Edmonds, J.,
Maximum Matching and a Polyhedron with (0, 1) Vertices,
NBS(68)(b), 1965, pp.125-130.
BibRef
6500
Edmonds, J., and
Johnson, E.L.,
Matching, Euler Tours and the Chinese Postman,
Math. Programming(5), 1973, pp. 88-124.
BibRef
7300
Gips, J.[James],
A syntax-directed program that performs a three-dimensional perceptual
task,
PR(6), No. 3-4, December 1974, pp. 189-199.
Elsevier DOI
0309
Analyze mental rotation problem with line drawings.
BibRef
Udupa, K.J.,
Murthy, I.S.N.,
Some new concepts for encoding line patterns,
PR(7), No. 4, December 1975, pp. 225-233.
Elsevier DOI
0309
A sequence of turning and end points.
See also New Concepts for Three-Dimensional Shape Analysis.
BibRef
Keegan, J.F.[James F.],
Lesk, A.M.[Arthur M.],
How Can You Tell if Two Line Drawings Are the Same?,
CGIP(6), No. 1, February 1977, pp. 90-92.
Elsevier DOI Reduce line drawings to canonical form. Equivalent drawings will have same
form.
BibRef
7702
Akl, S.G.,
Toussaint, G.T.,
An Improved Algorithm to Check for Polygon Similarity,
IPL(7), 1978, pp. 127-128.
BibRef
7800
Earlier:
PRIP78(39-41).
BibRef
Shapiro, L.G.[Linda G.],
Inexact matching of line drawings in a syntactic pattern recognition
system,
PR(10), No. 5-6, 1978, pp. 313-321.
Elsevier DOI
0309
components and interrelationships.
BibRef
Medioni, G.G., and
Nevatia, R.,
Matching Images Using Linear Features,
PAMI(6), No. 6, November 1984, pp. 675-685.
BibRef
8411
USC Computer Vision
BibRef
Earlier:
Matching Linear Features of Images and Maps,
DARPA82(103-111).
BibRef
And: A1 only:
first title:
Ph.D.August 1983,
BibRef
USC
Matching, Lines.
Relaxation. This system matches two views of a scene (or a map and an image) where
there are few geometric distortions--a global transformation is
sufficient to align the line segments in the two views. Given two
line segments in the model and a match of one of these with a segment
in the image, the valid area of the second segment can be restricted
to a parallelogram. This is caused by the fact that the segments are
allowed to partially match anywhere along their lengths. This
parallelogram is used to judge whether a match is valid when another
is assumed. Several matches (3) are derived with a relaxation based
procedure that finds a kernel of matching segments. This kernel is
used to find all the other matching line segments since the segments
in the kernel constrain the position of all the other segments in the
image. This method was used in model to image matching and image to
image matching and can be used in a multi-resolution mode if desired.
See also Segment-Based Stereo Matching.
BibRef
Kaufman, P.,
Medioni, G.G., and
Nevatia, R.,
Visual Inspection Using Linear Features,
PR(17), No. 5, 1984, pp. 485-491.
Elsevier DOI
BibRef
8400
USC Computer Vision
PDF File.
BibRef
Earlier:
CVPR83(496-497).
An application of the segment matching technique.
BibRef
Medioni, G.G.,
Huertas, A., and
Wilson, M.R.,
Automatic Registration of Color Separation Films,
MVA(4), No. 1, 1991.
BibRef
9100
USC Computer VisionFeature based approach to get very accurate alignment.
BibRef
Medioni, G.G.[Gerard G.],
Wilson, M.R.[Monti R.],
Prohaska, T.F.[Timothy F.],
Poretta, L.R.[Lynn R.],
Method and apparatus for registering color separation film,
US_Patent4,849,914, July 18, 1989.
WWW Link.
BibRef
8907
Wilson, M.R.[Monti R.],
Hutchison, V.E.[Victor E.],
Bendure, W.J.[William J.],
Anderson, F.W.[Frederick W.],
Method and apparatus for registering color separation film 1,
US_Patent4,641,244, February 3, 1987.
WWW Link.
BibRef
8702
Medioni, G.,
Huertas, A.,
Wilson, M.R.,
The Registar Machine: From Conception to Installation,
WACV92(224-231).
IEEE DOI
BibRef
9200
USC Computer Vision
BibRef
Medioni, G.,
Matching Regions in Aerial Images,
CVPR83(364-365).
BibRef
8300
USC Computer Vision
BibRef
Earlier:
Matching High Level Features of an Aerial Image with a Map or
Another Image,
CVWS82(113-115).
BibRef
Matsuyama, T.[Takashi],
Arita, H.[Hidekazu],
Nagao, M.[Makoto],
Structural Matching of Line Drawings Using the Geometric
Relationship between Line Segments,
CVGIP(27), No. 2, August 1984, pp. 177-194. (Kyoto)
Elsevier DOI Relationships between pairs of lines are used in the matching
process. The relations seem to be sets of three lines which
intersect one line. The properties would then be related to this
pattern. This may be useful.
