maja],
Patras, I.[Ioannis],
A Dynamic Texture-Based Approach to Recognition of Facial Actions and
Their Temporal Models,
PAMI(32), No. 11, November 2010, pp. 1940-1954.
IEEE DOI
1011
FAUs from texture. motion history images and nonrigid registration
using free-form deformations.
BibRef
Koelstra, S.[Sander],
Pantic, M.[Maja],
Non-rigid registration using free-form deformations for recognition of
facial actions and their temporal dynamics,
FG08(1-8).
IEEE DOI
0809
BibRef
Valstar, M.F.[Michel F.],
Pantic, M.[Maja],
Fully Automatic Recognition of the Temporal Phases of Facial Actions,
SMC-B(42), No. 1, February 2012, pp. 28-43.
IEEE DOI
1201
BibRef
Earlier:
Combined Support Vector Machines and Hidden Markov Models for Modeling
Facial Action Temporal Dynamics,
CVHCI07(118-127).
Springer DOI
0710
BibRef
Earlier:
Fully Automatic Facial Action Unit Detection and Temporal Analysis,
V4HCI06(149).
IEEE DOI
0609
BibRef
Sandbach, G.[Georgia],
Zafeiriou, S.P.[Stefanos P.],
Pantic, M.[Maja],
Local normal binary patterns for 3D facial action unit detection,
ICIP12(1813-1816).
IEEE DOI
1302
BibRef
Earlier:
Binary Pattern Analysis for 3D Facial Action Unit Detection,
BMVC12(119).
DOI Link
1301
BibRef
Martinez, B.[Brais],
Valstar, M.F.[Michel F.],
Binefa, X.[Xavier],
Pantic, M.[Maja],
Local Evidence Aggregation for Regression-Based Facial Point Detection,
PAMI(35), No. 5, May 2013, pp. 1149-1163.
IEEE DOI
1304
BibRef
Earlier: A2, A1, A3, A4:
Facial point detection using boosted regression and graph models,
CVPR10(2729-2736).
IEEE DOI
1006
frontal and near-frontal. Use face shape to restrict feature point locations.
BibRef
Martinez, B.[Brais],
Valstar, M.F.[Michel F.],
L2,1-based regression and prediction accumulation across views for
robust facial landmark detection,
IVC(47), No. 1, 2016, pp. 36-44.
Elsevier DOI
1605
Facial landmark detection
BibRef
Sánchez-Lozano, E.[Enrique],
Martinez, B.[Brais],
Valstar, M.F.[Michel F.],
Cascaded regression with sparsified feature covariance matrix for
facial landmark detection,
PRL(73), No. 1, 2016, pp. 19-25.
Elsevier DOI
1604
Supervised descent method
BibRef
Sánchez-Lozano, E.[Enrique],
Tzimiropoulos, G.[Georgios],
Martinez, B.,
de la Torre, F.[Fernando],
Valstar, M.F.[Michel F.],
A Functional Regression Approach to Facial Landmark Tracking,
PAMI(40), No. 9, September 2018, pp. 2037-2050.
IEEE DOI
1808
Face, Training, Shape, Real-time systems, Data models, Fourier series,
Data analysis, Continuous regression, face tracking,
functional data analysis
BibRef
Sánchez-Lozano, E.[Enrique],
Martinez, B.[Brais],
Tzimiropoulos, G.[Georgios],
Valstar, M.F.[Michel F.],
Cascaded Continuous Regression for Real-Time Incremental Face Tracking,
ECCV16(VIII: 645-661).
Springer DOI
1611
BibRef
Valstar, M.F.,
Patras, I.[Ioannis],
Pantic, M.[Maja],
Facial Action Unit Detection using Probabilistic Actively Learned
Support Vector Machines on Tracked Facial Point Data,
VHCI05(III: 76-76).
IEEE DOI
0507
BibRef
Savran, A.[Arman],
Sankur, B.[Bülent],
Bilge, M.T.[M. Taha],
Comparative evaluation of 3D vs. 2D modality for automatic detection of
facial action units,
PR(45), No. 2, February 2012, pp. 767-782.
Elsevier DOI
1110
BibRef
Earlier:
Facial action unit detection: 3D versus 2D modality,
CVPR4HB10(71-78).
IEEE DOI
1006
3D expression recognition; 3D facial expression database; Action unit
detection; Facial action coding system; Modality fusion; Gabor
wavelets
BibRef
Savran, A.[Arman],
Sankur, B.[Bulent],
Bilge, M.T.[M. Taha],
Regression-based intensity estimation of facial action units,
IVC(30), No. 10, October 2012, pp. 774-784.
Elsevier DOI
1210
Action unit intensity estimation; 3D facial expression recognition;
Facial Action Coding System; Feature selection; AdaBoost.RT; SVM
regression
BibRef
Savran, A.[Arman],
Sankur, B.[Bulent],
Automatic detection of facial actions from 3D data,
HCI09(1993-2000).
IEEE DOI
0910
BibRef
Savran, A.[Arman],
Sankur, B.[Bülent],
Non-rigid registration based model-free 3D facial expression
recognition,
CVIU(162), No. 1, 2017, pp. 146-165.
Elsevier DOI
1710
Facial expression recognition
BibRef
Polikovsky, S.[Senya],
Kameda, Y.[Yoshinari],
Ohta, Y.[Yuichi],
Facial Micro-Expression Detection in Hi-Speed Video Based on Facial
Action Coding System (FACS),
IEICE(E96-D), No. 1, January 2013, pp. 81-92.
WWW Link.
1301
BibRef
McDuff, D.J.[Daniel J.],
el Kaliouby, R.[Rana],
Picard, R.W.[Rosalind W.],
Crowdsourcing Facial Responses to Online Videos,
AffCom(3), No. 4 2012, pp. 456-468.
IEEE DOI
1302
BibRef
McDuff, D.J.[Daniel J.],
el Kaliouby, R.[Rana],
Kassam, K.[Karim],
Picard, R.W.[Rosalind W.],
Affect valence inference from facial action unit spectrograms,
AMFG10(17-24).
IEEE DOI
1006
BibRef
Senechal, T.,
McDuff, D.J.[Daniel J.],
el Kaliouby, R.[Rana],
Facial Action Unit Detection Using Active Learning and an Efficient
Non-linear Kernel Approximation,
CV4AC15(10-18)
IEEE DOI
1602
Approximation methods
BibRef
McDuff, D.J.[Daniel J.],
el Kaliouby, R.[Rana],
Applications of Automated Facial Coding in Media Measurement,
AffCom(8), No. 2, April 2017, pp. 148-160.
IEEE DOI
1706
Encoding, Face, Media, Motion pictures, TV, Testing, Webcams,
Facial expressions, advertising, crowdsourcing, emotion,
facial coding, marketing, media, measurement
BibRef
Aifanti, N.[Niki],
Delopoulos, A.[Anastasios],
Linear subspaces for facial expression recognition,
SP:IC(29), No. 1, 2014, pp. 177-188.
Elsevier DOI
1402
Face analysis
BibRef
Jiang, B.[Bihan],
Valstar, M.F.,
Martinez, B.,
Pantic, M.,
A Dynamic Appearance Descriptor Approach to Facial Actions Temporal
Modeling,
Cyber(44), No. 2, February 2014, pp. 161-174.
IEEE DOI
1403
Markov processes
BibRef
Almaev, T.R.,
Martinez, B.[Brais],
Valstar, M.F.[Michel F.],
Learning to Transfer: Transferring Latent Task Structures and Its
Application to Person-Specific Facial Action Unit Detection,
ICCV15(3774-3782)
IEEE DOI
1602
Data models; Encoding; Face recognition; Facial muscles; Gold; Training
BibRef
Mavadati, S.M.[S. Mohammad],
Mahoor, M.H.[Mohammad H.],
Temporal Facial Expression Modeling for Automated Action Unit
Intensity Measurement,
ICPR14(4648-4653)
IEEE DOI
1412
Accuracy
BibRef
Mahoor, M.H.[Mohammad H.],
Cadavid, S.[Steven],
Messinger, D.S.[Daniel S.],
Cohn, J.F.[Jeffrey F.],
A framework for automated measurement of the intensity of non-posed
Facial Action Units,
CVPR4HB09(74-80).
IEEE DOI
0906
BibRef
Wu, B.Y.[Bao-Yuan],
Lyu, S.W.[Si-Wei],
Hu, B.G.[Bao-Gang],
Ji, Q.A.[Qi-Ang],
Multi-label learning with missing labels for image annotation and
facial action unit recognition,
PR(48), No. 7, 2015, pp. 2279-2289.
Elsevier DOI
1504
Multi-label learning
BibRef
Li, Y.Q.[Yong-Qiang],
Wu, B.Y.[Bao-Yuan],
Ghanem, B.[Bernard],
Zhao, Y.P.[Yong-Ping],
Yao, H.X.[Hong-Xun],
Ji, Q.A.[Qi-Ang],
Facial action unit recognition under incomplete data based on
multi-label learning with missing labels,
PR(60), No. 1, 2016, pp. 890-900.
Elsevier DOI
1609
Face action unit recognition
BibRef
Wu, B.Y.[Bao-Yuan],
Jia, F.[Fan],
Liu, W.[Wei],
Ghanem, B.[Bernard],
Lyu, S.W.[Si-Wei],
Multi-label Learning with Missing Labels Using Mixed Dependency Graphs,
IJCV(126), No. 8, August 2018, pp. 875-896.
Springer DOI
1807
BibRef
Wu, B.Y.[Bao-Yuan],
Liu, Z.L.[Zhi-Lei],
Wang, S.F.[Shang-Fei],
Hu, B.G.[Bao-Gang],
Ji, Q.A.[Qi-Ang],
Multi-label Learning with Missing Labels,
ICPR14(1964-1968)
IEEE DOI
1412
BibRef
Wu, B.Y.[Bao-Yuan],
Lyu, S.W.[Si-Wei],
Ghanem, B.[Bernard],
ML-MG: Multi-label Learning with Missing Labels Using a Mixed Graph,
ICCV15(4157-4165)
IEEE DOI
1602
multi-label learning with missing labels.
Games; Horses; Image edge detection; Semantics; Training
BibRef
Zhong, L.[Lin],
Liu, Q.S.[Qing-Shan],
Yang, P.[Peng],
Huang, J.Z.[Jun-Zhou],
Metaxas, D.N.[Dimitris N.],
Learning Multiscale Active Facial Patches for Expression Analysis,
Cyber(45), No. 8, August 2015, pp. 1499-1510.
IEEE DOI
1506
Face recognition
BibRef
Zhong, L.[Lin],
Liu, Q.S.[Qing-Shan],
Yang, P.[Peng],
Liu, B.[Bo],
Huang, J.Z.[Jun-Zhou],
Metaxas, D.N.[Dimitris N.],
Learning active facial patches for expression analysis,
CVPR12(2562-2569).
IEEE DOI
1208
BibRef
Zhao, K.[Kaili],
Chu, W.S.[Wen-Sheng],
de la Torre, F.[Fernando],
Cohn, J.F.[Jeffrey F.],
Zhang, H.G.[Hong-Gang],
Joint Patch and Multi-label Learning for Facial Action Unit and
Holistic Expression Recognition,
IP(25), No. 8, August 2016, pp. 3931-3946.
IEEE DOI
1608
BibRef
Earlier:
Joint patch and multi-label learning for facial action unit detection,
CVPR15(2207-2216)
IEEE DOI
1510
face recognition
BibRef
Chu, W.S.[Wen-Sheng],
de la Torre, F.[Fernando],
Cohn, J.F.[Jeffrey F.],
Learning facial action units with spatiotemporal cues and multi-label
sampling,
IVC(81), 2019, pp. 1-14.
Elsevier DOI
1902
BibRef
Earlier:
Learning Spatial and Temporal Cues for Multi-Label Facial Action Unit
Detection,
FG17(25-32)
IEEE DOI
1707
Multi-label learning, Deep learning, Spatio-temporal learning,
Multi-label sampling, Facial action unit detection, Video analysis.
Context, Correlation, Face, Feature extraction,
Image color analysis.
