14.5.10.10.4 Countering Adversarial Attacks, Robustness

Chapter Contents (Back)
Robustness. Adversarial Networks. Adversarial Training. 2510

Amini, S., Ghaemmaghami, S.,
Towards Improving Robustness of Deep Neural Networks to Adversarial Perturbations,
MultMed(22), No. 7, July 2020, pp. 1889-1903.
IEEE DOI 2007
Robustness, Perturbation methods, Training, Deep learning, Neural networks, Signal to noise ratio, interpretable BibRef

Shi, Y.C.[Yu-Cheng], Han, Y.H.[Ya-Hong], Zhang, Q.X.[Quan-Xin], Kuang, X.H.[Xiao-Hui],
Adaptive iterative attack towards explainable adversarial robustness,
PR(105), 2020, pp. 107309.
Elsevier DOI 2006
Adversarial example, Adversarial attack, Image classification BibRef

Wang, Y., Su, H., Zhang, B., Hu, X.,
Interpret Neural Networks by Extracting Critical Subnetworks,
IP(29), 2020, pp. 6707-6720.
IEEE DOI 2007
Predictive models, Logic gates, Neural networks, Machine learning, Feature extraction, Robustness, Visualization, adversarial robustness BibRef

Ortiz-Jiménez, G.[Guillermo], Modas, A.[Apostolos], Moosavi-Dezfooli, S.M.[Seyed-Mohsen], Frossard, P.[Pascal],
Optimism in the Face of Adversity: Understanding and Improving Deep Learning Through Adversarial Robustness,
PIEEE(109), No. 5, May 2021, pp. 635-659.
IEEE DOI 2105
Neural networks, Deep learning, Robustness, Security, Tools, Perturbation methods, Benchmark testing, Adversarial robustness, transfer learning BibRef

Li, Z.R.[Zhuo-Rong], Feng, C.[Chao], Wu, M.H.[Ming-Hui], Yu, H.C.[Hong-Chuan], Zheng, J.W.[Jian-Wei], Zhu, F.[Fanwei],
Adversarial robustness via attention transfer,
PRL(146), 2021, pp. 172-178.
Elsevier DOI 2105
Adversarial defense, Robustness, Representation learning, Visual attention, Transfer learning BibRef

Hu, W.Z.[Wen-Zheng], Li, M.Y.[Ming-Yang], Wang, Z.[Zheng], Wang, J.Q.[Jian-Qiang], Zhang, C.S.[Chang-Shui],
DiFNet: Densely High-Frequency Convolutional Neural Networks,
SPLetters(28), 2021, pp. 1340-1344.
IEEE DOI 2107
Image edge detection, Convolution, Perturbation methods, Training, Neural networks, Robustness, Robust, deep convolution neural network BibRef

Mustafa, A.[Aamir], Khan, S.H.[Salman H.], Hayat, M.[Munawar], Goecke, R.[Roland], Shen, J.B.[Jian-Bing], Shao, L.[Ling],
Deeply Supervised Discriminative Learning for Adversarial Defense,
PAMI(43), No. 9, September 2021, pp. 3154-3166.
IEEE DOI 2108
Robustness, Perturbation methods, Training, Linear programming, Optimization, Marine vehicles, Prototypes, Adversarial defense, deep supervision BibRef

Yu, H.[Hang], Liu, A.S.[Ai-Shan], Li, G.C.[Geng-Chao], Yang, J.C.[Ji-Chen], Zhang, C.Z.[Chong-Zhi],
Progressive Diversified Augmentation for General Robustness of DNNs: A Unified Approach,
IP(30), 2021, pp. 8955-8967.
IEEE DOI 2111
Robustness, Training, Handheld computers, Perturbation methods, Complexity theory, Streaming media, Standards BibRef

Lo, S.Y.[Shao-Yuan], Patel, V.M.[Vishal M.],
Defending Against Multiple and Unforeseen Adversarial Videos,
IP(31), 2022, pp. 962-973.
IEEE DOI 2201
Videos, Training, Robustness, Perturbation methods, Resists, Image reconstruction, Image recognition, Adversarial video, multi-perturbation robustness BibRef

Mygdalis, V.[Vasileios], Pitas, I.[Ioannis],
Hyperspherical class prototypes for adversarial robustness,
PR(125), 2022, pp. 108527.
Elsevier DOI 2203
Adversarial defense, Adversarial robustness, Hypersphere prototype loss, HCP loss BibRef

Khong, T.T.T.[Thi Thu Thao], Nakada, T.[Takashi], Nakashima, Y.[Yasuhiko],
A Hybrid Bayesian-Convolutional Neural Network for Adversarial Robustness,
IEICE(E105-D), No. 7, July 2022, pp. 1308-1319.
WWW Link. 2207
BibRef

Wang, K.[Ke], Li, F.J.[Feng-Jun], Chen, C.M.[Chien-Ming], Hassan, M.M.[Mohammad Mehedi], Long, J.Y.[Jin-Yi], Kumar, N.[Neeraj],
Interpreting Adversarial Examples and Robustness for Deep Learning-Based Auto-Driving Systems,
ITS(23), No. 7, July 2022, pp. 9755-9764.
IEEE DOI 2207
Training, Robustness, Deep learning, Perturbation methods, Interference, Computer science, Computational modeling, adversarial robustness BibRef

Wang, J.[Jia], Su, W.Q.[Wu-Qiang], Luo, C.W.[Cheng-Wen], Chen, J.[Jie], Song, H.B.[Hou-Bing], Li, J.Q.[Jian-Qiang],
CSG: Classifier-Aware Defense Strategy Based on Compressive Sensing and Generative Networks for Visual Recognition in Autonomous Vehicle Systems,
ITS(23), No. 7, July 2022, pp. 9543-9553.
IEEE DOI 2207
Training, Neural networks, Compressed sensing, Perturbation methods, Robustness, Real-time systems, generative neural networks BibRef

Shi, X.S.[Xiao-Shuang], Peng, Y.F.[Yi-Fan], Chen, Q.Y.[Qing-Yu], Keenan, T.[Tiarnan], Thavikulwat, A.T.[Alisa T.], Lee, S.[Sungwon], Tang, Y.X.[Yu-Xing], Chew, E.Y.[Emily Y.], Summers, R.M.[Ronald M.], Lu, Z.Y.[Zhi-Yong],
Robust convolutional neural networks against adversarial attacks on medical images,
PR(132), 2022, pp. 108923.
Elsevier DOI 2209
CNNs, Adversarial examples, Sparsity denoising BibRef