BibRef
8408
McIntosh, J.H.[James H.],
Mutch, K.M.[Kathleen M.],
Matching Straight Lines,
CVGIP(43), No. 3, September 1988, pp. 386-408.
Elsevier DOI The matching is based on parameters extracted from the regions where
the straight line is located (i.e. features of the segments), not on
adjacencies, contours, etc.
BibRef
8809
Liu, Y.C.[Yun-Cai], and
Huang, T.S.,
Determining Straight Line Correspondences from Intensity Images,
PR(24), No. 6, 1991, pp. 489-504.
Elsevier DOI For use of this algorithm:
See also Estimation of Rigid Body Motion Using Straight Line Correspondences.
See also Rigid Object Motion Estimation from Intensity Images Using Straight Line Correspondences.
BibRef
9100
Borgefors, G.[Gunilla],
Hierarchical Chamfer Matching:
A Parametric Edge Matching Algorithm,
PAMI(10), No. 6, November 1988, pp. 849-865.
IEEE DOI
BibRef
8811
Earlier:
An Improved Version of the Chamfer Matching Algorithm,
ICPR84(1175-1177).
BibRef
Earlier:
Chamfering: A fast method for obtaining approximations of the
Euclidean distance in N dimensions,
SCIA83(250-255).
Pyramid Structure.
Chamfer Matching.
Matching, Chamfer. Applies chamfer techniques to a pyramid representation for
efficiency.
BibRef
Burr, D.J.,
Elastic Matching of Line Drawings,
PAMI(3), No. 6, November 1981, pp. 708-713.
BibRef
8111
Earlier:
ICPR80(223-228). (Bell Labs).
Interesting for a low level Comparison of lines using a local
stretching of the segment data. E.g. use for determining edge-edge
match in a global system.
BibRef
Burr, D.J.,
A Technique for Comparing Curves,
PRIP79(271-277).
BibRef
7900
Fritsch, D.S.,
Pizer, S.M.,
Morse, B.S.,
Eberly, D.H.,
Liu, A.,
The Multiscale Medial Axis and Its Applications in
Image Registration,
PRL(15), No. 5, May 1994, pp. 445-452.
Medial Axis Transform.
BibRef
9405
Cox, I.J.,
Kruskal, J.B., and
Wallach, D.A.,
Predicting and Estimating the Accuracy of a Subpixel Registration
Algorithm,
PAMI(12), No. 8, August 1990, pp. 721-734.
IEEE DOI Discusses different causes of errors and enables the prediction of
the match error.
BibRef
9008
Cox, I.J., and
Kruskal, J.B.,
On the Congruence of Noisy Images to Line Segment Models,
ICCV88(252-258).
IEEE DOI Find the closest line. See the above for an analysis.
BibRef
8800
Barrow, H.G.,
Tenenbaum, J.M.,
Bolles, R.C., and
Wolf, H.C.,
Parametric Correspondence and Chamfer Matching:
Two New Techniques for Image Matching,
IJCAI77(659-663).
BibRef
7700
And:
DARPA77(21-27).
Matching, Chamfer.
Chamfer matching. The early incomplete chamfer matching paper. Weight the distance from the
ideal match, store the values in an image. This is used to guide the search
for the best fit. k
For the model, a chamfer image is created where the
image value is based on the distance to a line in the model (this is
the derivation of the name).
There is no better reference that I know,
this one is poor, but at the time there were fewer journal publications.
BibRef
Lai, J.Z.C.,
Sensitivity Analysis Of Line Correspondence,
SMC(25), No. 6, June 1995, pp. 1016-1023.
BibRef
9506
Clark, C.S.,
Conti, D.K.,
Eckhardt, W.O.,
McCulloh, T.A.,
Nevatia, R., and
Tseng, D.Y.,
Matching of Natural Terrain Scenes,
ICPR80(217-222). (Hughes).
BibRef
8000
USC Computer Vision
Matching, Lines. The program matches two views of a scene with natural terrain using
the boundaries of dominant objects. The input line segments can be
generated by any means, but this paper used objects extracted by a
histogram based segmentation procedure that gets some of the more
obvious regions. Straight lines segment representations of the
regions provide the input to the matching procedure. From three
lines in the image, form an initial guess for the match. Evaluate
the match by applying the computed transform to all other lines and
finding corresponding line segments in the second view. The best
match, in terms of the number and quality of the matching segments,
provides the global transformation between the two views.
BibRef
Clark, C.S.,
Luk, A.,
McNary, C.,
Feature Based Scene Analysis and Model Matching,
NATO ASI(), Pattern Recognition and Signal Processing
Paris, 1978.
Early version of the other Clark et al. papers.
BibRef
7800
Clark, C.S.,
Eckhardt, W.O.,
McNary, C.,
Nevatia, R.,
Olin, K., and
van Orden, E.,
High Accuracy Model Matching for Scenes Containing
Man-Made Structures,
SPIE(186), Symposium on Digital Processing of Aerial Images, 1979,
pp. 54-62.
BibRef
7900
USC Computer VisionRelated to the first Clark et al. paper.