BibRef
Zhao, K.[Kaili],
Chu, W.S.[Wen-Sheng],
Zhang, H.G.[Hong-Gang],
Deep Region and Multi-label Learning for Facial Action Unit Detection,
CVPR16(3391-3399)
IEEE DOI
1612
BibRef
Girard, J.M.,
Cohn, J.F.,
Jeni, L.A.[László A.],
Lucey, S.,
de la Torre, F.,
How much training data for facial action unit detection?,
FG15(1-8)
IEEE DOI
1508
face recognition
BibRef
Nicolle, J.[Jérémie],
Bailly, K.[Kévin],
Chetouani, M.[Mohamed],
Real-time facial action unit intensity prediction with regularized
metric learning,
IVC(52), No. 1, 2016, pp. 1-14.
Elsevier DOI
1609
Facial expression
BibRef
Nicolle, J.[Jérémie],
Bailly, K.[Kévin],
Rapp, V.[Vincent],
Chetouani, M.[Mohamed],
Locating facial landmarks with binary map cross-correlations,
ICIP13(2978-2982)
IEEE DOI
1402
LBP; LPQ; binary maps; facial landmarks; shape model
BibRef
Zeng, J.,
Chu, W.S.[Wen-Sheng],
de la Torre, F.[Fernando],
Cohn, J.F.[Jeffery F.],
Xiong, Z.,
Confidence Preserving Machine for Facial Action Unit Detection,
IP(25), No. 10, October 2016, pp. 4753-4767.
IEEE DOI
1610
BibRef
Earlier:
ICCV15(3622-3630)
IEEE DOI
1602
face recognition.
Boosting
BibRef
Chu, W.S.[Wen-Sheng],
de la Torre, F.[Fernando],
Cohn, J.F.[Jeffery F.],
Selective Transfer Machine for Personalized Facial Expression
Analysis,
PAMI(39), No. 3, March 2017, pp. 529-545.
IEEE DOI
1702
BibRef
Earlier:
Selective Transfer Machine for Personalized Facial Action Unit
Detection,
CVPR13(3515-3522)
IEEE DOI
1309
Facial action unit detection; SVM; domain adaptation
BibRef
Rahman, A.K.M.M.[A.K.M. Mahbubur],
Anam, A.I.[Asm Iftekhar],
Yeasin, M.[Mohammed],
A Unified Framework for Dividing and Predicting a Large Set of Action
Units,
AffCom(7), No. 4, October 2016, pp. 311-325.
IEEE DOI
1612
Computational modeling
BibRef
Rudovic, O.[Ognjen],
Pantic, M.[Maja],
Patras, I.Y.[Ioannis Yiannis],
Coupled Gaussian Processes for Pose-Invariant Facial Expression
Recognition,
PAMI(35), No. 6, June 2013, pp. 1357-1369.
IEEE DOI
1305
BibRef
Earlier: A1, A3, A2:
Coupled Gaussian Process Regression for Pose-Invariant Facial
Expression Recognition,
ECCV10(II: 350-363).
Springer DOI
1009
BibRef
Earlier: A1, A3, A2:
Regression-Based Multi-view Facial Expression Recognition,
ICPR10(4121-4124).
IEEE DOI
1008
BibRef
Eleftheriadis, S.[Stefanos],
Rudovic, O.[Ognjen],
Pantic, M.[Maja],
Discriminative Shared Gaussian Processes for Multiview and
View-Invariant Facial Expression Recognition,
IP(24), No. 1, January 2015, pp. 189-204.
IEEE DOI
1502
BibRef
Earlier:
View-Constrained Latent Variable Model for Multi-view Facial Expression
Classification,
ISVC14(II: 292-303).
Springer DOI
1501
BibRef
Earlier:
Shared Gaussian Process Latent Variable Model for Multi-view Facial
Expression Recognition,
ISVC13(I:527-538).
Springer DOI
1310
Gaussian processes
BibRef
Eleftheriadis, S.[Stefanos],
Rudovic, O.[Ognjen],
Pantic, M.[Maja],
Joint Facial Action Unit Detection and Feature Fusion:
A Multi-Conditional Learning Approach,
IP(25), No. 12, December 2016, pp. 5727-5742.
IEEE DOI
1612
BibRef
Earlier:
Multi-conditional Latent Variable Model for Joint Facial Action Unit
Detection,
ICCV15(3792-3800)
IEEE DOI
1602
Bayes methods
BibRef
Eleftheriadis, S.[Stefanos],
Rudovic, O.[Ognjen],
Deisenroth, M.P.[Marc Peter],
Pantic, M.[Maja],
Gaussian Process Domain Experts for Modeling of Facial Affect,
IP(26), No. 10, October 2017, pp. 4697-4711.
IEEE DOI
1708
BibRef
Earlier:
Variational Gaussian Process Auto-Encoder for Ordinal Prediction of
Facial Action Units,
ACCV16(II: 154-170).
Springer DOI
1704
BibRef
Earlier:
Gaussian Process Domain Experts for Model Adaptation in Facial
Behavior Analysis,
Affect16(1469-1477)
IEEE DOI
1612
Gaussian processes, emotion recognition, face recognition,
Gaussian process domain, facial behavior analysis,
facial expression analysis, probabilistic framework,
supervised domain adaptation, Adaptation models,
Analytical models, Computational modeling, Context, Data models,
Gold, Training, Domain adaptation, Gaussian processes,
multi-view facial expression recognition, multiple AU detection
BibRef
Yang, S.[Shuang],
Rudovic, O.[Ognjen],
Pavlovic, V.[Vladimir],
Pantic, M.[Maja],
Personalized Modeling of Facial Action Unit Intensity,
ISVC14(II: 269-281).
Springer DOI
1501
BibRef
Rudovic, O.[Ognjen],
Pavlovic, V.[Vladimir],
Pantic, M.[Maja],
Context-Sensitive Dynamic Ordinal Regression for Intensity Estimation
of Facial Action Units,
PAMI(37), No. 5, May 2015, pp. 944-958.
IEEE DOI
1504
BibRef
Earlier:
Context-Sensitive Conditional Ordinal Random Fields for Facial Action
Intensity Estimation,
HACI13(492-499)
IEEE DOI
1403
BibRef
And:
Automatic Pain Intensity Estimation with Heteroscedastic Conditional
Ordinal Random Fields,
ISVC13(II:234-243).
Springer DOI
1311
BibRef
Earlier:
Kernel Conditional Ordinal Random Fields for Temporal Segmentation of
Facial Action Units,
Face12(II: 260-269).
Springer DOI
1210
BibRef
Earlier:
Multi-Output Laplacian Dynamic Ordinal Regression for Facial Expression
Recognition and Intensity Estimation,
CVPR12(2634-2641).
IEEE DOI
1208
Context.
emotion recognition
See also Structured Output Ordinal Regression for Dynamic Facial Emotion Intensity Prediction.
BibRef
Walecki, R.[Robert],
Rudovic, O.[Ognjen],
Pavlovic, V.[Vladimir],
Pantic, M.[Maja],
Copula Ordinal Regression Framework for Joint Estimation of Facial
Action Unit Intensity,
AffCom(10), No. 3, July 2019, pp. 297-312.
IEEE DOI
1909
Gold, Computational modeling, Estimation, Data models,
Noise measurement, Face, Neural networks,
conditional random fields
BibRef
Walecki, R.[Robert],
Rudovic, O.[Ognjen],
Pavlovic, V.[Vladimir],
Schuller, B.,
Pantic, M.[Maja],
Deep Structured Learning for Facial Action Unit Intensity Estimation,
CVPR17(5709-5718)
IEEE DOI
1711
Data models, Estimation, Face, Feature extraction, Gold, Machine, learning
BibRef
Walecki, R.[Robert],
Rudovic, O.[Ognjen],
Pantic, M.[Maja],
Pavlovic, V.[Vladimir],
Cohn, J.F.,
A Framework for Joint Estimation and Guided Annotation of Facial
Action Unit Intensity,
Affect16(1460-1468)
IEEE DOI
1612
BibRef
Walecki, R.[Robert],
Rudovic, O.[Ognjen],
Pavlovic, V.[Vladimir],
Pantic, M.[Maja],
Variable-state Latent Conditional Random Field models for facial
expression analysis,
IVC(58), No. 1, 2017, pp. 25-37.
Elsevier DOI
1703
BibRef
And:
Copula Ordinal Regression for Joint Estimation of Facial Action Unit
Intensity,
CVPR16(4902-4910)
IEEE DOI
1612
Facial expression
BibRef
Sandbach, G.,
Zafeiriou, S.P.,
Pantic, M.,
Markov Random Field Structures for Facial Action Unit Intensity
Estimation,
SocialInter13(738-745)
IEEE DOI
1403
Markov processes
BibRef
Walecki, R.,
Rudovic, O.,
Pavlovic, V.,
Pantic, M.,
Variable-state latent conditional random fields for facial expression
recognition and action unit detection,
FG15(1-8)
IEEE DOI
1508
emotion recognition
BibRef
Kaltwang, S.[Sebastian],
Todorovic, S.[Sinisa],
Pantic, M.[Maja],
Latent trees for estimating intensity of Facial Action Units,
CVPR15(296-304)
IEEE DOI
1510
BibRef
Lekdioui, K.[Khadija],
Messoussi, R.[Rochdi],
Ruichek, Y.[Yassine],
Chaabi, Y.[Youness],
Touahni, R.[Raja],
Facial decomposition for expression recognition using texture/shape
descriptors and SVM classifier,
SP:IC(58), No. 1, 2017, pp. 300-312.
Elsevier DOI
1710
Facial components
BibRef
Slimani, K.,
Bourekkadi, S.,
Messoussi, R.,
Ruichek, Y.,
Touahni, R.,
Sharing Emotions in the Distance Education Experience:
Attitudes and Motivation of University Students,
ISCV20(1-10)
IEEE DOI
2011
cognition, computer aided instruction, decision making,
distance learning, educational institutions, groupware,
university.
BibRef
Mohammadi, M.R.[Mohammad Reza],
Fatemizadeh, E.[Emad],
Mahoor, M.H.[Mohammad H.],
PCA-based dictionary building for accurate facial expression
recognition via sparse representation,
JVCIR(25), No. 5, 2014, pp. 1082-1092.
Elsevier DOI
1406
BibRef
And:
Simultaneous recognition of facial expression and identity via sparse
representation,
WACV14(1066-1073)
IEEE DOI
1406
Facial expression recognition.
Dictionaries
BibRef
Mohammadi, M.R.[Mohammad Reza],
Fatemizadeh, E.[Emad],
Mahoor, M.H.[Mohammad H.],
A joint dictionary learning and regression model for intensity
estimation of facial AUs,
JVCIR(47), No. 1, 2017, pp. 1-9.
Elsevier DOI
1706
Facial action units.
BibRef
Gupta, R.[Rahul],
Audhkhasi, K.[Kartik],
Jacokes, Z.[Zach],
Rozga, A.[Agata],
Narayanan, S.[Shrikanth],
Modeling Multiple Time Series Annotations as Noisy Distortions of the
Ground Truth: An Expectation-Maximization Approach,
AffCom(9), No. 1, January 2018, pp. 76-89.
IEEE DOI
1804
behavioural sciences computing,
expectation-maximisation algorithm, feature extraction,
multiple annotators
BibRef
Kim, S.T.[Seong Tae],
Ro, Y.M.[Yong Man],
Facial Dynamics Interpreter Network: What Are the Important Relations
Between Local Dynamics for Facial Trait Estimation?,
ECCV18(XII: 475-491).
Springer DOI
1810
BibRef
Li, W.[Wei],
Abtahi, F.[Farnaz],
Zhu, Z.G.[Zhi-Gang],
Yin, L.J.[Li-Jun],
EAC-Net: Deep Nets with Enhancing and Cropping for Facial Action Unit
Detection,
PAMI(40), No. 11, November 2018, pp. 2583-2596.
IEEE DOI
1810
BibRef
Earlier:
EAC-Net: A Region-Based Deep Enhancing and Cropping Approach for
Facial Action Unit Detection,
FG17(103-110)
IEEE DOI
1707
Lips, Face, Feature extraction, Convolutional codes, Encoding,
Robustness, Convolutional neural network, facial analysis,
head poses.
Face, Robustness, Training
BibRef
Li, W.[Wei],
Abtahi, F.[Farnaz],
Zhu, Z.G.[Zhi-Gang],
Action Unit Detection with Region Adaptation, Multi-labeling Learning
and Optimal Temporal Fusing,
CVPR17(6766-6775)
IEEE DOI
1711
Face, Feature extraction, Gold, Machine learning, Muscles,
Neural networks, Training
BibRef
Wang, S.F.[Shang-Fei],
Peng, G.Z.[Guo-Zhu],
Chen, S.Y.[Shi-Yu],
Ji, Q.[Qiang],
Weakly Supervised Facial Action Unit Recognition With Domain
Knowledge,
Cyber(48), No. 11, November 2018, pp. 3265-3276.