Yu, X.[Xi], Smedemark-Margulies, N.[Niklas], Aeron, S.[Shuchin], Koike-Akino, T.[Toshiaki], Moulin, P.[Pierre], Brand, M.[Matthew], Parsons, K.[Kieran], Wang, Y.[Ye],
Improving adversarial robustness by learning shared information,
PR(134), 2023, pp. 109054.
Elsevier DOI 2212
Adversarial robustness, Information bottleneck, Multi-view learning, Shared information, BibRef

Lee, S.[Sungyoon], Kim, H.[Hoki], Lee, J.W.[Jae-Wook],
GradDiv: Adversarial Robustness of Randomized Neural Networks via Gradient Diversity Regularization,
PAMI(45), No. 2, February 2023, pp. 2645-2651.
IEEE DOI 2301
Neural networks, Robustness, Stochastic processes, Perturbation methods, Training, Transform coding, Statistics, directional analysis BibRef

Picot, M.[Marine], Messina, F.[Francisco], Boudiaf, M.[Malik], Labeau, F.[Fabrice], Ben Ayed, I.[Ismail], Piantanida, P.[Pablo],
Adversarial Robustness Via Fisher-Rao Regularization,
PAMI(45), No. 3, March 2023, pp. 2698-2710.
IEEE DOI 2302
Robustness, Manifolds, Training, Perturbation methods, Standards, Neural networks, Adversarial machine learning, safety AI BibRef

Stutz, D.[David], Chandramoorthy, N.[Nandhini], Hein, M.[Matthias], Schiele, B.[Bernt],
Random and Adversarial Bit Error Robustness: Energy-Efficient and Secure DNN Accelerators,
PAMI(45), No. 3, March 2023, pp. 3632-3647.
IEEE DOI 2302
Robustness, Quantization (signal), Random access memory, Training, Voltage, Bit error rate, Low voltage, DNN Accelerators, DNN quantization BibRef

Stutz, D.[David], Hein, M.[Matthias], Schiele, B.[Bernt],
Disentangling Adversarial Robustness and Generalization,
CVPR19(6969-6980).
IEEE DOI 2002
BibRef

Guo, Y.[Yong], Stutz, D.[David], Schiele, B.[Bernt],
Improving Robustness by Enhancing Weak Subnets,
ECCV22(XXIV:320-338).
Springer DOI 2211
BibRef

Zhang, J.J.[Jia-Jin], Chao, H.Q.[Han-Qing], Yan, P.K.[Ping-Kun],
Toward Adversarial Robustness in Unlabeled Target Domains,
IP(32), 2023, pp. 1272-1284.
IEEE DOI 2303
Training, Robustness, Adaptation models, Data models, Deep learning, Task analysis, Labeling, Adversarial robustness, domain adaptation, pseudo labeling BibRef

Li, W.[Wen], Wang, H.Y.[Heng-You], Huo, L.Z.[Lian-Zhi], He, Q.[Qiang], Zhang, C.L.[Chang-Lun],
Robust attention ranking architecture with frequency-domain transform to defend against adversarial samples,
CVIU(233), 2023, pp. 103717.
Elsevier DOI 2307
Adversarial samples, Attention mechanism, Discrete cosine transform, Key points ranking BibRef

Dong, J.H.[Jun-Hao], Yang, L.X.[Ling-Xiao], Wang, Y.[Yuan], Xie, X.H.[Xiao-Hua], Lai, J.H.[Jian-Huang],
Toward Intrinsic Adversarial Robustness Through Probabilistic Training,
IP(32), 2023, pp. 3862-3872.
IEEE DOI 2307
Training, Uncertainty, Probabilistic logic, Robustness, Standards, Computational modeling, Feature extraction, Deep neural networks, uncertainty BibRef

Saini, N.[Nandini], Chattopadhyay, C.[Chiranjoy], Das, D.[Debasis],
SOLARNet: A single stage regression based framework for efficient and robust object recognition in aerial images,
PRL(172), 2023, pp. 37-43.
Elsevier DOI 2309
Adversarial attacks, Deep learning, Aerial image, Object detection, DOTA, DIOR BibRef

Heo, J.[Jaehyuk], Seo, S.[Seungwan], Kang, P.[Pilsung],
Exploring the differences in adversarial robustness between ViT- and CNN-based models using novel metrics,
CVIU(235), 2023, pp. 103800.
Elsevier DOI 2310
Adversarial robustness, Computer vision BibRef

Wang, K.[Ke], Chen, Z.C.[Zi-Cong], Dang, X.L.[Xi-Lin], Fan, X.[Xuan], Han, X.M.[Xu-Ming], Chen, C.M.[Chien-Ming], Ding, W.P.[Wei-Ping], Yiu, S.M.[Siu-Ming], Weng, J.[Jian],
Uncovering Hidden Vulnerabilities in Convolutional Neural Networks through Graph-based Adversarial Robustness Evaluation,
PR(143), 2023, pp. 109745.
Elsevier DOI 2310
Graph of patterns, Graph distance algorithm, Adversarial robustness, Interpretable graph-based systems, Convolutional neural networks BibRef

Chu, T.S.[Tian-Shu], Fang, K.[Kun], Yang, J.[Jie], Huang, X.L.[Xiao-Lin],
Improving the adversarial robustness of quantized neural networks via exploiting the feature diversity,
PRL(176), 2023, pp. 117-122.
Elsevier DOI 2312
Quantized neural networks, Adversarial robustness, Orthogonal regularization, Feature diversity BibRef

Fang, K.[Kun], Tao, Q.H.[Qing-Hua], Wu, Y.W.[Ying-Wen], Li, T.[Tao], Cai, J.[Jia], Cai, F.P.[Fei-Peng], Huang, X.L.[Xiao-Lin], Yang, J.[Jie],
Towards robust neural networks via orthogonal diversity,
PR(149), 2024, pp. 110281.
Elsevier DOI 2403
Model augmentation, Multi-head, Orthogonality, Margin-maximization, Data augmentation, Adversarial robustness BibRef

Chu, T.S.[Tian-Shu], Yang, Z.P.[Zuo-Peng], Yang, J.[Jie], Huang, X.L.[Xiao-Lin],
Improving the Robustness of Convolutional Neural Networks Via Sketch Attention,
ICIP21(869-873)
IEEE DOI 2201
Training, Perturbation methods, Image processing, Pipelines, Robustness, Convolutional neural networks, CNNs, sketch attention BibRef

Xu, S.W.[Sheng-Wang], Qiao, T.[Tong], Xu, M.[Ming], Wang, W.[Wei], Zheng, N.[Ning],
Robust Adversarial Watermark Defending Against GAN Synthesization Attack,
SPLetters(31), 2024, pp. 351-355.
IEEE DOI 2402
Watermarking, Transform coding, Generative adversarial networks, Forgery, Image coding, Discrete cosine transforms, Decoding, JPEG compression BibRef