BibRef
Xie, M.[Ming],
Cooperative Strategy for Matching Multilevel Edge Primitives,
IVC(13), No. 2, March 1995, pp. 89-99.
Elsevier DOI
BibRef
9503
Beveridge, J.R., and
Riseman, E.M.,
Optimal Geometric Model-Matching under Full 3D Perspective,
CVIU(61), No. 3, May 1995, pp. 351-364.
DOI Link
PS File.
BibRef
9505
Earlier:
Hybrid Weak-Perspective and Full-Perspective Matching,
CVPR92(432-438).
IEEE DOI
PS File.
BibRef
Earlier:
Can Too Much Perspective Spoil the View? A Case Study in 2D
Affine Versus 3D Perspective Model Matching,
DARPA92(655-663).
BibRef
And:
COINSTR-91-86, November 1991.
BibRef
Beveridge, J.R.,
Riseman, E.M.,
How Easy Is Matching 2D Line Models Using Local Search?,
PAMI(19), No. 6, June 1997, pp. 564-579.
IEEE DOI
PS File.
9708
BibRef
Beveridge, J.R.[J. Ross],
Graves, C.R.[Christopher R.],
Steinborn, J.[Jim],
Comparing Random-Starts Local Search with Key-Feature Matching,
IJCAI97(1476-1481).
PS File.
BibRef
9700
Beveridge, J.R.,
Local Search Algorithms for Geometric Object Recognition:
Finding the Optimal Correspondence and Pose,
UMassTR 93-71, September 1993.
BibRef
9309
Ph.D.Thesis.
PS File.
BibRef
Whitley, D.,
Beveridge, J.R.,
Graves, C.,
Mathias, K.,
Test Driving Three 1995 Genetic Algorithms:
New Test Functions and Geometric Matching,
Heuristics(1), No. 1, 1995, pp. 77-104.
BibRef
9500
Collins, R.T., and
Beveridge, J.R.,
Matching Perspective Views of Coplanar Structures Using
Projective Unwarping and Similarity Matching,
CVPR93(240-245).
IEEE DOI
BibRef
9300
And:
DARPA93(459-463).
BibRef
And:
COINS94-06, February 1994.
Line segment matching for rectification.
BibRef
Beveridge, J.R.,
Riseman, E.R.,
Graves, C.R.,
Demonstrating Polynomial Run-Time Growth for Local Search Matching,
SCV95(533-538).
IEEE DOI Colorado State Univ.. U. of Massachusetts. Colorado State Univ..
BibRef
9500
Beveridge, J.R.,
Weiss, R., and
Riseman, E.M.,
Optimization of 2-Dimensional Model Matching,
ICPR90(I: 18-23).
IEEE DOI
BibRef
9000
And:
DARPA89(815-830).
BibRef
And:
Optimization of 2-Dimensional Model Matching Under Rotation, Translation
and Scale,
COINSTR-89-57, June 1989.
Given a line model and edges in the image, match by a Hough approach
over global translation and rotation. This is followed by a local
search to find the exact match. The results are good, but the idea
is basic.
BibRef
Stevens, M.R.,
Beveridge, J.R.[J. Ross],
Precise Matching of 3-D Target Models to Multisensor Data,
IP(6), No. 1, January 1997, pp. 126-142.
IEEE DOI
PS File.
9703
BibRef
Stevens, M.R.[Mark R.],
Beveridge, J.R.[J. Ross],
Localized Scene Interpretation from 3D Models, Range, and Optical Data,
CVIU(80), No. 2, November 2000, pp. 111-129.
DOI Link
0012
BibRef
Stevens, M.R.[Mark R.],
Beveridge, J.R.[J. Ross],
Integrating Graphics and Vision for Object Recognition,
KluwerOctober 2000, ISBN 0-7923-7207-7.
WWW Link.
BibRef
0010
Stevens, M.R.,
Beveridge, J.R.,
Interleaving 3D Model Feature Prediction and Matching to
Suport Multi-Sensor Object Recognition,
ICPR96(I: 607-611).
IEEE DOI
9608
BibRef
ARPA96(699-706).
(Colorado State Univ., USA)
PS File. And the IUW Version:
PS File.
BibRef
Stevens, M.R.,
Reasoning About Object Appearance in the Context of a Scene,
Ph.D.Thesis, Colorado State University, 1999.
BibRef
9900
Beveridge, J.R.,
Graves, C.,
Lesher, C.E.,
Local Search as a Tool for Horizon Line Matching,
ARPA96(683-686).
PS File.
BibRef
9600
Lee, C.H.[Chia-Hoang],
Joshi, A.[Anupam],
On Correspondence, Line Tokens And Missing Tokens,
PR(28), No. 11, November 1995, pp. 1751-1764.
Elsevier DOI
BibRef
9511
Bhandarkar, S.M.,
Suk, M.,
Sensitivity Analysis for Matching and Pose Computation Using
Dihedral Junctions,
PR(24), No. 6, 1991, pp. 505-513.