IEEE DOI
1810
Gold, Training, Databases, Face recognition, Face, Supervised learning,
Cybernetics, Domain knowledge,
weakly supervised learning
BibRef
Wang, J.[Jiahe],
Ding, H.[Heyan],
Wang, S.F.[Shang-Fei],
Occluded Facial Expression Recognition Using Self-supervised Learning,
ACCV22(IV:121-136).
Springer DOI
2307
BibRef
Chang, Y.[Yanan],
Wang, S.F.[Shang-Fei],
Knowledge-Driven Self-Supervised Representation Learning for Facial
Action Unit Recognition,
CVPR22(20385-20394)
IEEE DOI
2210
Representation learning, Gold, Correlation, Databases, Annotations,
Face recognition, Supervised learning, Face and gestures,
Self- semi- meta- unsupervised learning
BibRef
Wang, S.F.[Shang-Fei],
Peng, G.Z.[Guo-Zhu],
Weakly Supervised Dual Learning for Facial Action Unit Recognition,
MultMed(21), No. 12, December 2019, pp. 3218-3230.
IEEE DOI
1912
BibRef
Earlier: A2, A1:
Weakly Supervised Facial Action Unit Recognition Through Adversarial
Training,
CVPR18(2188-2196)
IEEE DOI
1812
Task analysis, Face, Face recognition, Learning systems,
Image recognition, Generators, Action unit recognition,
dual learning.
Training, Image recognition, Pain,
Supervised learning, Muscles
BibRef
Wang, S.F.[Shang-Fei],
Gan, Q.[Quan],
Ji, Q.A.[Qi-Ang],
Expression-assisted facial action unit recognition under incomplete
AU annotation,
PR(61), No. 1, 2017, pp. 78-91.
Elsevier DOI
1609
AU recognition
BibRef
Wang, S.F.[Shang-Fei],
Wu, Y.[Yi],
Chang, Y.[Yanan],
Li, G.M.[Guo-Ming],
Mao, M.[Meng],
Pose-Aware Facial Expression Recognition Assisted by Expression
Descriptions,
AffCom(15), No. 1, January 2024, pp. 241-253.
IEEE DOI
2403
Feature extraction, Face recognition, Lips, Faces,
Adversarial machine learning, Semantics, Multitasking, Pose-aware,
cross-modality attention
BibRef
Wang, S.F.[Shang-Fei],
Ding, H.[Heyan],
Peng, G.Z.[Guo-Zhu],
Dual Learning for Facial Action Unit Detection Under Nonfull
Annotation,
Cyber(52), No. 4, April 2022, pp. 2225-2237.
IEEE DOI
2204
Gold, Task analysis, Face, Annotations, Face recognition,
Image reconstruction, Probabilistic logic, Adversarial learning,
weakly supervised
BibRef
Wang, S.F.[Shang-Fei],
Chang, Y.[Yanan],
Wang, C.[Can],
Dual Learning for Joint Facial Landmark Detection and Action Unit
Recognition,
AffCom(14), No. 2, April 2023, pp. 1404-1416.
IEEE DOI
2306
Gold, Task analysis, Face recognition, Feature extraction,
Correlation, Learning systems, Image recognition,
dual learning
BibRef
Wang, S.F.[Shang-Fei],
Wu, S.[Shan],
Peng, G.Z.[Guo-Zhu],
Ji, Q.A.[Qi-Ang],
Capturing Feature and Label Relations Simultaneously for Multiple
Facial Action Unit Recognition,
AffCom(10), No. 3, July 2019, pp. 348-359.
IEEE DOI
1909
BibRef
Earlier: A2, A1, A4, Only:
Multiple Facial Action Unit recognition by learning joint features
and label relations,
ICPR16(2246-2251)
IEEE DOI
1705
Databases, Gold, Face recognition, Affective computing,
Auditory system, AU recognition, RBM.
Bayes methods, Face recognition, Facial features, Gold,
Inference algorithms, Kernel, Training
BibRef
Li, Y.Q.[Yong-Qiang],
Wang, S.F.[Shang-Fei],
Zhao, Y.P.[Yong-Ping],
Ji, Q.A.[Qi-Ang],
Simultaneous Facial Feature Tracking and Facial Expression Recognition,
IP(22), No. 7, 2013, pp. 2559-2573.
IEEE DOI
1307
BibRef
Earlier: A1, A3, A4, Only:
Simultaneous facial activity tracking and recognition,
ICPR12(1017-1020).
WWW Link.
1302
shape recognition; eyebrow; facial action units
BibRef
He, S.[Shan],
Wang, S.F.[Shang-Fei],
Lv, Y.P.[Yan-Peng],
Spontaneous Facial Expression Recognition Based on Feature Point
Tracking,
ICIG11(760-765).
IEEE DOI
1109
BibRef
Yang, J.J.[Jia-Jia],
Wu, S.[Shan],
Wang, S.F.[Shang-Fei],
Ji, Q.[Qiang],
Multiple facial action unit recognition enhanced by facial
expressions,
ICPR16(4089-4094)
IEEE DOI
1705
Databases, Face recognition, Gold, Mathematical model,
Probabilistic logic, Semantics, Training
BibRef
Wang, Z.H.[Zi-Heng],
Li, Y.Q.[Yong-Qiang],
Wang, S.F.[Shang-Fei],
Ji, Q.A.[Qi-Ang],
Capturing Global Semantic Relationships for Facial Action Unit
Recognition,
ICCV13(3304-3311)
IEEE DOI
1403
AU recognition; RBM; Spatiotemporal relationship
BibRef
Zhang, Y.[Yong],
Dong, W.M.[Wei-Ming],
Hu, B.G.[Bao-Gang],
Ji, Q.[Qiang],
Classifier Learning with Prior Probabilities for Facial Action Unit
Recognition,
CVPR18(5108-5116)
IEEE DOI
1812
Gold, Training, Correlation, Muscles, Face recognition, Linear programming
BibRef
Wang, S.F.[Shang-Fei],
Hao, L.F.[Long-Fei],
Ji, Q.[Qiang],
Facial Action Unit Recognition and Intensity Estimation Enhanced
Through Label Dependencies,
IP(28), No. 3, March 2019, pp. 1428-1442.
IEEE DOI
1812
Bayes methods, belief networks, emotion recognition,
face recognition, learning (artificial intelligence),
label dependencies
BibRef
Wang, S.F.[Shang-Fei],
Pan, B.[Bowen],
Wu, S.[Shan],
Ji, Q.[Qiang],
Deep Facial Action Unit Recognition and Intensity Estimation from
Partially Labelled Data,
AffCom(12), No. 4, October 2021, pp. 1018-1030.
IEEE DOI
2112
Estimation, Face recognition, Image recognition,
Support vector machines, Training data, Databases, AU recognition,
partially labelled data
BibRef
Zhang, Y.[Yong],
Jiang, H.Y.[Hai-Yong],
Wu, B.Y.[Bao-Yuan],
Fan, Y.B.[Yan-Bo],
Ji, Q.[Qiang],
Context-Aware Feature and Label Fusion for Facial Action Unit
Intensity Estimation With Partially Labeled Data,
ICCV19(733-742)
IEEE DOI
2004
face recognition, feature extraction, image fusion,
image representation, image segmentation,
Face
BibRef
Hao, L.,
Wang, S.,
Peng, G.,
Ji, Q.,
Facial Action Unit Recognition Augmented by Their Dependencies,
FG18(187-194)
IEEE DOI
1806
Bayes methods, Databases, Face recognition, Gold, Muscles,
Probabilistic logic, Training, Facial Action Unit Recognition,
Latent Regression Bayesian Networks
BibRef
Wang, S.F.[Shang-Fei],
Yang, J.J.[Jia-Jia],
Gao, Z.[Zhen],
Ji, Q.A.[Qi-Ang],
Feature and label relation modeling for multiple-facial action unit
classification and intensity estimation,
PR(65), No. 1, 2017, pp. 71-81.
Elsevier DOI
1702
AU recognition
BibRef
Zhu, Y.C.[Ya-Chen],
Wang, S.F.[Shang-Fei],
Yue, L.H.[Li-Hua],
Ji, Q.A.[Qi-Ang],
Multiple-Facial Action Unit Recognition by Shared Feature Learning
and Semantic Relation Modeling,
ICPR14(1663-1668)
IEEE DOI
1412
Accuracy
BibRef
Tong, Y.[Yan],
Liao, W.H.[Wen-Hui],
Ji, Q.A.[Qi-Ang],
Facial Action Unit Recognition by Exploiting Their Dynamic and Semantic
Relationships,
PAMI(29), No. 10, October 2007, pp. 1683-1699.
IEEE DOI
0710
Integrate relations, dynamics, and appearance.
See also Robust facial feature tracking under varying face pose and facial expression.
BibRef
Li, Y.Q.[Yong-Qiang],
Chen, J.X.[Ji-Xu],
Zhao, Y.P.[Yong-Ping],
Ji, Q.A.[Qi-Ang],
Data-Free Prior Model for Facial Action Unit Recognition,
AffCom(4), No. 2, 2013, pp. 127-141.
IEEE DOI
1307
Computational modeling
BibRef
Wu, S.[Shan],
Wang, S.F.[Shang-Fei],
Pan, B.,
Ji, Q.A.[Qi-Ang],
Deep Facial Action Unit Recognition from Partially Labeled Data,
ICCV17(3971-3979)
IEEE DOI
1802
Boltzmann machines, face recognition,
learning (artificial intelligence), minimisation,
Training data
BibRef
Xiang, X.,
Tran, T.D.,
Linear Disentangled Representation Learning for Facial Actions,
CirSysVideo(28), No. 12, December 2018, pp. 3539-3544.
IEEE DOI
1812
Face, Videos, Computational modeling, Training, Dictionaries,
Face recognition, Training data, Face video, facial expression, low-rank
BibRef
Wang, F.Y.[Feng-Yuan],
Lv, J.H.[Jian-Hua],
Ying, G.[Guode],
Chen, S.H.[Sheng-Hui],
Zhang, C.[Chi],
Facial expression recognition from image based on hybrid features
understanding,
JVCIR(59), 2019, pp. 84-88.
Elsevier DOI
1903
Facial expression recognition, Convolutional neural networks,
Scale-invariant feature transform, Deep-learning feature,
Support vector machines
BibRef
Lifkooee, M.Z.[Masoud Z.],
Soysal, Ö.M.[Ömer M.],
Sekeroglu, K.[Kazim],
Video mining for facial action unit classification using statistical
spatial-temporal feature image and LoG deep convolutional neural
network,
MVA(30), No. 1, February 2019, pp. 41-57.
WWW Link.
1904
BibRef
Meng, Z.,
Han, S.,
Liu, P.,
Tong, Y.,
Improving Speech Related Facial Action Unit Recognition by
Audiovisual Information Fusion,
Cyber(49), No. 9, Sep. 2019, pp. 3293-3306.
IEEE DOI
1906
Visualization, Face recognition, Speech recognition,
Feature extraction, Physiology, Semantics,
speech related facial action unit (AU) recognition
BibRef
Martinez, B.,
Valstar, M.F.,
Jiang, B.,
Pantic, M.,
Automatic Analysis of Facial Actions: A Survey,
AffCom(10), No. 3, July 2019, pp. 325-347.
IEEE DOI
1909
Encoding, Psychology, Face, Face recognition, Computer science,
Databases, Feature extraction, Action Unit analysis, survey
BibRef
Benitez-Quiroz, C.F.[C. Fabian],
Srinivasan, R.[Ramprakash],
Martinez, A.M.[Aleix M.],
Discriminant Functional Learning of Color Features for the
Recognition of Facial Action Units and Their Intensities,
PAMI(41), No. 12, December 2019, pp. 2835-2845.