Zhuang, W.[Wenzi], Huang, L.F.[Li-Feng], Gao, C.Y.[Cheng-Ying], Liu, N.[Ning],
LAFED: Towards robust ensemble models via Latent Feature Diversification,
PR(150), 2024, pp. 110225.
Elsevier DOI Code:
WWW Link. 2403
Adversarial example, Adversarial defense, Ensemble model, Robustness BibRef

Zhang, L.[Lei], Zhou, Y.H.[Yu-Hang], Yang, Y.[Yi], Gao, X.B.[Xin-Bo],
Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks,
PAMI(46), No. 10, October 2024, pp. 6669-6687.
IEEE DOI 2409
Robustness, Training, Task analysis, Feature extraction, Metalearning, Perturbation methods, Artificial neural networks, deep neural network BibRef

Li, Z.R.[Zhuo-Rong], Wu, M.H.[Ming-Hui], Jin, C.[Canghong], Yu, D.[Daiwei], Yu, H.[Hongchuan],
Adversarial self-training for robustness and generalization,
PRL(185), 2024, pp. 117-123.
Elsevier DOI 2410
Adversarial defense, Adversarial attack, Robustness, Generalization, Self-training BibRef

Li, Z.Y.[Ze-Yang], Hu, C.[Chuxiong], Wang, Y.[Yunan], Yang, Y.J.[Yu-Jie], Li, S.B.E.[Sheng-Bo Eben],
Safe Reinforcement Learning With Dual Robustness,
PAMI(46), No. 12, December 2024, pp. 10876-10890.
IEEE DOI 2411
Safety, Games, Game theory, Task analysis, Robustness, Optimization, Convergence, Reinforcement learning, robustness, safety, zero-sum Markov game BibRef

Li, J.W.[Jia-Wen], Fang, K.[Kun], Huang, X.L.[Xiao-Lin], Yang, J.[Jie],
Boosting certified robustness via an expectation-based similarity regularization,
IVC(151), 2024, pp. 105272.
Elsevier DOI 2411
Image classification, Adversarial robustness, Metric learning, Certified robustness, Randomized smoothing BibRef

Xiao, J.C.[Jian-Cong], Yang, L.[Liusha], Fan, Y.B.[Yan-Bo], Wang, J.[Jue], Luo, Z.Q.[Zhi-Quan],
Understanding adversarial robustness against on-manifold adversarial examples,
PR(159), 2025, pp. 111071.
Elsevier DOI 2412
Adversarial robustness, On-manifold adversarial examples BibRef

Li, L.[Lin], Qiu, J.N.[Jia-Ning], Spratling, M.W.[Michael W.],
AROID: Improving Adversarial Robustness Through Online Instance-Wise Data Augmentation,
IJCV(133), No. 2, February 2025, pp. 929-950.
Springer DOI 2502
BibRef

Fu, X.W.[Xiao-Wei], Ma, L.[Lina], Zhang, L.[Lei],
Remove to Regenerate: Boosting Adversarial Generalization with Attack Invariance,
CirSysVideo(35), No. 3, March 2025, pp. 1999-2012.
IEEE DOI Code:
WWW Link. 2503
Robustness, Perturbation methods, Semantics, Surgery, Medical treatment, Cancer, Lesions, Accuracy, Malignant tumors, semantic regeneration BibRef

Dardour, O.[Omar], Aguilar, E.[Eduardo], Radeva, P.[Petia], Zaied, M.[Mourad],
Inter-separability and intra-concentration to enhance stochastic neural network adversarial robustness,
PRL(191), 2025, pp. 1-7.
Elsevier DOI 2504
Deep neural networks, Adversarial robustness, Uncertainty, Label embedding, Inter-separability, Intra-compactness BibRef

Peng, H.Q.[He-Qi], Chen, M.X.[Ming-Xuan], Wang, Y.H.[Yun-Hong], Guo, Y.F.[Yuan-Fang],
HFA2RE: Enhancing adversarial robustness via Hyperspherical Feature Aggregation,
PR(169), 2026, pp. 111857.
Elsevier DOI 2509
Adversarial training, Self-supervised learning, Adversarial robustness BibRef

Jeary, L.[Linus], Kuipers, T.[Tom], Hosseini, M.[Mehran], Paoletti, N.[Nicola],
Verifiably robust conformal prediction for probabilistic guarantees under adversarial attacks,
PR(170), 2026, pp. 112051.
Elsevier DOI 2509
Formal verification, Conformal prediction, Robust conformal prediction, Adversarial robustness, Poisoning attacks BibRef

Wang, Z.[Zheng], Xu, X.[Xing], Zhu, L.[Lei], Bin, Y.[Yi], Wang, G.Q.[Guo-Qing], Yang, Y.[Yang], Shen, H.T.[Heng Tao],
Evidence-Based Multi-Feature Fusion for Adversarial Robustness,
PAMI(47), No. 10, October 2025, pp. 8923-8937.
IEEE DOI 2510
Robustness, Training, Perturbation methods, Representation learning, Uncertainty, Transformers, Optimization, evidential deep learning BibRef

Yang, X.[Xiao], Wu, L.X.[Ling-Xuan], Wang, L.Z.[Li-Zhong], Ying, C.Y.[Cheng-Yang], Su, H.[Hang], Zhu, J.[Jun],
Reinforced Embodied Active Defense: Exploiting Adaptive Interaction for Robust Visual Perception in Adversarial 3D Environments,
PAMI(47), No. 10, October 2025, pp. 9078-9094.
IEEE DOI 2510
Training, Robustness, Visual perception, Perturbation methods, Autonomous vehicles, Artificial neural networks, policy learning BibRef


Xu, K.[Keyizhi], Zhang, C.[Chi], Chen, Z.[Zhan], Wang, Z.Y.[Zhong-Yuan], Xiao, C.X.[Chun-Xia], Liang, C.[Chao],
Rethinking the Adversarial Robustness of Multi-Exit Neural Networks in an Attack-Defense Game,
CVPR25(10265-10274)
IEEE DOI 2508
Fault diagnosis, Neural networks, Games, Nash equilibrium, Robustness, adversarial robustness, game theory, multi-exit networks BibRef

Xie, Y.[Yong], Zheng, W.J.[Wei-Jie], Huang, H.[Hanxun], Ye, G.[Guangnan], Ma, X.[Xingjun],
Towards Million-Scale Adversarial Robustness Evaluation With Stronger Individual Attacks,
CVPR25(30702-30711)
IEEE DOI 2508
Deep learning, Perturbation methods, Robustness, Distance measurement, Ensemble learning, Glass box, Testing, Image classification BibRef