Elsevier DOI
BibRef
9100
Nagao, M.,
Shape Recognition by Human-Like Trial and Error Random Processes,
PRAI(10), 1996, pp. 473-490.
BibRef
9600
Lee, H.J.,
Yu, D.J.,
Line-Based Structural Matching Via Segment Splitting,
PRL(11), 1990, pp. 181-189.
BibRef
9000
Christie, S.,
Kvasnik, F.,
Correlation and Image Recognition with Surface-Scattered Light,
AppOpt(36), No. 14, May 10 1997, pp. 3013-3021.
9706
BibRef
Atalay, V.[Volkan],
Yilmaz, M.U.[M. Ugur],
A matching algorithm based on linear features,
PRL(19), No. 9, 31 July 1998, pp. 857-867.
BibRef
9807
Pearce, A.R.[Adrian R.],
Caelli, T.M.[Terry M.],
Interactively Matching Hand-Drawings Using Induction,
CVIU(73), No. 3, March 1999, pp. 391-403.
DOI Link
BibRef
9903
Park, S.H.[Sang Ho],
Lee, K.M.[Kyoung Mu],
Lee, S.U.[Sang Uk],
A Line Feature Matching Technique Based on an Eigenvector Approach,
CVIU(77), No. 3, March 2000, pp. 263-283.
DOI Link
0004
BibRef
Zhu, Z.F.[Zhen-Feng],
Tang, M.[Ming],
Lu, H.Q.[Han-Qing],
A new robust circular Gabor based object matching by using weighted
Hausdorff distance,
PRL(25), No. 4, March 2004, pp. 515-523.
Elsevier DOI
0402
Matching edge maps from Gabor edge filter.
BibRef
Meikle, S.[Stuart],
Amavasai, B.P.,
Caparrelli, F.,
Towards real-time object recognition using pairs of lines,
RealTimeImg(11), No. 1, February 2005, pp. 31-43.
Elsevier DOI
0506
BibRef
Du, H.[Hao],
Chen, Y.Q.[Yan Qiu],
Rectified nearest feature line segment for pattern classification,
PR(40), No. 5, May 2007, pp. 1486-1497.
Elsevier DOI
0702
Pattern classification; Nearest feature line;
Rectified nearest feature line segment; Distribution concentration;
Interpolation and extrapolation accuracy
BibRef
Trias-Sanz, R.[Roger],
Pierrot-Deseilligny, M.[Marc],
Louchet, J.[Jean],
Stamon, G.[Georges],
Methods for Fine Registration of Cadastre Graphs to Images,
PAMI(29), No. 11, November 2007, pp. 1990-2000.
IEEE DOI
0711
Match edges in imprecise graph to precise edges in the image.
BibRef
Zhang, L.[Lulin],
Rupnik, E.[Ewelina],
Pierrot-Deseilligny, M.[Marc],
Feature matching for multi-epoch historical aerial images,
PandRS(182), 2021, pp. 176-189.
Elsevier DOI
2112
Feature matching, Historical images, Multi-epoch,
Pose estimation, Self-calibration
BibRef
Trias-Sanz, R.,
Pierrot-Deseilligny, M.,
A region-based method for graph to image registration with an
application to cadastre data,
ICIP04(III: 1703-1706).
IEEE DOI
0505
BibRef
Ko, S.[San],
Lee, K.M.[Kyoung Mu],
Structural Object Recognition Using Entropy Correspondence Measure of
Line Features,
IEICE(E91-D), No. 1, January 2008, pp. 78-85.
DOI Link
0801
BibRef
Wang, Z.H.[Zhi-Heng],
Wu, F.C.[Fu-Chao],
Hu, Z.Y.[Zhan-Yi],
MSLD: A robust descriptor for line matching,
PR(42), No. 5, May 2009, pp. 941-953.
Elsevier DOI
0902
Line matching; Line descriptor; MSLD descriptor
See also Towards reliable matching of images containing repetitive patterns.
BibRef
Wang, Z.H.[Zhi-Heng],
Liu, H.M.[Hong-Min],
Wu, F.C.[Fu-Chao],
Image Content Based Curve Matching Using HMCD Descriptor,
ACCV09(III: 448-455).
Springer DOI
0909
BibRef
Fan, B.[Bin],
Wu, F.C.[Fu-Chao],
Hu, Z.Y.[Zhan-Yi],
Robust line matching through line-point invariants,
PR(45), No. 2, February 2012, pp. 794-805.
Elsevier DOI
1110
BibRef
Earlier:
Line matching leveraged by point correspondences,
CVPR10(390-397).
IEEE DOI
1006
Line matching; Point matching; Line-point invariants
BibRef
Ueaoki, K.[Katsutoshi],
Iwata, K.[Kazunori],
Suematsu, N.[Nobuo],
Hayashi, A.[Akira],
Matching Handwritten Line Drawings with Von Mises Distributions,
IEICE(E94-D), No. 12, December 2011, pp. 2487-2494.
WWW Link.
