Schwartz, S.R.,
Wah, B.W.[Benjamin W.],
Machine Learning of Computer Vision Algorithms,
HPRIP-CV94(319-359).
BibRef
9400
Fu, K.S., ed.,
Pattern Recognition and Machine Learning,
PlenumPress, New York, 1971.
BibRef
7100
Bhanu, B.,
Poggio, T.,
Introduction to the Special Section on Learning in Computer Vision,
PAMI(16), No. 9, September 1994, pp. 865-867.
IEEE Top Reference.
BibRef
9409
Bhanu, B.,
Peng, J.,
Huang, T.,
Draper, B.,
Introduction to the Special Issue on Learning in Computer Vision and
Pattern Recognition,
SMC-B(35), No. 3, June 2005, pp. 391-396.
IEEE DOI
0508
BibRef
Vapnik, V.,
The Nature of Statistical Learning Theory,
Springer-Verlag1996.
BibRef
9600
Vapnik, V.,
Statistical Learning Theory,
John
Wiley& Sons, 1998.
BibRef
9800
Vapnik, V.[Vladimir],
An overview of statistical learning theory,
TNN(10), No. 5, 1999, pp. 988-999.
0906
BibRef
Dietterich, T.G.,
Machine Learning Research: Four Current Directions,
AI Magazine(18), No. 4, 1997, pp. 97-136.
BibRef
9700
Poggio, T.[Tomaso],
Shelton, C.R.[Christian R.],
Machine Learning, Machine Vision, and the Brain,
AIMag(20), No. 3, Fall 1999, pp. 37-55.
Regularization.
Support Vector Machines.
Survey, Learning. Survey of learning focused on a vision domain.
Regularization, Support Vector Machines. Applied to face and
pedestrian recognition.
BibRef
9900
Petrou, M.[Maria],
Learning in Pattern Recognition: Some Thoughts,
PRL(22), No. 1, January 2001, pp. 3-13.
Elsevier DOI
0105
BibRef
Petrou, M.[Maria],
Learning in Computer Vision: Some Thoughts,
CIARP07(1-12).
Springer DOI
0711
BibRef
Xu, M.[Mai],
Petrou, M.[Maria],
3D Scene interpretation by combining probability theory and logic:
The tower of knowledge,
CVIU(115), No. 11, November 2011, pp. 1581-1596.
Elsevier DOI
1110
BibRef
Earlier:
Learning Logic Rules for Scene Interpretation Based on Markov Logic
Networks,
ACCV09(III: 341-350).
Springer DOI
0909
BibRef
Earlier:
Recursive Tower of Knowledge for Learning to Interpret Scenes,
BMVC08(xx-yy).
PDF File.
0809
Scene labelling systems; Logic and probabilities; Machine learning;
System architecture
BibRef
Xu, M.[Mai],
Wang, Z.[Zulin],
Petrou, M.[Maria],
Tower of Knowledge for scene interpretation: A survey,
PRL(48), No. 1, 2014, pp. 42-48.
Elsevier DOI
1410
Tower of Knowledge.
Cue of human language, for scene interpretation
BibRef
Freeman, W.T.[William T.],
Perona, P.[Pietro],
Schölkopf, B.[Bernhard],
Guest Editorial Machine Learning for Vision,
IJCV(77), No. 1-3, May 2008, pp. 1.
Springer DOI
0803
BibRef
Raducanu, B.[Bogdan],
Vitria, J.[Jordi],
Learning to learn: From smart machines to intelligent machines,
PRL(29), No. 8, 1 June 2008, pp. 1024-1032.
Elsevier DOI
0804
BibRef
Earlier:
Online Learning for Human-Robot Interaction,
Learning07(1-7).
IEEE DOI
0706
Incremental subspace learning based on
Nonparametric Discriminant Analysis.
Number of classes and samples not known and changes over time.
Intelligent systems; Cognitive development; Context; Social robotics;
Face recognition
BibRef
Raducanu, B.[Bogdan],
Vitria, J.[Jordi],
Leonardis, A.[Ales],
Online pattern recognition and machine learning techniques for
computer-vision: Theory and applications,
IVC(28), No. 7, July 2010, pp. 1063-1064.
Elsevier DOI
1006
Introduction to special issue.
BibRef
Darrell, T.J.,
Lampert, C.,
Sebe, N.,
Wu, Y.,
Yan, Y.,
Guest Editors' Introduction to the Special Section on Learning with
Shared Information for Computer Vision and Multimedia Analysis,
PAMI(40), No. 5, May 2018, pp. 1029-1031.
IEEE DOI
1804
Collaboration, Computer vision, Information sharing,
Learning systems, Machine learning, Multimedia communication,
Training data
BibRef
Nagy, G.[George],
Document analysis systems that improve with use,
IJDAR(23), No. 1, January 2020, pp. 13-29.
WWW Link.
2003
BibRef
Earlier:
Estimation, Learning, and Adaptation: Systems That Improve with Use,
SSSPR12(1-10).
Springer DOI
1211
BibRef
Earlier:
Persistent Issues in Learning and Estimation,
ICPR98(Vol I: 561-564).
IEEE DOI
9808
BibRef
Bala, J.W.,
Michalski, R.S.,
Wnek, J.,
The Prax Approach to Learning a Large Number of
Texture Concepts,
AAAI-MLCV93(xx-yy).
George Mason University.
BibRef
9300
Bala, J.W.,
Michalski, R.S., and
Pachowicz, P.W.,
Progress on Vision through Learning at George Mason University,
ARPA94(I:191-207).
BibRef
9400
Michalski, R.S.,
Rosenfeld, A.,
Aloimonos, Y.,
Duric, Z.,
Maloof, M.A.,
Zhang, Q.,
Progress on Vision Through Learning,
ARPA96(177-188).
BibRef
9600
Bhanu, B.[Bir],
Bowyer, K.W.[Kevin W.],
Hall, L.O.[Lawrence O.], and
Langley, P.[Pat],
Report of the AAAI Fall Symposium on Machine Learning and
Computer Vision: What, Why and How?,
ARPA94(I:727-731).
BibRef
9400
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Evaluation and Analysis of Learning Techniques .