Shen, H.[Huakun], Hu, B.Y.C.[Bo-Yue Caroline], Czarnecki, K.[Krzysztof], Marsso, L.[Lina], Chechik, M.[Marsha],
Assessing Visually-Continuous Corruption Robustness of Neural Networks Relative to Human Performance,
WACV25(6300-6310)
IEEE DOI 2505
Measurement, Visualization, Accuracy, Training data, Artificial neural networks, Benchmark testing, Transformers, VCR BibRef

Rodríguez-Muñoz, A.[Adrián], Wang, T.Z.[Tong-Zhou], Torralba, A.[Antonio],
Characterizing Model Robustness via Natural Input Gradients,
ECCV24(LXXVI: 161-178).
Springer DOI 2412
BibRef

Pulfer, B.[Brian], Belousov, Y.[Yury], Voloshynovskiy, S.[Slava],
Robustness Tokens: Towards Adversarial Robustness of Transformers,
ECCV24(LIX: 110-127).
Springer DOI 2412
BibRef

Dibbo, S.V.[Sayanton V.], Breuer, A.[Adam], Moore, J.[Juston], Teti, M.[Michael],
Improving Robustness to Model Inversion Attacks via Sparse Coding Architectures,
ECCV24(LXXX: 117-136).
Springer DOI 2412
BibRef

Zhang, C.S.[Chen-Shuang], Pan, F.[Fei], Kim, J.[Junmo], Kweon, I.S.[In So], Mao, C.Z.[Cheng-Zhi],
ImageNet-D: Benchmarking Neural Network Robustness on Diffusion Synthetic Object,
CVPR24(21752-21762)
IEEE DOI Code:
WWW Link. 2410
Visualization, Accuracy, Computational modeling, Soft sensors, Benchmark testing, Diffusion models, Robustness, Dataset BibRef

Franco, N.[Nicola], Lorenz, J.M.[Jeanette Miriam], Roscher, K.[Karsten], Günnemann, S.[Stephan],
Understanding ReLU Network Robustness Through Test Set Certification Performance,
SAIAD24(3451-3460)
IEEE DOI 2410
Accuracy, Perturbation methods, Neural networks, Reliability theory, Robustness, Stability analysis, Safety, Formal Verification BibRef

Cui, X.M.[Xuan-Ming], Aparcedo, A.[Alejandro], Jang, Y.K.[Young Kyun], Lim, S.N.[Ser-Nam],
On the Robustness of Large Multimodal Models Against Image Adversarial Attacks,
CVPR24(24625-24634)
IEEE DOI 2410
Visualization, Accuracy, Robustness, Question answering (information retrieval), Adversarial attack BibRef

Christensen, P.E.[Peter Ebert], Snæbjarnarson, V.[Vésteinn], Dittadi, A.[Andrea], Belongie, S.[Serge], Benaim, S.[Sagie],
Assessing Neural Network Robustness via Adversarial Pivotal Tuning,
WACV24(2940-2949)
IEEE DOI 2404
Training, Semantics, Neural networks, Training data, Benchmark testing, Robustness, Generators, Algorithms BibRef

Cohen, G.[Gilad], Giryes, R.[Raja],
Simple Post-Training Robustness using Test Time Augmentations and Random Forest,
WACV24(3984-3994)
IEEE DOI Code:
WWW Link. 2404
Training, Threat modeling, Adaptation models, Image color analysis, Artificial neural networks, Transforms, Robustness, Algorithms, adversarial attack and defense methods BibRef

Sharma, A.[Abhijith], Munz, P.[Phil], Narayan, A.[Apurva],
Assist Is Just as Important as the Goal: Image Resurfacing to Aid Model's Robust Prediction,
WACV24(3821-3830)
IEEE DOI 2404
Visualization, TV, Perturbation methods, Predictive models, Benchmark testing, Security, Algorithms, Adversarial learning, adversarial attack and defense methods BibRef

Schlarmann, C.[Christian], Hein, M.[Matthias],
On the Adversarial Robustness of Multi-Modal Foundation Models,
AROW23(3679-3687)
IEEE DOI 2401
BibRef

Yang, D.Y.[Dong-Yoon], Kong, I.[Insung], Kim, Y.[Yongdai],
Enhancing Adversarial Robustness in Low-Label Regime via Adaptively Weighted Regularization and Knowledge Distillation,
ICCV23(4529-4538)
IEEE DOI 2401
BibRef

Suzuki, S.[Satoshi], Yamaguchi, S.[Shin'ya], Takeda, S.[Shoichiro], Kanai, S.[Sekitoshi], Makishima, N.[Naoki], Ando, A.[Atsushi], Masumura, R.[Ryo],
Adversarial Finetuning with Latent Representation Constraint to Mitigate Accuracy-Robustness Tradeoff,
ICCV23(4367-4378)
IEEE DOI 2401
BibRef

Ji, Q.F.[Qiu-Fan], Wang, L.[Lin], Shi, C.[Cong], Hu, S.S.[Sheng-Shan], Chen, Y.Y.[Ying-Ying], Sun, L.C.[Li-Chao],
Benchmarking and Analyzing Robust Point Cloud Recognition: Bag of Tricks for Defending Adversarial Examples,
ICCV23(4272-4281)
IEEE DOI Code:
WWW Link. 2401
BibRef

Jin, Y.L.[Yu-Lin], Zhang, X.Y.[Xiao-Yu], Lou, J.[Jian], Ma, X.[Xu], Wang, Z.L.[Zi-Long], Chen, X.F.[Xiao-Feng],
Explaining Adversarial Robustness of Neural Networks from Clustering Effect Perspective,
ICCV23(4499-4508)
IEEE DOI Code:
WWW Link. 2401
BibRef

Li, Y.M.[Yi-Ming], Fang, Q.[Qi], Bai, J.[Jiamu], Chen, S.[Siheng], Xu, F.J.F.[Felix Jue-Fei], Feng, C.[Chen],
Among Us: Adversarially Robust Collaborative Perception by Consensus,
ICCV23(186-195)
IEEE DOI 2401
BibRef

Lee, M.J.[Min-Jong], Kim, D.[Dongwoo],
Robust Evaluation of Diffusion-Based Adversarial Purification,
ICCV23(134-144)
IEEE DOI 2401
Evaluation of purification process at run-time. BibRef

Sharma, S.[Shivam], Joshi, R.[Rohan], Bhilare, S.[Shruti], Joshi, M.V.[Manjunath V.],
Robust Adversarial Defence: Use of Auto-inpainting,
CAIP23(I:110-119).
Springer DOI 2312
BibRef

Piat, W.[William], Fadili, J.[Jalal], Jurie, S.F.[S Frédéric],
Exploring the Connection Between Neuron Coverage and Adversarial Robustness in DNN Classifiers,
ICIP23(745-749)
IEEE DOI 2312
BibRef