IEEE DOI
1911
Image color analysis, Face recognition, Video sequences, Videos,
Transforms, Gabor transforms, Facial expressions of emotion,
recognition in still images
BibRef
Zhao, K.,
Chu, W.,
Martinez, A.M.,
Learning Facial Action Units from Web Images with Scalable Weakly
Supervised Clustering,
CVPR18(2090-2099)
IEEE DOI
1812
Gold, Detectors, Training, Semantics, Hidden Markov models,
Noise measurement, Support vector machines
BibRef
Benitez-Quiroz, C.F.[C. Fabian],
Wang, Y.,
Martinez, A.M.[Aleix M.],
Recognition of Action Units in the Wild with Deep Nets and a New
Global-Local Loss,
ICCV17(3990-3999)
IEEE DOI
1802
convergence, face recognition, feature extraction,
image denoising, learning (artificial intelligence), neural nets,
BibRef
Yang, Y.[Yu],
Gao, X.G.[Xiao-Guang],
Guo, Z.G.[Zhi-Gao],
Chen, D.Q.[Da-Qing],
Learning Bayesian networks using the constrained maximum a posteriori
probability method,
PR(91), 2019, pp. 123-134.
Elsevier DOI
1904
Bayesian network, Parameter learning, Expert judgment, Facial action unit
BibRef
Sankaran, N.[Nishant],
Mohan, D.D.[Deen Dayal],
Lakshminarayana, N.N.[Nagashri N.],
Setlur, S.[Srirangaraj],
Govindaraju, V.[Venu],
Domain adaptive representation learning for facial action unit
recognition,
PR(102), 2020, pp. 107127.
Elsevier DOI
2003
Feature fusion, Feature fine-tuning,
Facial action unit recognition, Deep fusion,
Multi-Modal representation learning
BibRef
Lakshminarayana, N.N.[Nagashri N.],
Setlur, S.[Srirangaraj],
Govindaraju, V.[Venu],
Learning Guided Attention Masks for Facial Action Unit Recognition,
FG20(465-472)
IEEE DOI
2102
Gold, Face recognition, Task analysis, Lips, Eyebrows,
Feature extraction, Training, Facial action unit recognition,
spatial attention
BibRef
Zhi, R.C.[Rui-Cong],
Liu, M.Y.[Meng-Yi],
Zhang, D.Z.[De-Zheng],
A comprehensive survey on automatic facial action unit analysis,
VC(36), No. 5, May 2020, pp. 1067-1093.
Springer DOI
2005
Survey, Facial Action Unit.
BibRef
Talele, K.[Kiran],
Tuckley, K.[Kushal],
Facial expression recognition using digital signature feature
descriptor,
SIViP(14), No. 4, June 2020, pp. 701-709.
WWW Link.
2005
BibRef
Ben Tanfous, A.[Amor],
Drira, H.[Hassen],
Ben Amor, B.[Boulbaba],
Sparse Coding of Shape Trajectories for Facial Expression and Action
Recognition,
PAMI(42), No. 10, October 2020, pp. 2594-2607.
IEEE DOI
2009
Manifolds, Shape,
Face recognition, Trajectory, Encoding,
facial expression recognition
BibRef
Taha, B.,
Hayat, M.,
Berretti, S.,
Hatzinakos, D.,
Werghi, N.,
Learned 3D Shape Representations Using Fused Geometrically Augmented
Images: Application to Facial Expression and Action Unit Detection,
CirSysVideo(30), No. 9, September 2020, pp. 2900-2916.
IEEE DOI
2009
Shape, Face,
Task analysis, Computational modeling, Solid modeling,
transfer learning
BibRef
Cao, S.[Shan],
Yao, Y.Q.[Yu-Qian],
An, G.Y.[Gao-Yun],
E2-capsule neural networks for facial expression recognition using
AU-aware attention,
IET-IPR(14), No. 11, September 2020, pp. 2417-2424.
DOI Link
2009
BibRef
Wang, S.,
Peng, G.,
Ji, Q.,
Exploring Domain Knowledge for Facial Expression-Assisted Action Unit
Activation Recognition,
AffCom(11), No. 4, October 2020, pp. 640-652.
IEEE DOI
2011
Gold, Face recognition, Image recognition, Training, Bayes methods,
Probabilistic logic, Databases, AU activation recognition, RBM
BibRef
Shao, Z.W.[Zhi-Wen],
Liu, Z.L.[Zhi-Lei],
Cai, J.F.[Jian-Fei],
Ma, L.Z.[Li-Zhuang],
JÂA-Net: Joint Facial Action Unit Detection and Face Alignment Via
Adaptive Attention,
IJCV(129), No. 2, February 2021, pp. 321-340.
2102
BibRef
Earlier:
Deep Adaptive Attention for Joint Facial Action Unit Detection and Face
Alignment,
ECCV18(XIII: 725-740).
Springer DOI
1810
BibRef
Shao, Z.W.[Zhi-Wen],
Liu, Z.L.[Zhi-Lei],
Cai, J.F.[Jian-Fei],
Wu, Y.S.[Yun-Sheng],
Ma, L.Z.[Li-Zhuang],
Facial Action Unit Detection Using Attention and Relation Learning,
AffCom(13), No. 3, July 2022, pp. 1274-1289.
IEEE DOI
2209
Gold, Feature extraction, Estimation, Face, Deep learning,
Computer science, Learning systems,
facial AU detection
BibRef
Shao, Z.W.[Zhi-Wen],
Zhou, Y.[Yong],
Cai, J.F.[Jian-Fei],
Zhu, H.C.[Han-Cheng],
Yao, R.[Rui],
Facial Action Unit Detection via Adaptive Attention and Relation,
IP(32), 2023, pp. 3354-3366.
IEEE DOI
2307
Gold, Feature extraction, Adaptive systems, Correlation,
Convolutional neural networks, Cognition, Location awareness,
adaptive spatio-temporal graph convolutional network
BibRef
Shao, Z.W.[Zhi-Wen],
Cai, J.F.[Jian-Fei],
Cham, T.J.[Tat-Jen],
Lu, X.Q.[Xue-Quan],
Ma, L.Z.[Li-Zhuang],
Unconstrained Facial Action Unit Detection via Latent Feature Domain,
AffCom(13), No. 2, April 2022, pp. 1111-1126.
IEEE DOI
2206
Gold, Feature extraction, Annotations, Training, Games,
Face recognition, Correlation, Unconstrained facial AU detection,
feature disentanglement
BibRef
Tang, J.S.[Jun-Shu],
Shao, Z.W.[Zhi-Wen],
Ma, L.Z.[Li-Zhuang],
EGGAN: Learning Latent Space for Fine-Grained Expression Manipulation,
MultMedMag(28), No. 3, July 2021, pp. 42-51.
IEEE DOI
2109
Learning systems, Generative adversarial networks, Training data,
Facial recognition, Semantics, Facial features, Generative models,
structured latent space
BibRef
Chen, Y.D.[Yue-Dong],
Song, G.X.[Guo-Xian],
Shao, Z.W.[Zhi-Wen],
Cai, J.F.[Jian-Fei],
Cham, T.J.[Tat-Jen],
Zheng, J.M.[Jian-Min],
GeoConv: Geodesic guided convolution for facial action unit
recognition,
PR(122), 2022, pp. 108355.
Elsevier DOI
2112
Geodesic guided convolution, 3D morphable face model,
Facial action unit recognition, Emotion recognition
BibRef
Li, Y.[Yong],
Zeng, J.[Jiabei],
Shan, S.G.[Shi-Guang],
Learning Representations for Facial Actions From Unlabeled Videos,
PAMI(44), No. 1, January 2022, pp. 302-317.
IEEE DOI
2112
Gold, Face, Feature extraction, Videos, Magnetic heads, Task analysis,
Facial action unit detection, self-supervised learning,
encoder-decoder structure
BibRef
Li, Y.[Yong],
Shan, S.G.[Shi-Guang],
Contrastive Learning of Person-Independent Representations for Facial
Action Unit Detection,
IP(32), 2023, pp. 3212-3225.
IEEE DOI
2306
Gold, Videos, Training, Image reconstruction, Feature extraction,
Faces, Task analysis, Facial action unit detection,
person-independent action unit detection
BibRef
Li, Y.[Yong],
Shan, S.G.[Shi-Guang],
Meta Auxiliary Learning for Facial Action Unit Detection,
AffCom(14), No. 3, July 2023, pp. 2526-2538.
IEEE DOI
2310
BibRef
Sun, X.[Xuran],
Zeng, J.[Jiabei],
Shan, S.G.[Shi-Guang],
Emotion-aware Contrastive Learning for Facial Action Unit Detection,
FG21(01-08)
IEEE DOI
2303
Training, Protocols, Face recognition,
Diversity reception, Gesture recognition
BibRef
Li, Y.[Yong],
Zeng, J.[Jiabei],
Shan, S.G.[Shi-Guang],
Chen, X.L.[Xi-Lin],
Self-Supervised Representation Learning From Videos for Facial Action
Unit Detection,
CVPR19(10916-10925).
IEEE DOI
2002
BibRef
Jia, X.B.[Xi-Bin],
Zhou, Y.H.[Yu-Han],
Li, W.T.[Wei-Ting],
Li, J.H.[Jing-Hua],
Yin, B.C.[Bao-Cai],
Data-aware relation learning-based graph convolution neural network
for facial action unit recognition,
PRL(155), 2022, pp. 100-106.
Elsevier DOI
2203
AU recognition, FACS, GCN, Relation representation, Metric learning
BibRef
Jia, X.B.[Xi-Bin],
Xu, S.W.[Shao-Wu],
Zhou, Y.H.[Yu-Han],
Wang, L.[Luo],
Li, W.T.[Wei-Ting],
A novel dual-channel graph convolutional neural network for facial
action unit recognition,
PRL(166), 2023, pp. 61-68.
Elsevier DOI
2302
FACS, GCN, Metric learning, AU relation,
Dual-channel graph convolutional neural network
BibRef
Romero, A.[Andrés],
León, J.[Juán],
Arbeláez, P.[Pablo],
Multi-view dynamic facial action unit detection,
IVC(122), 2022, pp. 103723.
Elsevier DOI
2205
BibRef
Song, W.Y.[Wen-Yu],
Shi, S.[Shuze],
Wu, Y.X.[Yu-Xuan],
An, G.Y.[Gao-Yun],
Dual-attention guided network for facial action unit detection,
IET-IPR(16), No. 8, 2022, pp. 2157-2170.
DOI Link
2205
BibRef
Hu, Q.P.[Qiao-Ping],
Mei, C.N.[Chuan-Neng],
Jiang, F.[Fei],
Shen, R.M.[Rui-Min],
Zhang, Y.T.[Yi-Tian],
Wang, C.[Ce],
Zhang, J.P.[Jun-Peng],
RFAU: A Database for Facial Action Unit Analysis in Real Classrooms,
AffCom(13), No. 3, July 2022, pp. 1452-1465.
IEEE DOI
2209
Databases, Lighting, Head, Gold, Estimation, Annotations, Education,
Facial action unit, database, classroom, juvenile
BibRef
Gurpinar, C.[Cemal],
Takir, S.[Seyma],
Bicer, E.[Erhan],
Uluer, P.[Pinar],
Arica, N.[Nafiz],
Kose, H.[Hatice],
Contrastive learning based facial action unit detection in children
with hearing impairment for a socially assistive robot platform,
IVC(128), 2022, pp. 104572.
Elsevier DOI
2212
Contrastive learning, Facial action unit detection,
Child-robot interaction, Transfer learning, Domain adaptation, Covariate shift
BibRef
Song, W.Y.[Wen-Yu],
Shi, S.[Shuze],
Dong, Y.[Yu],
An, G.[Gaoyun],
Heterogeneous spatio-temporal relation learning network for facial
action unit detection,
PRL(164), 2022, pp. 268-275.
Elsevier DOI
2212
Facial action unit, Spatio-temporal relation, Graph neural network, Transformer
BibRef
Ntinou, I.[Ioanna],
Sanchez, E.[Enrique],
Bulat, A.[Adrian],
Valstar, M.[Michel],
Tzimiropoulos, G.[Georgios],
A Transfer Learning Approach to Heatmap Regression for Action Unit
Intensity Estimation,
AffCom(14), No. 1, January 2023, pp. 436-450.
IEEE DOI
2303
Gold, Task analysis, Heating systems, Correlation, Transfer learning,
Estimation, Heat transfer,
transfer learning
BibRef
Kumar, H.N.N.[H.N. Naveen],
Kumar, A.S.[A Suresh],
Prasad, M.S.G.[M.S. Guru],
Shah, M.A.[Mohd Asif],
Automatic facial expression recognition combining texture and shape
features from prominent facial regions,
IET-IPR(17), No. 4, 2023, pp. 1111-1125.