1112
BibRef
Iwata, K.[Kazunori],
Yamamoto, H.[Hiroki],
Mimura, K.[Kazushi],
An Extended Scheme for Shape Matching with Local Descriptors,
IEICE(E104-D), No. 2, February 2021, pp. 285-293.
WWW Link.
2102
BibRef
Shang, S.[Shuo],
Yuan, B.[Bo],
Deng, K.[Ke],
Xie, K.[Kexin],
Zheng, K.[Kai],
Zhou, X.F.[Xiao-Fang],
PNN query processing on compressed trajectories,
GeoInfo(16), No. 3, July 2012, pp. 467-496.
WWW Link.
1202
Trajectory compression for spatial-temporal database.
Path nearest neighbor: PNN. Find most likely path in a given road network.
BibRef
Mosaddegh, S.[Saleh],
Fofi, D.[David],
Vasseur, P.[Pascal],
Short baseline line matching for central imaging systems,
PRL(33), No. 16, 1 December 2012, pp. 2292-2301.
Elsevier DOI
1210
BibRef
Earlier:
A Generic Method of Line Matching for Central Imaging Systems under
Short-Baseline Motion,
CIAP09(939-948).
Springer DOI
0909
Central omnidirectional image; Catadioptric; Fish-eye; Line segments
matching; Short baseline; Constructed scene
BibRef
Mosaddegh, S.[Saleh],
Fofi, D.[David],
Vasseur, P.[Pascal],
Ainouz, S.[Samia],
Line Matching across Catadioptric Images,
OMNIVIS08(xx-yy).
0810
BibRef
Altnçay, H.[Hakan],
Erenel, Z.[Zafer],
Avoiding the interpolation inaccuracy in nearest feature line
classifier by spectral feature analysis,
PRL(34), No. 12, 1 September 2013, pp. 1372-1380.
Elsevier DOI
1306
Nearest feature line; Interpolation inaccuracy; Spectral
clustering; Spectral feature analysis; Shortest feature line segment
BibRef
Zhang, L.[Lilian],
Koch, R.[Reinhard],
An efficient and robust line segment matching approach based on LBD
descriptor and pairwise geometric consistency,
JVCIR(24), No. 7, 2013, pp. 794-805.
Elsevier DOI
1309
BibRef
Earlier:
Line Matching Using Appearance Similarities and Geometric Constraints,
DAGM12(236-245).
Springer DOI
1209
Line segment matching
BibRef
Kaliamoorthi, P.,
Kakarala, R.,
Directional Chamfer Matching in 2.5 Dimensions,
SPLetters(20), No. 12, 2013, pp. 1151-1154.
IEEE DOI
1311
image matching
BibRef
Jegelka, S.[Stefanie],
Kapoor, A.[Ashish],
Horvitz, E.J.[Eric J.],
An Interactive Approach to Solving Correspondence Problems,
IJCV(108), No. 1-2, May 2014, pp. 49-58.
Springer DOI
1405
interactive, occlusions, deformations.
BibRef
Kondo, T.[Toshiaki],
Gradient orientation pattern matching with the Hamming distance,
PR(47), No. 10, 2014, pp. 3387-3404.
Elsevier DOI
1406
Pattern matching. Gradient orientations, not image values.
BibRef
López, J.[Juan],
Santos, R.[Roi],
Fdez-Vidal, X.R.[Xosé R.],
Pardo, X.M.[Xosé M.],
Two-view line matching algorithm based on context and appearance in
low-textured images,
PR(48), No. 7, 2015, pp. 2164-2184.
Elsevier DOI
1504
Line detection and matching
BibRef
Yu, Q.[Qian],
Wei, H.[Hui],
Yang, C.Z.[Cheng-Zhuan],
Local part chamfer matching for shape-based object detection,
PR(65), No. 1, 2017, pp. 82-96.
Elsevier DOI
1702
Chamfer matching
BibRef
Wei, H.[Hui],
Yang, C.Z.[Cheng-Zhuan],
Yu, Q.[Qian],
Contour segment grouping for object detection,
JVCIR(48), No. 1, 2017, pp. 292-309.
Elsevier DOI
1708
Shape-based, object, detection
BibRef
Shi, J.C.[Jia-Cha],
Wang, X.Y.[Xuan-Yin],
A local feature with multiple line descriptors and its speeded-up
matching algorithm,
CVIU(162), No. 1, 2017, pp. 57-70.
Elsevier DOI
1710
Local feature
BibRef
El Mokhtari, K.[Karim],
Reboul, S.[Serge],
Choquel, J.B.[Jean-Bernard],
Stienne, G.[Georges],
Amami, B.[Benaissa],
Benjelloun, M.[Mohammed],
Circular particle fusion filter applied to map matching,
IET-ITS(11), No. 8, October 2017, pp. 491-500.
DOI Link
1710
BibRef
Lin, J.Y.[Jing-Yi],
Ban, Y.F.[Yi-Fang],
Comparative Analysis on Topological Structures of Urban Street
Networks,
IJGI(6), No. 10, 2017, pp. xx-yy.
DOI Link
1710
Much more than just matching.