Atsague, M.[Modeste], Nirala, A.[Ashutosh], Fakorede, O.[Olukorede], Tian, J.[Jin],
A Penalized Modified Huber Regularization to Improve Adversarial Robustness,
ICIP23(2675-2679)
IEEE DOI 2312
BibRef

Wang, B.H.[Bing-Hui], Pang, M.[Meng], Dong, Y.[Yun],
Turning Strengths into Weaknesses: A Certified Robustness Inspired Attack Framework against Graph Neural Networks,
CVPR23(16394-16403)
IEEE DOI 2309
BibRef

Huang, B.[Bo], Chen, M.Y.[Ming-Yang], Wang, Y.[Yi], Lu, J.[Junda], Cheng, M.[Minhao], Wang, W.[Wei],
Boosting Accuracy and Robustness of Student Models via Adaptive Adversarial Distillation,
CVPR23(24668-24677)
IEEE DOI 2309
BibRef

Dong, M.J.[Min-Jing], Xu, C.[Chang],
Adversarial Robustness via Random Projection Filters,
CVPR23(4077-4086)
IEEE DOI 2309
BibRef

Kim, W.J.[Woo Jae], Cho, Y.[Yoonki], Jung, J.[Junsik], Yoon, S.E.[Sung-Eui],
Feature Separation and Recalibration for Adversarial Robustness,
CVPR23(8183-8192)
IEEE DOI 2309
BibRef

Huang, S.H.[Shi-Hua], Lu, Z.C.[Zhi-Chao], Deb, K.[Kalyanmoy], Boddeti, V.N.[Vishnu Naresh],
Revisiting Residual Networks for Adversarial Robustness,
CVPR23(8202-8211)
IEEE DOI 2309
BibRef

Kim, J.[Junho], Lee, B.K.[Byung-Kwan], Ro, Y.M.[Yong Man],
Demystifying Causal Features on Adversarial Examples and Causal Inoculation for Robust Network by Adversarial Instrumental Variable Regression,
CVPR23(12032-12042)
IEEE DOI 2309
BibRef

Croce, F.[Francesco], Rebuffi, S.A.[Sylvestre-Alvise], Shelhamer, E.[Evan], Gowal, S.[Sven],
Seasoning Model Soups for Robustness to Adversarial and Natural Distribution Shifts,
CVPR23(12313-12323)
IEEE DOI 2309
BibRef

Li, Z.W.[Zhuo-Wan], Wong, X.R.[Xing-Rui], Stengel-Eskin, E.[Elias], Kortylewski, A.[Adam], Ma, W.[Wufei], van Durme, B.[Benjamin], Yuille, A.L.[Alan L.],
Super-CLEVR: A Virtual Benchmark to Diagnose Domain Robustness in Visual Reasoning,
CVPR23(14963-14973)
IEEE DOI 2309
BibRef

Wang, Z.[Zifan], Ding, N.[Nan], Levinboim, T.[Tomer], Chen, X.[Xi], Soricut, R.[Radu],
Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization,
CVPR23(16458-16468)
IEEE DOI 2309
BibRef

Agarwal, A.[Akshay], Ratha, N.[Nalini], Singh, R.[Richa], Vatsa, M.[Mayank],
Robustness Against Gradient based Attacks through Cost Effective Network Fine-Tuning,
FaDE-TCV23(28-37)
IEEE DOI 2309
BibRef

Liang, H.Y.[Heng-Yue], Liang, B.[Buyun], Sun, J.[Ju], Cui, Y.[Ying], Mitchell, T.[Tim],
Implications of Solution Patterns on Adversarial Robustness,
AML23(2393-2400)
IEEE DOI 2309
BibRef

Redgrave, T.[Timothy], Crum, C.[Colton],
Generating Adversarial Samples in Mini-Batches May Be Detrimental To Adversarial Robustness,
AML23(2378-2384)
IEEE DOI 2309
BibRef

Gavrikov, P.[Paul], Keuper, J.[Janis],
On the Interplay of Convolutional Padding and Adversarial Robustness,
BRAVO23(3983-3992)
IEEE DOI 2401
BibRef

Wang, R.[Ren], Li, Y.X.[Yu-Xuan], Liu, S.[Sijia],
Exploring Diversified Adversarial Robustness in Neural Networks via Robust Mode Connectivity,
AML23(2346-2352)
IEEE DOI 2309
BibRef

Nandi, S.[Soumalya], Addepalli, S.[Sravanti], Rangwani, H.[Harsh], Babu, R.V.[R. Venkatesh],
Certified Adversarial Robustness Within Multiple Perturbation Bounds,
AML23(2298-2305)
IEEE DOI 2309
BibRef

Sarkar, S.[Soumyendu], Babu, A.R.[Ashwin Ramesh], Mousavi, S.[Sajad], Ghorbanpour, S.[Sahand], Gundecha, V.[Vineet], Guillen, A.[Antonio], Luna, R.[Ricardo], Naug, A.[Avisek],
Robustness with Query-efficient Adversarial Attack using Reinforcement Learning,
AML23(2330-2337)
IEEE DOI 2309
BibRef

Mofayezi, M.[Mohammadreza], Medghalchi, Y.[Yasamin],
Benchmarking Robustness to Text-Guided Corruptions,
GCV23(779-786)
IEEE DOI 2309
BibRef

Chandna, K.[Kshitij],
Improving Adversarial Robustness by Penalizing Natural Accuracy,
AdvRob22(517-533).
Springer DOI 2304
BibRef

Venkatesh, R.[Rahul], Wong, E.[Eric], Kolter, Z.[Zico],
Adversarial robustness in discontinuous spaces via alternating sampling and descent,
WACV23(4651-4660)
IEEE DOI 2302
Training, Solid modeling, Perturbation methods, Pipelines, Predictive models, Search problems, visual reasoning BibRef

Nayak, G.K.[Gaurav Kumar], Rawal, R.[Ruchit], Chakraborty, A.[Anirban],
DE-CROP: Data-efficient Certified Robustness for Pretrained Classifiers,
WACV23(4611-4620)
IEEE DOI 2302
Deep learning, Smoothing methods, Costs, Neural networks, Training data, Robustness, Algorithms: Adversarial learning BibRef

Zheng, Z.H.[Zhi-Hao], Ying, X.W.[Xiao-Wen], Yao, Z.[Zhen], Chuah, M.C.[Mooi Choo],
Robustness of Trajectory Prediction Models Under Map-Based Attacks,
WACV23(4530-4539)
IEEE DOI 2302
Visualization, Image coding, Sensitivity analysis, Computational modeling, Predictive models, Control systems, adversarial attack and defense methods BibRef