DOI Link
2303
automatic facial expression recognition (AFER),
facial local regions, generalization capability,
shape and texture feature fusion
BibRef
Ouafa, C.[Chebah],
Tayeb, L.M.[Laskri Mohamed],
Local directional double ternary coding pattern for facial expression
recognition,
IJCVR(13), No. 3, 2023, pp. 259-284.
DOI Link
2305
BibRef
Fan, Y.[Yingruo],
Lam, J.C.K.[Jacqueline C.K.],
Li, V.O.K.[Victor O.K.],
Distilling Region-Wise and Channel-Wise Deep Structural Facial
Relationships for FAU (DSR-FAU) Intensity Estimation,
AffCom(14), No. 2, April 2023, pp. 986-997.
IEEE DOI
2306
Estimation, Computational modeling, Heating systems,
Feature extraction, Knowledge engineering, Correlation, Training,
teacher-student framework
BibRef
Yan, J.W.[Jing-Wei],
Wang, J.J.[Jing-Jing],
Li, Q.[Qiang],
Wang, C.[Chunmao],
Pu, S.L.[Shi-Liang],
Weakly Supervised Regional and Temporal Learning for Facial Action
Unit Recognition,
MultMed(25), 2023, pp. 1760-1772.
IEEE DOI
2306
Gold, Task analysis, Face recognition, Feature extraction,
Representation learning, Optical imaging, Facial muscles,
weakly supervised learning
BibRef
Shang, Z.Q.[Zi-Qiao],
Du, C.J.[Cong-Ju],
Li, B.Y.[Bing-Yin],
Yan, Z.Q.[Zeng-Qiang],
Yu, L.[Li],
MMA-Net: Multi-view mixed attention mechanism for facial action unit
detection,
PRL(172), 2023, pp. 165-171.
Elsevier DOI
2309
AU Detection, Multi-view partitioning scheme,
Mixed attention mechanism, Cross-view contrastive loss
BibRef
Chen, H.F.[Hai-Feng],
Jiang, D.M.[Dong-Mei],
Zhao, Y.[Yong],
Wei, X.Y.[Xiao-Yong],
Lu, K.[Ke],
Sahli, H.[Hichem],
Region Attentive Action Unit Intensity Estimation With Uncertainty
Weighted Multi-Task Learning,
AffCom(14), No. 3, July 2023, pp. 2033-2047.
IEEE DOI
2310
BibRef
Yang, J.[Jing],
Hristov, Y.[Yordan],
Shen, J.[Jie],
Lin, Y.M.[Yi-Ming],
Pantic, M.[Maja],
Toward Robust Facial Action Units' Detection,
PIEEE(111), No. 10, October 2023, pp. 1198-1214.
IEEE DOI Code:
WWW Link.
2310
BibRef
Churamani, N.[Nikhil],
Kara, O.[Ozgur],
Gunes, H.[Hatice],
Domain-Incremental Continual Learning for Mitigating Bias in Facial
Expression and Action Unit Recognition,
AffCom(14), No. 4, October 2023, pp. 3191-3206.
IEEE DOI
2312
BibRef
Tallec, G.[Gauthier],
Dapogny, A.[Arnaud],
Bailly, K.[Kévin],
Multi-Order Networks for Action Unit Detection,
AffCom(14), No. 4, October 2023, pp. 2876-2888.
IEEE DOI
2312
BibRef
Zhang, W.[Wei],
Li, L.[Lincheng],
Ding, Y.[Yu],
Chen, W.[Wei],
Deng, Z.G.[Zhi-Gang],
Yu, X.[Xin],
Detecting Facial Action Units From Global-Local Fine-Grained
Expressions,
CirSysVideo(34), No. 2, February 2024, pp. 983-994.
IEEE DOI
2402
Gold, Feature extraction, Face recognition, Faces, Training,
Transformers, Action units, facial expression, deep learning
BibRef
Shao, Z.W.[Zhi-Wen],
Zhou, Y.[Yong],
Li, F.[Feiran],
Zhu, H.C.[Han-Cheng],
Liu, B.[Bing],
Joint facial action unit recognition and self-supervised optical flow
estimation,
PRL(181), 2024, pp. 70-76.
Elsevier DOI
2405
Joint framework, Facial AU recognition,
Self-supervised optical flow estimation, Identical mapping constraint
BibRef
Hinduja, S.[Saurabh],
Nourivandi, T.[Tara],
Cohn, J.F.[Jeffrey F.],
Canavan, S.[Shaun],
Time to retire F1-binary score for action unit detection,
PRL(182), 2024, pp. 111-117.
Elsevier DOI
2405
Action units, Data imbalance, Machine learning, F1 score
BibRef
Tellamekala, M.K.[Mani Kumar],
Sümer, Ö.[Ömer],
Schuller, B.W.[Björn W.],
André, E.[Elisabeth],
Giesbrecht, T.[Timo],
Valstar, M.[Michel],
Are 3D Face Shapes Expressive Enough for Recognising Continuous
Emotions and Action Unit Intensities?,
AffCom(15), No. 2, April 2024, pp. 535-548.
IEEE DOI
2406
Face recognition, Shape, Solid modeling, Gold, Task analysis,
Computational modeling, Facial expression analysis,
3D morphable models
BibRef
Li, X.T.[Xiao-Tian],
Zhang, Z.[Zheng],
Zhang, X.[Xiang],
Wang, T.[Taoyue],
Li, Z.H.[Zhi-Hua],
Yang, H.Y.[Hui-Yuan],
Ciftci, U.[Umur],
Ji, Q.[Qiang],
Cohn, J.[Jeffrey],
Yin, L.J.[Li-Jun],
Disagreement Matters: Exploring Internal Diversification for
Redundant Attention in Generic Facial Action Analysis,
AffCom(15), No. 2, April 2024, pp. 620-631.
IEEE DOI
2406
Gold, Transformers, Task analysis, Face recognition, Redundancy,
Feature extraction, Databases, Attention, disagreement, diversity,
transformer
BibRef
Ma, B.[Bowen],
An, R.[Rudong],
Zhang, W.[Wei],
Ding, Y.[Yu],
Zhao, Z.[Zeng],
Zhang, R.S.[Rong-Sheng],
Lv, T.J.[Tang-Jie],
Fan, C.J.[Chang-Jie],
Hu, Z.P.[Zhi-Peng],
Facial Action Unit Detection and Intensity Estimation From
Self-Supervised Representation,
AffCom(15), No. 3, July 2024, pp. 1669-1683.
IEEE DOI
2409
Gold, Estimation, Image reconstruction, Annotations,
Face recognition, Task analysis, Visualization, Facial action unit,
self-supervised pre-training
BibRef
Chen, H.F.[Hai-Feng],
Zhang, P.[Peng],
Guo, C.[Chujia],
Lu, K.[Ke],
Jiang, D.M.[Dong-Mei],
Facial Action Unit Representation Based on Self-Supervised Learning
With Ensembled Priori Constraints,
IP(33), 2024, pp. 5045-5059.
IEEE DOI Code:
WWW Link.
2410
Faces, Gold, Face recognition, Videos, Image reconstruction,
Image color analysis, Lighting, AU representation, average face
BibRef
Yu, J.[Jun],
Wei, Z.H.[Zhi-Hong],
Cai, Z.[Zhongpeng],
Zhao, G.P.[Gong-Peng],
Zhang, Z.[Zerui],
Wang, Y.Q.[Yong-Qi],
Xie, G.[Guochen],
Zhu, J.[Jichao],
Zhu, W.[Wangyuan],
Liu, Q.S.[Qing-Song],
Liang, J.[Jiaen],
Exploring Facial Expression Recognition through Semi-Supervised
Pre-training and Temporal Modeling,
ABAW24(4880-4887)
IEEE DOI
2410
Image recognition, Accuracy, Face recognition, Genetic expression,
Semisupervised learning, Facial Expression Recognition,
Temporal Modeling
BibRef
Jin, S.W.[Shi-Wei],
Wang, Z.[Zhen],
Wang, L.[Lei],
Liu, P.[Peng],
Bi, N.[Ning],
Nguyen, T.[Truong],
AUEditNet: Dual-Branch Facial Action Unit Intensity Manipulation with
Implicit Disentanglement,
CVPR24(2104-2113)
IEEE DOI
2410
Gold, Accuracy, Annotations, Face recognition, Pipelines, Estimation
BibRef
Yu, J.[Jun],
Zhang, Z.[Zerui],
Wei, Z.H.[Zhi-Hong],
Zhao, G.[Gongpeng],
Cai, Z.[Zhongpeng],
Wang, Y.Q.[Yong-Qi],
Xie, G.[Guochen],
Zhu, J.[Jichao],
Zhu, W.[Wangyuan],
Liu, Q.S.[Qing-Song],
Liang, J.[Jiaen],
AUD-TGN: Advancing Action Unit Detection with Temporal Convolution
and GPT-2 in Wild Audiovisual Contexts,
ABAW24(4814-4821)
IEEE DOI
2410
Visualization, Gold, Accuracy, Feature extraction, Data models,
Robustness, Convolutional neural networks
BibRef
Savchenko, A.V.[Andrey V.],
Sidorova, A.P.[Anna P.],
EmotiEffNet and Temporal Convolutional Networks in Video-based Facial
Expression Recognition and Action Unit Detection,
ABAW24(4849-4859)
IEEE DOI
2410
Measurement, Gold, Visualization, Face recognition, Transformers,
Feature extraction, Facial expression recognition,
HSEmotion library
BibRef
Wang, Z.[Zihan],
Song, S.Y.[Si-Yang],
Luo, C.[Cheng],
Deng, S.[Songhe],
Xie, W.C.[Wei-Cheng],
Shen, L.L.[Lin-Lin],
Multi-Scale Dynamic and Hierarchical Relationship Modeling for Facial
Action Units Recognition,
CVPR24(1270-1280)
IEEE DOI Code:
WWW Link.
2410
Gold, Adaptation models, Graphical models, Codes, Adaptive systems,
Computational modeling
BibRef
Belharbi, S.[Soufiane],
Pedersoli, M.[Marco],
Koerich, A.L.[Alessandro Lameiras],
Bacon, S.[Simon],
Granger, E.[Eric],
Guided Interpretable Facial Expression Recognition via Spatial Action
Unit Cues,
FG24(1-10)
IEEE DOI Code:
WWW Link.
2408
Training, Heating systems, Location awareness, Gold, Visualization,
Codes, Face recognition
BibRef
Yin, Y.F.[Yu-Feng],
Chang, D.[Di],
Song, G.X.[Guo-Xian],
Sang, S.[Shen],
Zhi, T.C.[Tian-Cheng],
Liu, J.[Jing],
Luo, L.J.[Lin-Jie],
Soleymani, M.[Mohammad],
FG-Net: Facial Action Unit Detection with Generalizable Pyramidal
Features,
WACV24(6087-6096)
IEEE DOI Code:
WWW Link.