Compare topology of streets.
BibRef
Bai, L.F.[Li-Fei],
Yang, X.Q.[Xian-Qiang],
Gao, H.J.[Hui-Jun],
Improved chamfer matching method for surface mount component
positioning,
IET-IPR(11), No. 12, Decmeber 2017, pp. 1265-1272.
DOI Link
1712
BibRef
Jia, Q.[Qi],
Fan, X.[Xin],
Gao, X.K.[Xin-Kai],
Yu, M.Y.[Mei-Yu],
Li, H.J.[Hao-Jie],
Luo, Z.X.[Zhong-Xuan],
Line matching based on line-points invariant and local homography,
PR(81), 2018, pp. 471-483.
Elsevier DOI
1806
Line matching, Characteristic number, Line-points projective invariant
BibRef
Li, Y.,
Wang, F.,
Stevenson, R.,
Fan, R.,
Tan, H.,
Reliable Line Segment Matching for Multispectral Images Guided by
Intersection Matches,
CirSysVideo(29), No. 10, October 2019, pp. 2899-2912.
IEEE DOI
1910
feature extraction, image matching, image segmentation,
improved matching accuracy, detection inaccuracy, line matching,
intersection
BibRef
Wei, D.[Dong],
Zhang, Y.J.[Yong-Jun],
Li, C.[Chang],
Robust line segment matching via reweighted random walks on the
homography graph,
PR(111), 2021, pp. 107693.
Elsevier DOI
2012
Line segment matching, Epipolar geometry,
Reweighted random walks, Graph matching
BibRef
Wei, D.[Dong],
Zhang, Y.J.[Yong-Jun],
Liu, X.[Xinyi],
Li, C.[Chang],
Li, Z.[Zhuofan],
Robust line segment matching across views via ranking the line-point
graph,
PandRS(171), 2021, pp. 49-62.
Elsevier DOI
2012
Line segment matching, Graph rank, Scene plane theory, 3D reconstruction
BibRef
Wang, J.X.[Jing-Xue],
Zhu, Q.[Qing],
Liu, S.[Suyan],
Wang, W.X.[Wei-Xi],
Robust line feature matching based on pair-wise geometric constraints
and matching redundancy,
PandRS(172), 2021, pp. 41-58.
Elsevier DOI
2101
Line segment matching, Line pair matching,
Pair-wise geometric constraint, Matching result checking
BibRef
Maiwald, F.[Ferdinand],
Lehmann, C.[Christoph],
Lazariv, T.[Taras],
Fully Automated Pose Estimation of Historical Images in the Context
of 4D Geographic Information Systems Utilizing Machine Learning
Methods,
IJGI(10), No. 11, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zheng, X.W.[Xian-Wei],
Yuan, Z.[Zhuang],
Dong, Z.[Zhen],
Dong, M.Y.[Ming-Yue],
Gong, J.Y.[Jian-Ya],
Xiong, H.J.[Han-Jiang],
Smoothly varying projective transformation for line segment matching,
PandRS(183), 2022, pp. 129-146.
Elsevier DOI
2201
Line segment matching, Street-level images,
Motion modeling, Projective transformation
BibRef
Wang, J.X.[Jing-Xue],
Liu, S.[Suyan],
Zhang, P.[Ping],
A New Line Matching Approach for High-Resolution Line Array Remote
Sensing Images,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Hu, H.C.[Hao-Chen],
Li, B.Y.[Bo-Yang],
Yang, W.Y.[Wen-Yu],
Wen, C.Y.[Chih-Yung],
A Novel Multispectral Line Segment Matching Method Based on Phase
Congruency and Multiple Local Homographies,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Lapaine, M.[Miljenko],
Matching Standard and Secant Parallels in Cylindrical Projections,
IJGI(12), No. 2, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Shen, L.[Liang],
Zhu, J.H.[Jia-Hua],
Xin, Q.[Qin],
Huang, X.T.[Xiao-Tao],
Jin, T.[Tian],
Robust line segment mismatch removal using point-pair representation
and Gaussian-uniform mixture formulation,
PandRS(203), 2023, pp. 314-327.
Elsevier DOI
2310
Image matching, Line segment matching, Mismatch removal,
Outlier rejection, Gaussian-uniform formulation, Feature matching
BibRef
Guo, H.Y.[Hao-Yu],
Wei, D.[Dong],
Zhang, Y.J.[Yong-Jun],
Wan, Y.[Yi],
Zheng, Z.[Zhi],
Yao, Y.X.[Yong-Xiang],
Liu, X.[Xinyi],
Li, Z.[Zhuofan],
The One-Point-One-Line geometry for robust and efficient line segment
correspondence,
PandRS(210), 2024, pp. 80-96.
Elsevier DOI Code:
WWW Link.
2404
Line matching, Epipolar geometry, Point orientation,
One-point-one-line geometry, 3D reconstruction
BibRef
Pautrat, R.[Rémi],
Suárez, I.[Iago],
Yu, Y.F.[Yi-Fan],
Pollefeys, M.[Marc],
Larsson, V.[Viktor],
GlueStick: Robust Image Matching by Sticking Points and Lines
Together,
ICCV23(9672-9682)
IEEE DOI Code:
WWW Link.