Modas, A.[Apostolos], Rade, R.[Rahul], Ortiz-Jiménez, G.[Guillermo], Moosavi-Dezfooli, S.M.[Seyed-Mohsen], Frossard, P.[Pascal],
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions,
ECCV22(XXV:623-640).
Springer DOI 2211
BibRef

Do, K.[Kien], Harikumar, H.[Haripriya], Le, H.[Hung], Nguyen, D.[Dung], Tran, T.[Truyen], Rana, S.[Santu], Nguyen, D.[Dang], Susilo, W.[Willy], Venkatesh, S.[Svetha],
Towards Effective and Robust Neural Trojan Defenses via Input Filtering,
ECCV22(V:283-300).
Springer DOI 2211
BibRef

Sun, J.C.[Jia-Chen], Mehra, A.[Akshay], Kailkhura, B.[Bhavya], Chen, P.Y.[Pin-Yu], Hendrycks, D.[Dan], Hamm, J.[Jihun], Mao, Z.M.[Z. Morley],
A Spectral View of Randomized Smoothing Under Common Corruptions: Benchmarking and Improving Certified Robustness,
ECCV22(IV:654-671).
Springer DOI 2211
BibRef

Li, G.L.[Guan-Lin], Xu, G.W.[Guo-Wen], Qiu, H.[Han], He, R.[Ruan], Li, J.[Jiwei], Zhang, T.W.[Tian-Wei],
Improving Adversarial Robustness of 3D Point Cloud Classification Models,
ECCV22(IV:672-689).
Springer DOI 2211
BibRef

Li, K.D.[Kai-Dong], Zhang, Z.M.[Zi-Ming], Zhong, C.C.[Cun-Cong], Wang, G.H.[Guang-Hui],
Robust Structured Declarative Classifiers for 3D Point Clouds: Defending Adversarial Attacks with Implicit Gradients,
CVPR22(15273-15283)
IEEE DOI 2210
Point cloud compression, Deep learning, Image coding, Neural networks, Lattices, Deep learning architectures and techniques BibRef

Ren, Q.B.[Qi-Bing], Bao, Q.Q.[Qing-Quan], Wang, R.Z.[Run-Zhong], Yan, J.C.[Jun-Chi],
Appearance and Structure Aware Robust Deep Visual Graph Matching: Attack, Defense and Beyond,
CVPR22(15242-15251)
IEEE DOI 2210
Training, Visualization, Image recognition, Computational modeling, Robustness, Data models, Adversarial attack and defense, Representation learning BibRef

Lee, B.K.[Byung-Kwan], Kim, J.[Junho], Ro, Y.M.[Yong Man],
Masking Adversarial Damage: Finding Adversarial Saliency for Robust and Sparse Network,
CVPR22(15105-15115)
IEEE DOI 2210
Training, Degradation, Computational modeling, Semantics, Neural networks, Memory management, Robustness, Adversarial attack and defense BibRef

Özdenizci, O.[Ozan], Legenstein, R.[Robert],
Improving Robustness Against Stealthy Weight Bit-Flip Attacks by Output Code Matching,
CVPR22(13378-13387)
IEEE DOI 2210
Deep learning, Codes, Quantization (signal), Impedance matching, Computational modeling, Benchmark testing, Deep learning architectures and techniques BibRef

Yamada, Y.[Yutaro], Otani, M.[Mayu],
Does Robustness on ImageNet Transfer to Downstream Tasks?,
CVPR22(9205-9214)
IEEE DOI 2210
Image segmentation, Transfer learning, Semantics, Neural networks, Object detection, Transformers, Robustness, Adversarial attack and defense BibRef

Mao, X.F.[Xiao-Feng], Qi, G.[Gege], Chen, Y.F.[Yue-Feng], Li, X.D.[Xiao-Dan], Duan, R.J.[Ran-Jie], Ye, S.[Shaokai], He, Y.[Yuan], Xue, H.[Hui],
Towards Robust Vision Transformer,
CVPR22(12032-12041)
IEEE DOI 2210
Systematics, Costs, Machine vision, Training data, Benchmark testing, Transformers, Robustness, Adversarial attack and defense BibRef

Sun, M.J.[Ming-Jie], Li, Z.C.[Zi-Chao], Xiao, C.W.[Chao-Wei], Qiu, H.[Haonan], Kailkhura, B.[Bhavya], Liu, M.Y.[Ming-Yan], Li, B.[Bo],
Can Shape Structure Features Improve Model Robustness under Diverse Adversarial Settings?,
ICCV21(7506-7515)
IEEE DOI 2203
Visualization, Systematics, Sensitivity, Shape, Image edge detection, Perturbation methods, Pipelines, Adversarial learning, Recognition and classification BibRef

Huang, J.X.[Jia-Xing], Guan, D.[Dayan], Xiao, A.[Aoran], Lu, S.J.[Shi-Jian],
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking,
ICCV21(8968-8979)
IEEE DOI 2203
Training, Representation learning, Perturbation methods, Semantics, Supervised learning, FAA, grouping and shape BibRef

Wang, S.J.[Shao-Jie], Wu, T.[Tong], Chakrabarti, A.[Ayan], Vorobeychik, Y.[Yevgeniy],
Adversarial Robustness of Deep Sensor Fusion Models,
WACV22(1371-1380)
IEEE DOI 2202
Training, Systematics, Laser radar, Perturbation methods, Neural networks, Object detection, Sensor fusion, Adversarial Attack and Defense Methods BibRef

Hasnat, A.[Abul], Shvai, N.[Nadiya], Nakib, A.[Amir],
CNN Classifier's Robustness Enhancement when Preserving Privacy,
ICIP21(3887-3891)
IEEE DOI 2201
Privacy, Data privacy, Image processing, Supervised learning, Prediction algorithms, Robustness, Privacy, Vehicle Classification, CNN BibRef

Liu, L.Q.[Lan-Qing], Duan, Z.Y.[Zhen-Yu], Xu, G.Z.[Guo-Zheng], Xu, Y.[Yi],
Self-Supervised Disentangled Embedding for Robust Image Classification,
ICIP21(1494-1498)
IEEE DOI 2201
Deep learning, Image segmentation, Correlation, Target recognition, Tools, Robustness, Security, Disentanglement, Adversarial Examples, Robustness BibRef

Maho, T.[Thibault], Bonnet, B.[Benoît], Furony, T.[Teddy], Le Merrer, E.[Erwan],
RoBIC: A Benchmark Suite for Assessing Classifiers Robustness,
ICIP21(3612-3616)
IEEE DOI 2201
Image processing, Benchmark testing, Distortion, Robustness, Distortion measurement, Benchmark, adversarial examples, half-distortion measure BibRef