2404
Training, Heating systems, Gold, Costs, Codes, Benchmark testing,
Algorithms, Biometrics, face, gesture, body pose
BibRef
Zhang, X.[Xiang],
Yang, H.Y.[Hui-Yuan],
Wang, T.[Taoyue],
Li, X.T.[Xiao-Tian],
Yin, L.J.[Li-Jun],
Multimodal Channel-Mixing: Channel and Spatial Masked AutoEncoder on
Facial Action Unit Detection,
WACV24(6065-6074)
IEEE DOI
2404
Representation learning, Gold, Redundancy, Feature extraction,
Robustness, Data models, Algorithms, Biometrics, face, gesture,
Image recognition and understanding
BibRef
Li, X.T.[Xiao-Tian],
Wang, T.[Taoyue],
Zhao, G.[Geran],
Zhang, X.[Xiang],
Kang, X.[Xi],
Yin, L.J.[Li-Jun],
ReactioNet: Learning High-order Facial Behavior from Universal
Stimulus-Reaction by Dyadic Relation Reasoning,
ICCV23(20717-20728)
IEEE DOI
2401
BibRef
Li, X.T.[Xiao-Tian],
Zhang, X.[Xiang],
Wang, T.[Taoyue],
Yin, L.J.[Li-Jun],
Knowledge-Spreader: Learning Semi-Supervised Facial Action Dynamics
by Consistifying Knowledge Granularity,
ICCV23(20922-20932)
IEEE DOI
2401
BibRef
Li, X.[Ximan],
Deng, W.H.[Wei-Hong],
Li, S.[Shan],
Li, Y.[Yong],
Compound Expression Recognition In-the-wild with AU-assisted Meta
Multi-task Learning,
ABAW23(5735-5744)
IEEE DOI
2309
BibRef
Savchenko, A.V.[Andrey V.],
EmotiEffNets for Facial Processing in Video-based Valence-Arousal
Prediction, Expression Classification and Action Unit Detection,
ABAW23(5716-5724)
IEEE DOI
2309
BibRef
Vu, N.T.[Ngoc Tu],
Huynh, V.T.[Van Thong],
Nguyen, T.N.[Trong Nghia],
Kim, S.H.[Soo-Hyung],
Ensemble Spatial and Temporal Vision Transformer for Action Units
Detection,
ABAW23(5770-5776)
IEEE DOI
2309
BibRef
Yu, J.[Jun],
Li, R.[Renda],
Cai, Z.[Zhongpeng],
Zhao, G.[Gongpeng],
Xie, G.[Guochen],
Zhu, J.[Jichao],
Zhu, W.Y.[Wang-Yuan],
Ling, Q.[Qiang],
Wang, L.[Lei],
Wang, C.[Cong],
Qiu, L.[Luyu],
Zheng, W.[Wei],
Local Region Perception and Relationship Learning Combined with
Feature Fusion for Facial Action Unit Detection,
ABAW23(5785-5792)
IEEE DOI
2309
BibRef
Deng, Y.Y.[Yuan-Yuan],
Liu, X.L.[Xiao-Long],
Meng, L.[Liyu],
Jiang, W.Q.[Wen-Qiang],
Dong, Y.Q.[You-Qiang],
Liu, C.[Chuanhe],
Multi-modal Information Fusion for Action Unit Detection in the Wild,
ABAW23(5855-5862)
IEEE DOI
2309
BibRef
Wang, Z.H.[Zi-Han],
Song, S.Y.[Si-Yang],
Luo, C.[Cheng],
Zhou, Y.Z.[Yu-Zhi],
Wu, S.[Shiling],
Xie, W.C.[Wei-Cheng],
Shen, L.L.[Lin-Lin],
Spatial-Temporal Graph-Based AU Relationship Learning for Facial
Action Unit Detection,
ABAW23(5899-5907)
IEEE DOI
2309
BibRef
Cui, Z.J.[Zi-Jun],
Kuang, C.Y.[Chen-Yi],
Gao, T.[Tian],
Talamadupula, K.[Kartik],
Ji, Q.[Qiang],
Biomechanics-Guided Facial Action Unit Detection Through Force
Modeling,
CVPR23(8694-8703)
IEEE DOI
2309
BibRef
Nguyen, D.K.[Dang-Khanh],
Pant, S.[Sudarshan],
Ho, N.H.[Ngoc-Huynh],
Lee, G.S.[Guee-Sang],
Kim, S.H.[Soo-Hyung],
Yang, H.J.[Hyung-Jeong],
Affective Behavior Analysis Using Action Unit Relation Graph and
Multi-task Cross Attention,
ABAWE22(132-142).
Springer DOI
2304
BibRef
Zhang, X.[Xiang],
Yin, L.J.[Li-Jun],
Multi-Modal Learning for AU Detection Based on Multi-Head Fused
Transformers,
FG21(1-8)
IEEE DOI
2303
Representation learning, Databases, Fuses, Semantics,
Gesture recognition, Transformers
BibRef
Kawamura, R.[Ryosuke],
Murase, K.[Kentaro],
Facial Action Unit Detection Based on Teacher-Student Learning
Framework for Partially Occluded Facial Images,
FG21(01-05)
IEEE DOI
2303
Databases, Face recognition, Glass,
Gesture recognition, Feature extraction
BibRef
Li, X.T.[Xiao-Tian],
Li, Z.H.[Zhi-Hua],
Yang, H.Y.[Hui-Yuan],
Zhao, G.[Geran],
Yin, L.J.[Li-Jun],
Your 'Attention' Deserves Attention: A Self-Diversified Multi-Channel
Attention for Facial Action Analysis,
FG21(01-08)
IEEE DOI
2303
Representation learning, Visualization, Correlation,
Uncertainty, Databases, Face recognition
BibRef
Ge, X.[Xuri],
Wan, P.C.[Peng-Cheng],
Han, H.[Hu],
Jose, J.M.[Joemon M.],
Ji, Z.L.[Zhi-Long],
Wu, Z.Q.[Zhong-Qin],
Liu, X.[Xiao],
Local Global Relational Network for Facial Action Units Recognition,
FG21(01-08)
IEEE DOI
2303
Shape, Face recognition, Gesture recognition,
Benchmark testing, Feature extraction
BibRef
Yin, Y.F.[Yu-Feng],
Lu, L.[Liupei],
Wu, Y.Z.[Yi-Zhen],
Soleymani, M.[Mohammad],
Self-Supervised Patch Localization for Cross-Domain Facial Action
Unit Detection,
FG21(1-8)
IEEE DOI
2303
Location awareness, Solid modeling,
Face recognition, Training data, Computer architecture
BibRef
Saito, J.Y.[Jun-Ya],
Yamamoto, T.[Takahisa],
Uchida, A.[Akiyoshi],
Mi, X.Y.[Xiao-Yu],
Murase, K.[Kentaro],
Facial Action Unit Recognition Using Pseudo-Intensities and their
Transformation,
FG21(01-08)
IEEE DOI
2303
Correlation coefficient, Face recognition,
Education, Transforms, Medical services
BibRef
Yang, J.[Jing],
Shen, J.[Jie],
Lin, Y.M.[Yi-Ming],
Hristov, Y.[Yordan],
Pantic, M.[Maja],
FAN-Trans:
Online Knowledge Distillation for Facial Action Unit Detection,
WACV23(6008-6016)
IEEE DOI
2302
Training, Gold, Correlation, Convolution, Computational modeling,
Transformers, Algorithms: Biometrics, face, gesture, body pose
BibRef
Liu, Y.[Yang],
Zhang, X.M.[Xing-Ming],
Kauttonen, J.[Janne],
Zhao, G.Y.[Guo-Ying],
Uncertain Label Correction via Auxiliary Action Unit Graphs for
Facial Expression Recognition,
ICPR22(777-783)
IEEE DOI
2212
Training, Gold, Image recognition, Uncertainty, Annotations,
Face recognition, Semantics
BibRef
Hoai, D.L.[Duy Le],
Lim, E.[Eunchae],
Choi, E.[Eunbin],
Kim, S.[Sieun],
Pant, S.[Sudarshan],
Lee, G.S.[Guee-Sang],
Kim, S.H.[Soo-Huyng],
Yang, H.J.[Hyung-Jeong],
An Attention-based Method for Multi-label Facial Action Unit
Detection,
ABAW22(2453-2458)
IEEE DOI
2210
Human computer interaction, Gold,
Computational modeling, Feature extraction, Encoding
BibRef
Wang, L.F.[Ling-Feng],
Qi, J.[Jin],
Cheng, J.[Jian],
Suzuki, K.[Kenji],
Action unit detection by exploiting spatial-temporal and label-wise
attention with transformer,
ABAW22(2469-2474)
IEEE DOI
2210
Visualization, Gold, Correlation, Convolution,
Computational modeling, Predictive models, Transformers
BibRef
Kollias, D.[Dimitrios],
Multi-Label Compound Expression Recognition:
C-EXPR Database and Network,
CVPR23(5589-5598)
IEEE DOI
2309
BibRef
Kollias, D.[Dimitrios],
Tzirakis, P.[Panagiotis],
Baird, A.[Alice],
Cowen, A.[Alan],
Zafeiriou, S.[Stefanos],
ABAW: Valence-Arousal Estimation, Expression Recognition, Action Unit
Detection and Emotional Reaction Intensity Estimation Challenges,
ABAW23(5889-5898)
IEEE DOI
2309
BibRef
Kollias, D.[Dimitrios],
ABAW: Valence-Arousal Estimation, Expression Recognition, Action Unit
Detection & Multi-Task Learning Challenges,
ABAW22(2327-2335)
IEEE DOI
2210
Measurement, Databases, Estimation, Benchmark testing, Multitasking
BibRef
Jiang, W.Q.[Wen-Qiang],
Wu, Y.N.[Yan-Nan],
Qiao, F.S.[Feng-Sheng],
Meng, L.[Liyu],
Deng, Y.Y.[Yuan-Yuan],
Liu, C.H.[Chuan-He],
Model Level Ensemble for Facial Action Unit Recognition at the 3rd
ABAW Challenge,
ABAW22(2336-2343)
IEEE DOI
2210
Gold, Face recognition, Feature extraction,
Behavioral sciences, Task analysis
BibRef
Tang, Y.[Yang],
Zeng, W.D.[Wang-Ding],
Zhao, D.F.[Da-Fei],
Zhang, H.G.[Hong-Gang],
PIAP-DF: Pixel-Interested and Anti Person-Specific Facial Action Unit
Detection Net with Discrete Feedback Learning,
ICCV21(12879-12888)
IEEE DOI
2203
Training, Gold, Computational modeling, Learning automata,
Psychology, Production, Semisupervised learning,
Recognition and classification
BibRef
Bishay, M.[Mina],
Ghoneim, A.[Ahmed],
Ashraf, M.[Mohamed],
Mavadati, M.[Mohammad],
Choose Settings Carefully: Comparing Action Unit Detection At
Different Settings Using A Large-Scale Dataset,
ICIP21(2883-2887)
IEEE DOI
2201
Training, Gold, Image resolution, Image color analysis, Gray-scale,
Data models, AU detection, CNNs, Preprocessing settings,
Training set size
BibRef
Jampour, M.[Mahdi],
Sardar, A.K.[Amin Karimi],
Facial Expression Recognition using Multi-Feature Concatenation of
Local Face Components and Hierarchical SVM,
IPRIA21(1-6)
IEEE DOI
2201
Support vector machines, Histograms, Image recognition,
Image analysis, Face recognition, Mouth, Lighting, Hierarchical SVM
BibRef
Jin, Y.[Yue],
Zheng, T.Q.[Tian-Qing],
Gao, C.[Chao],
Xu, G.Q.[Guo-Qiang],
MTMSN: Multi-Task and Multi-Modal Sequence Network for Facial Action
Unit and Expression Recognition,
ABAW21(3590-3595)
IEEE DOI
2112
Gold, Visualization, Annotations, Face recognition,
Computational modeling, Conferences
BibRef
Jacob, G.M.[Geethu Miriam],
Stenger, B.[Björn],
Facial Action Unit Detection With Transformers,
CVPR21(7676-7685)
IEEE DOI
2111
Correlation, Face recognition, Taxonomy, Training data,
Computer architecture, Muscles, Transformers
BibRef
Yang, H.Y.[Hui-Yuan],
Yin, L.J.[Li-Jun],
Zhou, Y.[Yi],
Gu, J.X.[Jiu-Xiang],
Exploiting Semantic Embedding and Visual Feature for Facial Action
Unit Detection,
CVPR21(10477-10486)
IEEE DOI
2111
Gold, Visualization, Databases, Semantics,
Feature extraction
BibRef
Song, T.F.[Teng-Fei],
Cui, Z.J.[Zi-Jun],
Zheng, W.M.[Wen-Ming],
Ji, Q.[Qiang],
Hybrid Message Passing with Performance-Driven Structures for Facial
Action Unit Detection,
CVPR21(6263-6272)
IEEE DOI
2111
Gold, Monte Carlo methods, Databases,
Message passing, Neural networks, Markov processes
BibRef
Tang, Y.[Yang],
Chen, S.[Shuang],
Zhang, H.G.[Hong-Gang],
Wang, G.[Gang],
Yang, R.[Rui],
MRP-Net: A Light Multiple Region Perception Neural Network for
Multi-label AU Detection,
ICPR21(1844-1851)
IEEE DOI
2105
Performance evaluation, Learning systems, Deep learning, Gold,
Neural networks, Psychology, Feature extraction
BibRef
Li, Z.H.[Zhi-Hua],
Zhang, Z.[Zheng],
Yin, L.J.[Li-Jun],
SAT-Net: Self-Attention and Temporal Fusion for Facial Action Unit
Detection,
ICPR21(5036-5043)
IEEE DOI
2105
Training, Correlation, Databases, Fuses, Knowledge based systems, Focusing
BibRef
Sanchez, E.[Enrique],
Bulat, A.[Adrian],
Zaganidis, A.[Anestis],
Tzimiropoulos, G.[Georgios],
Semi-supervised Facial Action Unit Intensity Estimation with
Contrastive Learning,
ACCV20(V:104-120).
