Traffic Flow Analysis Using Phone Signals, Cell Data, Wi-Fi data

Chapter Contents (Back)
Traffic Flow. Smart Highways. Phone Data. Using phone data for traffic. Including pedestrian movement.
See also Transportation Mode, Travel Mode, Transport Mode Detection.
See also Indoor Localization, Navigation Issues, Non-Image, Wi-Fi, Phone Positioning. Non-phone GPS papers:
See also Traffic Flow Analysis, GPS, GNSS.

Ferrari, L.[Laura], Mamei, M.[Marco],
Discovering City Dynamics through Sports Tracking Applications,
Computer(44), No. 12, December 2011, pp. 63-68.
Tracking data from the phone directly. BibRef

Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., Ratti, C.,
Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome,
ITS(12), No. 1, March 2011, pp. 141-151.

Pan, J.J.F.[Jeffrey Jun-Feng], Pan, S.J.L.[Sinno Jia-Lin], Yin, J.[Jie], Ni, L.M.[Lionel M.], Yang, Q.A.[Qi-Ang],
Tracking Mobile Users in Wireless Networks via Semi-Supervised Colocalization,
PAMI(34), No. 3, March 2012, pp. 587-600.

Caceres, N., Romero, L.M., Benitez, F.G., del Castillo, J.M.,
Traffic Flow Estimation Models Using Cellular Phone Data,
ITS(13), No. 3, September 2012, pp. 1430-1441.

Gisdakis, S., Manolopoulos, V., Tao, S., Rusu, A., Papadimitratos, P.,
Secure and Privacy-Preserving Smartphone-Based Traffic Information Systems,
ITS(16), No. 3, June 2015, pp. 1428-1438.
Authentication BibRef

Engelbrecht, J., Booysen, M.J., van Rooyen, G.J., Bruwer, F.J.,
Survey of smartphone-based sensing in vehicles for intelligent transportation system applications,
IET-ITS(9), No. 10, 2015, pp. 924-935.
DOI Link 1512
computerised monitoring BibRef

Wahlström, J., Skog, I., Händel, P.,
Smartphone-Based Vehicle Telematics: A Ten-Year Anniversary,
ITS(18), No. 10, October 2017, pp. 2802-2825.
Internet of Things, Smartphones, driver classification, telematics, usage-based-insurance, vehicle, navigation BibRef

Janecek, A., Valerio, D., Hummel, K.A., Ricciato, F., Hlavacs, H.,
The Cellular Network as a Sensor: From Mobile Phone Data to Real-Time Road Traffic Monitoring,
ITS(16), No. 5, October 2015, pp. 2551-2572.
cellular radio BibRef

Lv, M., Chen, L., Wu, X., Chen, G.,
A Road Congestion Detection System Using Undedicated Mobile Phones,
ITS(16), No. 6, December 2015, pp. 3060-3072.
Accelerometers BibRef

Demissie, M.G., Phithakkitnukoon, S., Sukhvibul, T., Antunes, F., Gomes, R., Bento, C.,
Inferring Passenger Travel Demand to Improve Urban Mobility in Developing Countries Using Cell Phone Data: A Case Study of Senegal,
ITS(17), No. 9, September 2016, pp. 2466-2478.
Africa BibRef

Xu, Y.[Yang], Shaw, S.L.[Shih-Lung], Fang, Z.X.[Zhi-Xiang], Yin, L.[Ling],
Estimating Potential Demand of Bicycle Trips from Mobile Phone Data: An Anchor-Point Based Approach,
IJGI(5), No. 8, 2016, pp. 131.
DOI Link 1609

Lai, W.K.[Wei-Kuang], Kuo, T.H.[Ting-Huan],
Vehicle Positioning and Speed Estimation Based on Cellular Network Signals for Urban Roads,
IJGI(5), No. 10, 2016, pp. 181.
DOI Link 1610

Yang, X.P.[Xi-Ping], Fang, Z.X.[Zhi-Xiang], Xu, Y.[Yang], Shaw, S.L.[Shih-Lung], Zhao, Z.Y.[Zhi-Yuan], Yin, L.[Ling], Zhang, T.[Tao], Lin, Y.[Yunong],
Understanding Spatiotemporal Patterns of Human Convergence and Divergence Using Mobile Phone Location Data,
IJGI(5), No. 10, 2016, pp. 177.
DOI Link 1610