2401
BibRef
Li, H.A.[Hao-Ang],
Chen, K.[Kai],
Zhao, J.[Ji],
Wang, J.L.[Jiang-Liu],
Kim, P.[Pyojin],
Liu, Z.[Zhe],
Liu, Y.H.[Yun-Hui],
Learning to Identify Correct 2D-2D Line Correspondences on Sphere,
CVPR21(11738-11747)
IEEE DOI
2111
Computer network reliability, Neural networks,
Parallel processing, Robustness
BibRef
Wang, J.X.,
Wang, W.X.,
Wang, C.Y.,
Zhu, H.,
He, W.Y.,
Liu, S.Y.,
Line Segment Matching Algorithm Based on Feature Grouping and LBD
Descriptor,
ISPRS20(B2:103-109).
DOI Link
2012
BibRef
Tanguy, Y.,
Michel, J.,
Salgues, G.,
Automatic Registration of Vector Data with Optical Images,
ISPRS20(B4:191-196).
DOI Link
2012
BibRef
Jia, Q.[Qi],
Gao, X.K.[Xin-Kai],
Fan, X.[Xin],
Luo, Z.X.[Zhong-Xuan],
Li, H.J.[Hao-Jie],
Chen, Z.Y.[Zi-Yao],
Novel Coplanar Line-Points Invariants for Robust Line Matching Across
Views,
ECCV16(VIII: 599-611).
Springer DOI
1611
BibRef
Wang, J.X.[Jing-Xue],
Wang, W.X.[Wei-Xi],
Li, X.M.[Xiao-Ming],
Cao, Z.Y.[Zhen-Yu],
Zhu, H.[Hong],
Li, M.[Miao],
He, B.[Biao],
Zhao, Z.G.[Zhi-Gang],
Line Matching Algorithm for Aerial Image Combining image and object
space similarity constraints,
ISPRS16(B3: 783-788).
DOI Link
1610
BibRef
Li, K.[Kai],
Yao, J.[Jian],
Lu, M.S.[Meng-Sheng],
Heng, Y.[Yuan],
Wu, T.[Teng],
Li, Y.X.[Yin-Xuan],
Line segment matching: A benchmark,
WACV16(1-9)
IEEE DOI
1606
Benchmark testing
BibRef
Li, K.[Kai],
Yao, J.[Jian],
Lu, X.H.[Xiao-Hu],
Robust Line Matching Based on Ray-Point-Ray Structure Descriptor,
RoLoD14(554-569).
Springer DOI
1504
BibRef
Imperoli, M.[Marco],
Pretto, A.[Alberto],
D2CO: Fast and Robust Registration of 3D Textureless Objects Using
the Directional Chamfer Distance,
CVS15(316-328).
Springer DOI
1507
Direct Directional Chamfer Optimization: D2CO
BibRef
Ly, D.S.[Dieu Sang],
Demonceaux, C.[Cedric],
Seulin, R.[Ralph],
Fougerolle, Y.[Yohan],
Scale invariant line matching on the sphere,
ICIP13(3022-3025)
IEEE DOI
1402
Line matching;hybrid cameras;sphere
BibRef
Liu, Z.[Zhe],
Marlet, R.[Renaud],
Virtual Line Descriptor and Semi-Local Graph Matching Method for
Reliable Feature Correspondence,
BMVC12(16).
DOI Link
1301
See also Indoor Calibration Using Segment Chains.
BibRef
Wang, W.,
Lou, A.,
Wang, J.,
The Research of Line Matching Algorithm Under The Improved Homograph
Matrix Constraint Condition,
ISPRS12(XXXIX-B3:345-350).
DOI Link
1209
BibRef
Dalyot, S.,
Dahinden, T.,
Dahinden, M.J.,
Boljen, J.,
Sester, M.,
Geometrical Adjustment Towards The Alignment of Vector Databases,
AnnalsPRS(I-4), No. 2012, pp. 13-18.
DOI Link
1209
BibRef
Gherabi, N.[Noreddine],
Bahaj, M.[Mohamed],
Outline Matching of the 2D Shapes Using Extracting XML Data,
ICISP12(502-512).
Springer DOI
1208
BibRef
Ma, T.Y.[Tian-Yang],
Yang, X.W.[Xing-Wei],
Latecki, L.J.[Longin Jan],
Boosting Chamfer Matching by Learning Chamfer Distance Normalization,
ECCV10(V: 450-463).
Springer DOI
1009
BibRef
Liu, M.Y.[Ming-Yu],
Tuzel, O.[Oncel],
Veeraraghavan, A.[Ashok],
Chellappa, R.[Rama],
Fast directional chamfer matching,
CVPR10(1696-1703).
IEEE DOI
1006
Chamfer Matching.
BibRef
Kim, T.M.[Tae-Min],
Woo, J.W.[Jih-Wan],
Kweon, I.S.[In So],
Probabilistic matching of lines for their homography,
ICIP09(3489-3492).