Co, K.T.[Kenneth T.], Muñoz-González, L.[Luis], Kanthan, L.[Leslie], Glocker, B.[Ben], Lupu, E.C.[Emil C.],
Universal Adversarial Robustness of Texture and Shape-Biased Models,
ICIP21(799-803)
IEEE DOI 2201
Training, Deep learning, Analytical models, Perturbation methods, Image processing, Neural networks, deep neural networks BibRef

Agarwal, A.[Akshay], Vatsa, M.[Mayank], Singh, R.[Richa], Ratha, N.[Nalini],
Intelligent and Adaptive Mixup Technique for Adversarial Robustness,
ICIP21(824-828)
IEEE DOI 2201
Training, Deep learning, Image recognition, Image analysis, Perturbation methods, Robustness, Natural language processing, Object Recognition BibRef

Pérez, J.C.[Juan C.], Alfarra, M.[Motasem], Jeanneret, G.[Guillaume], Rueda, L.[Laura], Thabet, A.[Ali], Ghanem, B.[Bernard], Arbeláez, P.[Pablo],
Enhancing Adversarial Robustness via Test-Time Transformation Ensembling,
AROW21(81-91)
IEEE DOI 2112
Deep learning, Perturbation methods, Transforms, Robustness, Data models BibRef

De, K.[Kanjar], Pedersen, M.[Marius],
Impact of Colour on Robustness of Deep Neural Networks,
AROW21(21-30)
IEEE DOI 2112
Deep learning, Image color analysis, Perturbation methods, Tools, Distortion, Robustness BibRef

Wu, T.[Tong], Liu, Z.W.[Zi-Wei], Huang, Q.Q.[Qing-Qiu], Wang, Y.[Yu], Lin, D.[Dahua],
Adversarial Robustness under Long-Tailed Distribution,
CVPR21(8655-8664)
IEEE DOI 2111
Training, Systematics, Codes, Robustness BibRef

Addepalli, S.[Sravanti], Jain, S.[Samyak], Sriramanan, G.[Gaurang], Babu, R.V.[R. Venkatesh],
Boosting Adversarial Robustness using Feature Level Stochastic Smoothing,
SAIAD21(93-102)
IEEE DOI 2109
Training, Deep learning, Smoothing methods, Boosting, Feature extraction BibRef

Ali, A.[Arslan], Migliorati, A.[Andrea], Bianchi, T.[Tiziano], Magli, E.[Enrico],
Beyond Cross-Entropy: Learning Highly Separable Feature Distributions for Robust and Accurate Classification,
ICPR21(9711-9718)
IEEE DOI 2105
Robustness to adversarial attacks. Training, Deep learning, Perturbation methods, Gaussian distribution, Linear programming, Robustness BibRef

Hou, Y.F.[Yu-Fan], Zou, L.X.[Li-Xin], Liu, W.D.[Wei-Dong],
Task-based Focal Loss for Adversarially Robust Meta-Learning,
ICPR21(2824-2829)
IEEE DOI 2105
Training, Perturbation methods, Resists, Machine learning, Benchmark testing, Robustness BibRef

Alamri, F.[Faisal], Kalkan, S.[Sinan], Pugeault, N.[Nicolas],
Transformer-Encoder Detector Module: Using Context to Improve Robustness to Adversarial Attacks on Object Detection,
ICPR21(9577-9584)
IEEE DOI 2105
Visualization, Perturbation methods, Detectors, Object detection, Transforms, Field-flow fractionation, Feature extraction BibRef

Schwartz, D.[Daniel], Alparslan, Y.[Yigit], Kim, E.[Edward],
Regularization and Sparsity for Adversarial Robustness and Stable Attribution,
ISVC20(I:3-14).
Springer DOI 2103
BibRef

Rusak, E.[Evgenia], Schott, L.[Lukas], Zimmermann, R.S.[Roland S.], Bitterwolf, J.[Julian], Bringmann, O.[Oliver], Bethge, M.[Matthias], Brendel, W.[Wieland],
A Simple Way to Make Neural Networks Robust Against Diverse Image Corruptions,
ECCV20(III:53-69).
Springer DOI 2012
BibRef

Bui, A.[Anh], Le, T.[Trung], Zhao, H.[He], Montague, P.[Paul], deVel, O.[Olivier], Abraham, T.[Tamas], Phung, D.[Dinh],
Improving Adversarial Robustness by Enforcing Local and Global Compactness,
ECCV20(XXVII:209-223).
Springer DOI 2011
BibRef

Mao, C.Z.[Cheng-Zhi], Gupta, A.[Amogh], Nitin, V.[Vikram], Ray, B.[Baishakhi], Song, S.[Shuran], Yang, J.F.[Jun-Feng], Vondrick, C.[Carl],
Multitask Learning Strengthens Adversarial Robustness,
ECCV20(II:158-174).
Springer DOI 2011
BibRef

Mohapatra, J., Weng, T., Chen, P., Liu, S., Daniel, L.,
Towards Verifying Robustness of Neural Networks Against A Family of Semantic Perturbations,
CVPR20(241-249)
IEEE DOI 2008
Semantics, Perturbation methods, Robustness, Image color analysis, Brightness, Neural networks, Tools BibRef

Wu, M., Kwiatkowska, M.,
Robustness Guarantees for Deep Neural Networks on Videos,
CVPR20(308-317)
IEEE DOI 2008
Robustness, Videos, Optical imaging, Adaptive optics, Optical sensors, Measurement, Neural networks BibRef

Chan, A., Tay, Y., Ong, Y.,
What It Thinks Is Important Is Important: Robustness Transfers Through Input Gradients,
CVPR20(329-338)
IEEE DOI 2008
Robustness, Task analysis, Training, Computational modeling, Perturbation methods, Impedance matching, Predictive models BibRef

Jefferson, B., Marrero, C.O.,
Robust Assessment of Real-World Adversarial Examples,
AML-CV20(3442-3449)
IEEE DOI 2008
Cameras, Light emitting diodes, Robustness, Lighting, Detectors, Testing, Perturbation methods BibRef

Goel, A., Agarwal, A., Vatsa, M., Singh, R., Ratha, N.K.,
DNDNet: Reconfiguring CNN for Adversarial Robustness,
TCV20(103-110)
IEEE DOI 2008
Mathematical model, Perturbation methods, Machine learning, Robustness, Computational modeling, Databases BibRef

Rahnama, A., Nguyen, A.T., Raff, E.,
Robust Design of Deep Neural Networks Against Adversarial Attacks Based on Lyapunov Theory,
CVPR20(8175-8184)
IEEE DOI 2008
Robustness, Nonlinear systems, Training, Control theory, Stability analysis, Perturbation methods, Transient analysis BibRef