Springer DOI
2103
BibRef
Yang, H.Y.[Hui-Yuan],
Yin, L.J.[Li-Jun],
Re-net: A Relation Embedded Deep Model for AU Occurrence and Intensity
Estimation,
ACCV20(V:137-153).
Springer DOI
2103
BibRef
Hinduja, S.,
Canavan, S.,
Real-time Action Unit Intensity Detection,
FG20(916-916)
IEEE DOI
2102
Gold, Real-time systems, Training data, Neurons, Machine learning,
Face detection, Convolutional neural networks
BibRef
Yang, H.,
Wang, T.,
Yin, L.,
Set Operation Aided Network for Action Units Detection,
FG20(229-235)
IEEE DOI
2102
Feature extraction, Gold, Training, Hidden Markov models,
Data models, Task analysis, Face recognition, deep neural networks
BibRef
Rieger, I.[Ines],
Pahl, J.[Jaspar],
Finzel, B.[Bettina],
Schmid, U.[Ute],
CorrLoss: Integrating Co-Occurrence Domain Knowledge for Affect
Recognition,
ICPR22(798-804)
IEEE DOI
2212
Knowledge engineering, Training, Face recognition, Neural networks, Testing
BibRef
Rieger, I.[Ines],
Pahl, J.[Jaspar],
Seuss, D.,
Unique Class Group Based Multi-Label Balancing Optimizer for Action
Unit Detection,
FG20(619-623)
IEEE DOI
2102
Training, Face recognition, Videos, Testing, Optimization, Gold,
Task analysis, Multi label, FACS, Multi label Balancing, Deep Learning
BibRef
Wörtwein, T.,
Morency, L.P.,
Simple and Effective Approaches for Uncertainty Prediction in Facial
Action Unit Intensity Regression,
FG20(452-456)
IEEE DOI
2102
Uncertainty, Gold, Predictive models, Estimation, Training,
Task analysis, Computational modeling
BibRef
Corneanu, C.,
Madadi, M.,
Escalera, S.,
Martinez, A.,
Explainable Early Stopping for Action Unit Recognition,
FG20(693-699)
IEEE DOI
2102
Face recognition, Training, Gold, Topology, Network topology,
Standards, Monitoring, deep learning, facial AU recognition,
explainable deep learning
BibRef
Ji, S.,
Wang, K.,
Peng, X.,
Yang, J.,
Zeng, Z.,
Qiao, Y.,
Multiple Transfer Learning and Multi-label Balanced Training
Strategies for Facial AU Detection In the Wild,
EmotioNet20(1657-1661)
IEEE DOI
2008
Task analysis, Feature extraction, Face recognition, Training,
Mathematical model, Muscles
BibRef
Werner, P.,
Saxen, F.,
Al-Hamadi, A.,
Facial Action Unit Recognition in the Wild with Multi-Task CNN
Self-Training for the EmotioNet Challenge,
EmotioNet20(1649-1652)
IEEE DOI
2008
Training, Head, Manuals, Optimized production technology, Neurons
BibRef
Liu, Z.L.[Zhi-Lei],
Liu, D.Y.[Di-Yi],
Wu, Y.P.[Yun-Peng],
Region Based Adversarial Synthesis of Facial Action Units,
MMMod20(II:514-526).
Springer DOI
2003
BibRef
Liu, Z.L.[Zhi-Lei],
Dong, J.H.[Jia-Hui],
Zhang, C.C.[Cui-Cui],
Wang, L.B.[Long-Biao],
Dang, J.W.[Jian-Wu],
Relation Modeling with Graph Convolutional Networks for Facial Action
Unit Detection,
MMMod20(II:489-501).
Springer DOI
2003
BibRef
Hong, J.[Joanna],
Lee, H.J.[Hong Joo],
Kim, Y.[Yelin],
Ro, Y.M.[Yong Man],
Face Tells Detailed Expression: Generating Comprehensive Facial
Expression Sentence Through Facial Action Units,
MMMod20(II:100-111).
Springer DOI
2003
BibRef
Zhang, Y.[Yong],
Wu, B.Y.[Bao-Yuan],
Dong, W.M.[Wei-Ming],
Li, Z.F.[Zhi-Feng],
Liu, W.[Wei],
Hu, B.G.[Bao-Gang],
Ji, Q.A.[Qi-Ang],
Joint Representation and Estimator Learning for Facial Action Unit
Intensity Estimation,
CVPR19(3452-3461).
IEEE DOI
2002
BibRef
Niu, X.S.[Xue-Song],
Han, H.[Hu],
Yang, S.F.[Song-Fan],
Huang, Y.[Yan],
Shan, S.G.[Shi-Guang],
Local Relationship Learning With Person-Specific Shape Regularization
for Facial Action Unit Detection,
CVPR19(11909-11918).
IEEE DOI
2002
BibRef
Liu, P.,
Zhang, Z.,
Yang, H.,
Yin, L.,
Multi-Modality Empowered Network for Facial Action Unit Detection,
WACV19(2175-2184)
IEEE DOI
1904
face recognition, image colour analysis, image reconstruction,
infrared imaging, learning (artificial intelligence),
Color
BibRef
Mei, C.,
Jiang, F.,
Shen, R.,
Hu, Q.,
Region and Temporal Dependency Fusion for Multi-label Action Unit
Detection,
ICPR18(848-853)
IEEE DOI
1812
Gold, Feature extraction, Videos, Logic gates, Face, Correlation, Fuses
BibRef
Zhang, Y.,
Dong, W.,
Hu, B.,
Ji, Q.,
Weakly-Supervised Deep Convolutional Neural Network Learning for
Facial Action Unit Intensity Estimation,
CVPR18(2314-2323)
IEEE DOI
1812
Gold, Estimation, Training, Face, Image segmentation, Neural networks
BibRef
Song, T.F.[Teng-Fei],
Cui, Z.J.[Zi-Jun],
Wang, Y.R.[Yu-Ru],
Zheng, W.M.[Wen-Ming],
Ji, Q.[Qiang],
Dynamic Probabilistic Graph Convolution for Facial Action Unit
Intensity Estimation,
CVPR21(4843-4852)
IEEE DOI
2111
Convolution, Computational modeling, Semantics, Estimation,
Probabilistic logic, Feature extraction
BibRef
Zhang, Y.[Yong],
Zhao, R.[Rui],
Dong, W.M.[Wei-Ming],
Hu, B.G.[Bao-Gang],
Ji, Q.[Qiang],
Bilateral Ordinal Relevance Multi-instance Regression for Facial
Action Unit Intensity Estimation,
CVPR18(7034-7043)
IEEE DOI
1812
Estimation, Data models, Databases, Training, Image segmentation,
Pattern recognition
BibRef
Ertugrul, I.O.,
Jeni, L.A.,
Cohn, J.F.,
FACSCaps: Pose-Independent Facial Action Coding with Capsules,
AMFG18(2211-221109)
IEEE DOI
1812
Gold, Image reconstruction, Computer architecture, Face, Training,
Feature extraction, Routing
BibRef
Han, S.,
Meng, Z.,
Li, Z.,
O'Reilly, J.,
Cai, J.,
Wang, X.,
Tong, Y.,
Optimizing Filter Size in Convolutional Neural Networks for Facial
Action Unit Recognition,
CVPR18(5070-5078)
IEEE DOI
1812
Convolution, Face recognition, Feature extraction, Interpolation,
Gold, Training, Databases
BibRef
Corneanu, C.[Ciprian],
Madadi, M.[Meysam],
Escalera, S.[Sergio],
Deep Structure Inference Network for Facial Action Unit Recognition,
ECCV18(XII: 309-324).
Springer DOI
1810
BibRef
Albiero, V.,
Bellon, O.R.P.,
Silva, L.,
Multi-Label Action Unit Detection on Multiple Head Poses with Dynamic
Region Learning,
ICIP18(2037-2041)
IEEE DOI
1809
Databases, Gold, Face, Training, Feature extraction, Robustness,
Facial expression analysis, action unit detection, deep learning,
transfer-learning
BibRef
Li, L.,
Baltrusaitis, T.,
Sun, B.,
Morency, L.P.,
Edge Convolutional Network for Facial Action Intensity Estimation,
FG18(171-178)
IEEE DOI
1806
Detectors, Estimation, Generators, Gold, Image edge detection, Kernel,
Logic gates, Conolutional network, Facial action unit, Facial expression
BibRef
Dhamija, S.,
Boult, T.E.,
Automated Action Units Vs. Expert Raters: Face off,
WACV18(259-268)
IEEE DOI
1806
crowdsourcing, human computer interaction,
learning (artificial intelligence), Automated Action Units,
Training
BibRef
Tran, D.L.,
Walecki, R.,
Rudovic, O.,
Eleftheriadis, S.,
Schuller, B.,
Pantic, M.,
DeepCoder: Semi-Parametric Variational Autoencoders for Automatic
Facial Action Coding,
ICCV17(3209-3218)
IEEE DOI
1802
Gaussian processes, emotion recognition, face recognition,
feature extraction, image representation,
Image reconstruction
BibRef
Chang, W.Y.,
Hsu, S.H.,
Chien, J.H.,
FATAUVA-Net: An Integrated Deep Learning Framework for Facial
Attribute Recognition, Action Unit Detection, and Valence-Arousal
Estimation,
FaceWild17(1963-1971)
IEEE DOI
1709
Emotion recognition, Estimation, Face, Face recognition,
Feature extraction, Gold, Machine, learning
BibRef
Batista, J.C.,
Albiero, V.,
Bellon, O.R.P.,
Silva, L.,
AUMPNet: Simultaneous Action Units Detection and Intensity Estimation
on Multipose Facial Images Using a Single Convolutional Neural
Network,
FG17(866-871)
IEEE DOI
1707
Databases, Estimation, Face, Gold, Magnetic heads, Optimization
BibRef
Zhou, Y.,
Pi, J.,
Shi, B.E.,
Pose-Independent Facial Action Unit Intensity Regression Based on
Multi-Task Deep Transfer Learning,
FG17(872-877)
IEEE DOI
1707
Estimation, Face, Face recognition, Gold, Hidden Markov models,
Neural networks, Training
BibRef
Tang, C.G.[Chuan-Gao],
Zheng, W.M.[Wen-Ming],
Yan, J.W.[Jing-Wei],
Li, Q.[Qiang],
Li, Y.[Yang],
Zhang, T.[Tong],
Cui, Z.[Zhen],
View-Independent Facial Action Unit Detection,
FG17(878-882)
IEEE DOI
1707
Face, Feature extraction, Gold, Image segmentation, Lips,
Neural networks, Training
BibRef
He, J.,
Li, D.,
Yang, B.,
Cao, S.,
Sun, B.,
Yu, L.,
Multi View Facial Action Unit Detection Based on CNN and BLSTM-RNN,
FG17(848-853)
IEEE DOI
1707
Face, Face recognition, Feature extraction, Gold, Kernel,
Machine learning, Training
BibRef
Li, X.,
Chen, S.,
Jin, Q.,
Facial Action Units Detection with Multi-Features and -AUs Fusion,
FG17(860-865)
IEEE DOI
1707
Face, Face recognition, Feature extraction, Gold, Radio frequency,
Support vector machines, Training
BibRef
Amirian, M.,
Kächele, M.[Markus],
Palm, G.,
Schwenker, F.[Friedhelm],
Support Vector Regression of Sparse Dictionary-Based Features for
View-Independent Action Unit Intensity Estimation,
FG17(854-859)
IEEE DOI
1707
Dictionaries, Encoding, Estimation, Face, Gold,
Matching pursuit algorithms, Shape
BibRef
Kachele, M.[Markus],
Schwenker, F.[Friedhelm],
Cascaded Fusion of Dynamic, Spatial, and Textural Feature Sets for
Person-Independent Facial Emotion Recognition,
ICPR14(4660-4665)
IEEE DOI
1412
Computer architecture
BibRef
Kim, E.,
Vangala, S.,
Deep Action Unit classification using a binned intensity loss and
semantic context model,
ICPR16(4136-4141)
IEEE DOI
1705
Convolutional codes, Entropy, Feature extraction, Gold,
Neural networks, Semantics, Training
BibRef
Tosér, Z.[Zoltán],
Jeni, L.A.[László A.],
Lorincz, A.[András],
Cohn, J.F.[Jeffrey F.],
Deep Learning for Facial Action Unit Detection Under Large Head Poses,
ChaLearn16(III: 359-371).