IEEE DOI
0911
BibRef
Earlier: A2, A3, A1:
Probabilistic matching of line segments for their homography,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Cho, T.H.[Tai-Hoon],
Improved Chamfer Matching Using Interpolated Chamfer Distance and
Subpixel Search,
SCIA07(671-678).
Springer DOI
0706
BibRef
Yu, Z.W.[Zhan-Wu],
Prinet, V.,
Pan, C.H.[Chun-Hong],
A novel two-steps strategy for automatic GIS-image registration,
ICIP04(III: 1711-1714).
IEEE DOI
0505
BibRef
Chan, H.B.,
Hung, Y.S.,
Matching patterns of line segments by eigenvector decomposition,
Southwest02(286-289).
IEEE Top Reference.
0208
BibRef
Kawaguchi, T.[Tsuyoshi],
Sinozaki, T.[Takayuki],
Nagata, R.I.[Ryo-Ichi],
Detection of Target Models in 2D Images by Line-Based Matching and a
Genetic Algorithm,
ICIP99(II:710-714).
IEEE DOI
BibRef
9900
Laumy, M.,
Dhome, M.,
Lapreste, J.T.,
Segments Matching:
Comparison Between a Neural Approach and a Classical Optimization Way,
ICPR96(IV: 261-265).
IEEE DOI
9608
(Univ. Blaise Pascal, F)
BibRef
Sugiyama, T.,
Abe, K.,
Edge Feature Analysis by a Vectorized Feature Extractor
and in Multiple Edges,
ICPR96(II: 280-284).
IEEE DOI
9608
(Shizuoka Univ., J)
BibRef
Marchand-Maillet, S.,
Sharaiha, Y.M.,
A Minimum Spanning Tree Approach to Line Image Analysis,
ICPR96(II: 225-230).
IEEE DOI
9608
(Imperial College of Science, Technology and Medicine, UK)
BibRef
de Knecht, J.,
Schutte, K.,
Finding map correspondence using geometric models,
ICPR96(II: 755-759).
IEEE DOI
9608
(Delft Univ. of Technology, NL)
BibRef
Cross, A.D.J.,
Hancock, E.R.,
Relational Matching with Stochastic Optimisation,
SCV95(365-370).
IEEE DOI
Relaxation. University of York.
Graph based matching for line drawings (map) with an image.
BibRef
9500
Cross, A.D.J.,
Hancock, E.R.,
Holistic matching,
ECCV98(II: 140).
Springer DOI
BibRef
9800
Finch, A.M.,
Hancock, E.R.,
Wilson, R.C.,
Relational Matching With Mean Field Annealing,
ICPR96(II: 359-363).
IEEE DOI
9608
(Univ. of York, UK)
BibRef
Heller, A.J., and
Stenstrom, J.R.,
Verification of Recognition and Alignment Hypotheses by Means of
Edge Verification Statistics,
DARPA89(957-966).
Line Segment based matching to verify
recognition results. The line must be in the right area.
BibRef
8900
Poggio, T.[Tomaso],
Librande, S.E.[Stephen E.],
Computer method and apparatus for matching between line drawings,
US_Patent5,325,475, Jun 28, 1994
WWW Link.
BibRef
9406
Jones, M.J.[Michael J.],
Poggio, T.[Tomaso],
Model-Based Matching by Linear Combinations of Prototypes,
DARPA97(1357-1366).
BibRef
9700
Jones, M.J.[Michael J.],
Poggio, T.[Tomaso],
Model-Based Matching of Line Drawings by Linear Combinations
of Prototypes,
ICCV95(531-536).
IEEE DOI
BibRef
9500
And:
MIT AI Memo-1559, December 1995.
BibRef
And:
Update:
MIT AI Memo-1583.
WWW Link. And the updated version:
WWW Link. Basic line/contour match with prototypes.
BibRef
Jiang, X.Y.,
Meier, U.,
Bunke, H.,
Scale-Invariant Polyhedral Object Recognition Using
Fragmentary Edge Segments,
ICPR94(A:850-853).
IEEE DOI
BibRef
9400
Meer, P.,
Weiss, I.,
Point/Line Correspondence under 2D Projective Transformation,
ICPR92(I:399-402).
IEEE DOI
BibRef
9200
Laganière, R.[Robert],
Mitiche, A.[Amar],
A 3D interpretation system based on consistent labeling of a set of
propositions. Application to the interpretation of straight line
correspondences,
ECCV90(521-525).
Springer DOI
9004
BibRef
Nakamura, Y.,
Nagao, M.,
Recognition of Overlapping 2-D Objects by
Local Feature Construction Method,
ICPR88(II: 1046-1048).
IEEE DOI
BibRef
8800
Pan, F.,
Gu, W.K.,
Jing, R.J.,
A Back Tracking Algorithm for Matching Two Line Drawings of a
3-D Moving Object,
ICPR86(1096-1098).
BibRef
8600
Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
2-D/2-D Lines Accumuation Techniques .