Zhao, Y., Wu, Y., Chen, C., Lim, A.,
On Isometry Robustness of Deep 3D Point Cloud Models Under Adversarial Attacks,
CVPR20(1198-1207)
IEEE DOI 2008
Robustness, Data models, Solid modeling, Computational modeling, Perturbation methods BibRef

Gowal, S., Qin, C., Huang, P., Cemgil, T., Dvijotham, K., Mann, T., Kohli, P.,
Achieving Robustness in the Wild via Adversarial Mixing With Disentangled Representations,
CVPR20(1208-1217)
IEEE DOI 2008
Perturbation methods, Robustness, Training, Semantics, Correlation, Task analysis, Mathematical model BibRef

Jeddi, A., Shafiee, M.J., Karg, M., Scharfenberger, C., Wong, A.,
Learn2Perturb: An End-to-End Feature Perturbation Learning to Improve Adversarial Robustness,
CVPR20(1238-1247)
IEEE DOI 2008
Perturbation methods, Robustness, Training, Neural networks, Data models, Uncertainty, Optimization BibRef

Addepalli, S.[Sravanti], Vivek, B.S., Baburaj, A.[Arya], Sriramanan, G.[Gaurang], Babu, R.V.[R. Venkatesh],
Towards Achieving Adversarial Robustness by Enforcing Feature Consistency Across Bit Planes,
CVPR20(1017-1026)
IEEE DOI 2008
Training, Robustness, Quantization (signal), Visual systems, Perturbation methods, Neural networks BibRef

Guo, M., Yang, Y., Xu, R., Liu, Z., Lin, D.,
When NAS Meets Robustness: In Search of Robust Architectures Against Adversarial Attacks,
CVPR20(628-637)
IEEE DOI 2008
Robustness, Training, Network architecture, Neural networks, Convolution, Architecture BibRef

Lee, S., Lee, H., Yoon, S.,
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization,
CVPR20(269-278)
IEEE DOI 2008
Robustness, Training, Standards, Perturbation methods, Complexity theory, Upper bound, Data models BibRef

Dong, Y., Fu, Q., Yang, X., Pang, T., Su, H., Xiao, Z., Zhu, J.,
Benchmarking Adversarial Robustness on Image Classification,
CVPR20(318-328)
IEEE DOI 2008
Robustness, Adaptation models, Training, Predictive models, Perturbation methods, Data models, Measurement BibRef

Naseer, M., Khan, S., Hayat, M., Khan, F.S., Porikli, F.M.,
A Self-supervised Approach for Adversarial Robustness,
CVPR20(259-268)
IEEE DOI 2008
Perturbation methods, Task analysis, Distortion, Training, Robustness, Feature extraction, Neural networks BibRef

Kim, D.H.[Dong-Hyun], Bargal, S.A.[Sarah Adel], Zhang, J.M.[Jian-Ming], Sclaroff, S.[Stan],
Multi-way Encoding for Robustness,
WACV20(1341-1349)
IEEE DOI 2006
To counter adversarial attacks. Encoding, Robustness, Perturbation methods, Training, Biological system modeling, Neurons, Correlation BibRef

Zhang, L., Yu, M., Chen, T., Shi, Z., Bao, C., Ma, K.,
Auxiliary Training: Towards Accurate and Robust Models,
CVPR20(369-378)
IEEE DOI 2008
Training, Robustness, Perturbation methods, Neural networks, Data models, Task analysis, Feature extraction BibRef

Peterson, J.[Joshua], Battleday, R.[Ruairidh], Griffiths, T.[Thomas], Russakovsky, O.[Olga],
Human Uncertainty Makes Classification More Robust,
ICCV19(9616-9625)
IEEE DOI 2004
CIFAR10H dataset. To make deep network robust ot adversarial attacks. convolutional neural nets, learning (artificial intelligence), pattern classification, classification performance, Dogs BibRef

Ramanathan, T., Manimaran, A., You, S., Kuo, C.J.,
Robustness of Saak Transform Against Adversarial Attacks,
ICIP19(2531-2535)
IEEE DOI 1910
Saak transform, Adversarial attacks, Deep Neural Networks, Image Classification BibRef

Chen, H., Liang, J., Chang, S., Pan, J., Chen, Y., Wei, W., Juan, D.,
Improving Adversarial Robustness via Guided Complement Entropy,
ICCV19(4880-4888)
IEEE DOI 2004
entropy, learning (artificial intelligence), neural nets, probability, adversarial defense, adversarial robustness, BibRef

Raff, E.[Edward], Sylvester, J.[Jared], Forsyth, S.[Steven], McLean, M.[Mark],
Barrage of Random Transforms for Adversarially Robust Defense,
CVPR19(6521-6530).
IEEE DOI 2002
BibRef

Agarwal, C., Nguyen, A., Schonfeld, D.,
Improving Robustness to Adversarial Examples by Encouraging Discriminative Features,
ICIP19(3801-3805)
IEEE DOI 1910
Adversarial Machine Learning, Robustness, Defenses, Deep Learning BibRef

Behpour, S., Xing, W., Ziebart, B.D.,
ARC: Adversarial Robust Cuts for Semi-Supervised and Multi-label Classification,
WiCV18(1986-19862)
IEEE DOI 1812
Markov random fields, Task analysis, Training, Testing, Support vector machines, Fasteners, Games BibRef

Karim, R., Islam, M.A., Mohammed, N., Bruce, N.D.B.,
On the Robustness of Deep Learning Models to Universal Adversarial Attack,
CRV18(55-62)
IEEE DOI 1812
Perturbation methods, Computational modeling, Neural networks, Task analysis, Image segmentation, Data models, Semantics, Semantic Segmentation BibRef

Jakubovitz, D.[Daniel], Giryes, R.[Raja],
Improving DNN Robustness to Adversarial Attacks Using Jacobian Regularization,
ECCV18(XII: 525-541).
Springer DOI 1810
BibRef

Rozsa, A., Gunther, M., Boult, T.E.,
Towards Robust Deep Neural Networks with BANG,
WACV18(803-811)
IEEE DOI 1806
image processing, learning (artificial intelligence), neural nets, BANG technique, adversarial image utilization, Training BibRef

Lu, J., Issaranon, T., Forsyth, D.A.,
SafetyNet: Detecting and Rejecting Adversarial Examples Robustly,
ICCV17(446-454)
IEEE DOI 1802
image colour analysis, image reconstruction, learning (artificial intelligence), neural nets, BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Adversarial Patch Attacks, Spatial Context, Defense .


Last update:Nov 2, 2025 at 14:03:07