Springer DOI
1611
BibRef
Jaiswal, S.,
Valstar, M.F.,
Deep learning the dynamic appearance and shape of facial action units,
WACV16(1-8)
IEEE DOI
1606
Computer architecture
BibRef
Werner, P.[Philipp],
Saxen, F.[Frerk],
Al-Hamadi, A.[Ayoub],
Handling Data Imbalance in Automatic Facial Action Intensity Estimation,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Ma, S.[Shuang],
McDuff, D.J.[Daniel J.],
Song, Y.[Yale],
Unpaired Image-to-Speech Synthesis With Multimodal Information
Bottleneck,
ICCV19(7597-7606)
IEEE DOI
2004
image processing, learning (artificial intelligence),
speech synthesis, text analysis, image-to-speech synthesis, Transforms
BibRef
Song, Y.,
McDuff, D.J.,
Vasisht, D.,
Kapoor, A.,
Exploiting sparsity and co-occurrence structure for action unit
recognition,
FG15(1-8)
IEEE DOI
1508
Bayes methods
BibRef
Chen, J.[Junkai],
Chen, Z.[Zenghai],
Chi, Z.[Zheru],
Fu, H.[Hong],
Recognition of Facial Action Units with Action Unit Classifiers and an
Association Network,
CV4AC14(672-683).
Springer DOI
1504
BibRef
Bingol, D.[Deniz],
Celik, T.[Turgay],
Omlin, C.W.[Christian W.],
Vadapalli, H.B.[Hima B.],
Facial action unit intensity estimation using rotation invariant
features and regression analysis,
ICIP14(1381-1385)
IEEE DOI
1502
BibRef
Han, S.Z.[Shi-Zhong],
Meng, Z.[Zibo],
Liu, P.[Ping],
Tong, Y.[Yan],
Facial grid transformation: A novel face registration approach for
improving facial action unit recognition,
ICIP14(1415-1419)
IEEE DOI
1502
Databases
BibRef
Zhang, X.[Xiao],
Mahoor, M.H.[Mohammad H.],
Simultaneous Detection of Multiple Facial Action Units via
Hierarchical Task Structure Learning,
ICPR14(1863-1868)
IEEE DOI
1412
Databases
BibRef
Jiang, B.[Bihan],
Martinez, B.[Brais],
Pantic, M.[Maja],
Parametric temporal alignment for the detection of facial action
temporal segments,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Khademi, M.[Mahmoud],
Morency, L.P.[Louis-Philippe],
Relative facial action unit detection,
WACV14(1090-1095)
IEEE DOI
1406
Databases
BibRef
Hsu, G.S.[Gee-Sern],
Yeh, S.M.[Shang-Min],
Heterogeneous feature code for expression recognition,
ICIP13(2407-2411)
IEEE DOI
1402
Expression recognition;facial features;feature extraction
BibRef
Yuce, A.,
Sorci, M.,
Thiran, J.P.,
Improved local binary pattern based action unit detection using
morphological and bilateral filters,
FG13(1-7)
IEEE DOI
1309
face recognition
BibRef
Yang, S.F.[Song-Fan],
An, L.[Le],
Bhanu, B.,
Thakoor, N.,
Improving action units recognition using dense flow-based face
registration in video,
FG13(1-8)
IEEE DOI
1309
affine transforms
BibRef
Liu, M.Y.[Meng-Yi],
Li, S.X.[Shao-Xin],
Shan, S.G.[Shi-Guang],
Chen, X.L.[Xi-Lin],
AU-aware Deep Networks for facial expression recognition,
FG13(1-6)
IEEE DOI
1309
Boltzmann machines
BibRef
Mavadati, S.M.[S. Mohammad],
Mahoor, M.H.[Mohammad H.],
Bartlett, K.[Kevin],
Trinh, P.[Philip],
Automatic detection of non-posed facial action units,
ICIP12(1817-1820).
IEEE DOI
1302
BibRef
Selpi,
Wilhelm, T.[Torsten],
Jansson, M.[Marcus],
Hagstrom, L.[Li],
Brandin, N.[Niklas],
Andersson, M.[Magnus],
Gronvall, J.F.[John-Fredrik],
Automatic real-time FACS-coder to anonymise drivers in eye tracker
videos,
CVVT11(1986-1993).
IEEE DOI
1201
BibRef
Cosker, D.[Darren],
Krumhuber, E.[Eva],
Hilton, A.[Adrian],
A FACS valid 3D dynamic action unit database with applications to 3D
dynamic morphable facial modeling,
ICCV11(2296-2303).
IEEE DOI
1201
BibRef
Gehrig, T.[Tobias],
Al-Halah, Z.,
Ekenel, H.K.[Hazim Kemal],
Stiefelhagen, R.,
Action unit intensity estimation using hierarchical partial least
squares,
FG15(1-6)
IEEE DOI
1508
Gaussian processes
BibRef
Gehrig, T.[Tobias],
Ekenel, H.K.[Hazim Kemal],
Facial action unit detection using kernel partial least squares,
BenchFace11(2092-2099).
IEEE DOI
1201
BibRef
And:
A common framework for real-time emotion recognition and facial action
unit detection,
CVPR4HB11(1-6).
IEEE DOI
1106
BibRef
Jiang, B.[Bihan],
Martinez, B.[Brais],
Valstar, M.F.[Michel F.],
Pantic, M.[Maja],
Decision Level Fusion of Domain Specific Regions for Facial Action
Recognition,
ICPR14(1776-1781)
IEEE DOI
1412
Face; Feature extraction; Gold; Mouth; Standards; Training; Vectors
BibRef
Jiang, B.[Bihan],
Valstar, M.F.[Michel F.],
Pantic, M.[Maja],
Action unit detection using sparse appearance descriptors in space-time
video volumes,
FG11(314-321).
IEEE DOI
1103
BibRef
Mahoor, M.H.[Mohammad H.],
Zhou, M.[Mu],
Veon, K.L.[Kevin L.],
Mavadati, S.M.[S. Mohammad],
Cohn, J.F.[Jeffrey F.],
Facial action unit recognition with sparse representation,
FG11(336-342).
IEEE DOI
1103
BibRef
Simon, T.[Tomas],
Nguyen, M.H.[Minh Hoai],
de la Torre, F.[Fernando],
Cohn, J.F.[Jeffrey F.],
Action unit detection with segment-based SVMs,
CVPR10(2737-2744).
IEEE DOI
1006
BibRef
Zor, C.[Cemre],
Windeatt, T.[Terry],
Upper Facial Action Unit Recognition,
ICB09(239-248).
Springer DOI
0906
BibRef
Windeatt, T.[Terry],
Dias, K.[Kaushala],
Ensemble Approaches to Facial Action Unit Classification,
CIARP08(551-559).
Springer DOI
0809
BibRef
Zhang, L.[Lei],
Tong, Y.[Yan],
Ji, Q.A.[Qi-Ang],
Active Image Labeling and Its Application to Facial Action Labeling,
ECCV08(II: 706-719).
Springer DOI
0810
BibRef
And:
Interactive labeling of facial action units,
ICPR08(1-4).
IEEE DOI
0812
BibRef
de Campos, C.P.[Cassio P.],
Tong, Y.[Yan],
Ji, Q.A.[Qi-Ang],
Constrained Maximum Likelihood Learning of Bayesian Networks for Facial
Action Recognition,
ECCV08(III: 168-181).
Springer DOI
0810
BibRef
de Campos, C.P.[Cassio P.],
Ji, Q.A.[Qi-Ang],
Improving Bayesian Network parameter learning using constraints,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Xu, S.A.[Shu-Ang],
Jia, Y.D.[Yun-De],
Zhang, X.X.[Xiao-Xun],
Coding Facial Expression with Oriented Steerable Filters,
ICIP06(2057-2060).
IEEE DOI
0610
BibRef
McCall, J.C.[Joel C.],
Trivedi, M.M.[Mohan M.],
Pose invariant affect analysis using thin-plate splines,
ICPR04(III: 958-964).
IEEE DOI
0409
Facial landmark tracking, feature vector extraction and
expression recognition.
BibRef
McCall, J.C.[Joel C.],
Trivedi, M.M.[Mohan M.],
Facial Action Coding Using Multiple Visual Cues and a Hierarchy of
Particle Filters,
V4HCI06(150).
IEEE DOI
0609
BibRef
Whitehill, J.,
Omlin, C.W.,
Haar Features for FACS AU Recognition,
FGR06(97-101).
IEEE DOI
0604
BibRef
Whitehill, J.,
Omlin, C.W.,
Local versus Global Segmentation for Facial Expression Recognition,
FGR06(357-362).
IEEE DOI
0604
BibRef
Tong, Y.[Yan],
Liao, W.H.[Wen-Hui],
Ji, Q.A.[Qi-Ang],
Inferring Facial Action Units with Causal Relations,
CVPR06(II: 1623-1630).
IEEE DOI
0606
BibRef
Lucey, P.[Patrick],
Lucey, S.[Simon],
Cohn, J.F.[Jeffrey F.],
Registration Invariant Representations for Expression Detection,
DICTA10(255-261).
IEEE DOI
1012
BibRef
Wang, Y.[Yang],
Lucey, S.[Simon],
Cohn, J.F.[Jeffrey F.],
Non-Rigid Object Alignment with a Mismatch Template Based on Exhaustive
Local Search,
NRTL07(1-8).
IEEE DOI
0710
BibRef
de la Torre, F.[Fernando],
Campoy, J.[Joan],
Ambadar, Z.[Zara],
Cohn, J.F.[Jeffrey F.],
Temporal Segmentation of Facial Behavior,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Lucey, S.,
Matthews, I.,
Hu, C.B.[Chang-Bo],
Ambadar, Z.,
de la Torre, F.,
Cohn, J.F.,
AAM Derived Face Representations for Robust Facial Action Recognition,
FGR06(155-162).
IEEE DOI
HTML Version.
0604
See also Multi-View AAM Fitting and Camera Calibration.
BibRef
Sifakis, E.[Eftychios],
Fedkiw, R.[Ron],
Facial Muscle Activations from Motion Capture,
CVPR05(II: 1195).
IEEE DOI
0507
BibRef
Wang, H.C.[Hong-Cheng],
Ahuja, N.,
Facial expression decomposition,
ICCV03(958-965).
IEEE DOI
0311
BibRef
Fasel, B.[Beat],
Luettin, J.[Juergen],
Recognition of Asymmetric Facial Action Unit Activities and Intensities,
ICPR00(Vol I: 1100-1103).
IEEE DOI
0009
BibRef
Colmenarez, A.J.[Antonio J.],
Frey, B.J.[Brendan J.],
Huang, T.S.[Thomas S.],
A Probabilistic Framework for Embedded Face and Facial Expression
Recognition,
CVPR99(I: 592-597).
IEEE DOI
BibRef
9900
And:
Embedded Face and Facial Expression Recognition,
ICIP99(I:633-637).
IEEE DOI
BibRef
Frey, B.J.[Brendan J.],
Colmenarez, A.J.,
Huang, T.S.,
Mixtures of Local Linear Subspaces for Face Recognition,
CVPR98(32-37).
IEEE DOI
BibRef
9800
Weng, J.[John],
Hwang, W.S.[Wey-Shiuan],
Sensorimotor Action Sequence Learning with Application
to Face Recognition Under Discourse,
ICPR98(Vol I: 252-254).
IEEE DOI
9808
BibRef
Saji, H.[Hitoshi],
Nakatani, H.[Hiromasa],
Ohta, H.[Hiroshi],
Recognition of Facial Expressions Using Muscle-Based Feature Models,
ICPR98(Vol II: 1379-1381).
IEEE DOI
9808
BibRef
Ishikawa, T.[Takahiro],
Yazaki, K.[Kazuhiko],
Sera, H.[Hajime],
Morishima, S.[Shigeo],
Terzopoulos, D.[Demetri],
Facial Muscle Parameter Decision from 2D Frontal Image,
ICPR98(Vol I: 160-162).
IEEE DOI
9808
BibRef
Eisert, P., and
Girod, B.,
Model-Based Estimation of Facial Expression Parameters
from Image Sequences,
ICIP97(II: 418-421).
IEEE DOI
BibRef
9700
Chapter on Face Recognition, Detection, Tracking, Gesture Recognition, Fingerprints, Biometrics continues in
Spontaneous Extpressions .