Lu, S.W.[Shi-Wei], Fang, Z.X.[Zhi-Xiang], Zhang, X.R.[Xi-Rui], Shaw, S.L.[Shih-Lung], Yin, L.[Ling], Zhao, Z.Y.[Zhi-Yuan], Yang, X.P.[Xi-Ping],
Understanding the Representativeness of Mobile Phone Location Data in Characterizing Human Mobility Indicators,
IJGI(6), No. 1, 2017, pp. xx-yy.
DOI Link 1702

Zhong, G., Wan, X., Zhang, J., Yin, T., Ran, B.,
Characterizing Passenger Flow for a Transportation Hub Based on Mobile Phone Data,
ITS(18), No. 6, June 2017, pp. 1507-1518.
Base stations, Matrix converters, Mobile communication, Mobile handsets, Time series analysis, Transportation, Urban areas, Base station, mobile phone data, passenger transportation hub, temporal-spatial clustering, wireless, communication BibRef

Zhou, C., Jia, H., Juan, Z., Fu, X., Xiao, G.,
A Data-Driven Method for Trip Ends Identification Using Large-Scale Smartphone-Based GPS Tracking Data,
ITS(18), No. 8, August 2017, pp. 2096-2110.
Big data, Data models, Global Positioning System, Internet, Timing, Transportation, GPS tracking data processing, data-driven method, random forest, trip, ends, identification BibRef

Basyoni, Y.[Yarah], Abbas, H.M.[Hazem M.], Talaat, H.[Hoda], El Dimeery, I.[Ibrahim],
Speed prediction from mobile sensors using cellular phone-based traffic data,
IET-ITS(11), No. 7, September 2017, pp. 387-396.
DOI Link 1710

Lemmens, R.[Rob], Lungo, J.[Juma], Georgiadou, Y.[Yola], Verplanke, J.[Jeroen],
Monitoring Rural Water Points in Tanzania with Mobile Phones: The Evolution of the SEMA App,
IJGI(6), No. 10, 2017, pp. xx-yy.
DOI Link 1710

Michau, G., Nantes, A., Bhaskar, A., Chung, E., Abry, P., Borgnat, P.,
Bluetooth Data in an Urban Context: Retrieving Vehicle Trajectories,
ITS(18), No. 9, September 2017, pp. 2377-2386.
vehicular ad hoc networks, Bluetooth data sensor, spatially constrained shortest path analysis, traffic information gathering, travel time analysis, trip information extraction, vehicle trajectory retrieval, Roads, Trajectory, Vehicles, constrained shortest path, trajectories. BibRef

Jin, C.J.[Cheng-Jie], Knoop, V.L.[Victor L.], Jiang, R.[Rui], Wang, W.[Wei], Wang, H.[Hao],
Calibration and validation of cellular automaton traffic flow model with empirical and experimental data,
IET-ITS(12), No. 5, June 2018, pp. 359-365.
DOI Link 1805

Yin, M., Sheehan, M., Feygin, S., Paiement, J.F., Pozdnoukhov, A.,
A Generative Model of Urban Activities from Cellular Data,
ITS(19), No. 6, June 2018, pp. 1682-1696.
Activity recognition, Analytical models, Context modeling, Data models, Global Positioning System, Hidden Markov models, latent variables BibRef

Rupi, F.[Federico], Schweizer, J.[Joerg],
Evaluating cyclist patterns using GPS data from smartphones,
IET-ITS(12), No. 4, May 2018, pp. 279-285.
DOI Link 1804

Wang, X.O.[Xi-Ong], Zhang, J.B.[Jin-Bei], Tian, X.H.[Xiao-Hua], Gan, X.Y.[Xiao-Ying], Guan, Y.F.[Yun-Feng], Wang, X.B.[Xin-Bing],
Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition,
ITS(19), No. 8, August 2018, pp. 2536-2547.
Roads, Reliability, Sensors, Mobile communication, Inference algorithms, Smart phones, Wireless sensor networks, incentive BibRef

Batran, M.[Mohamed], Mejia, M.G.[Mariano Gregorio], Kanasugi, H.[Hiroshi], Sekimoto, Y.[Yoshihide], Shibasaki, R.[Ryosuke],
Inferencing Human Spatiotemporal Mobility in Greater Maputo via Mobile Phone Big Data Mining,
IJGI(7), No. 7, 2018, pp. xx-yy.
DOI Link 1808

Senaratne, H., Mueller, M., Behrisch, M., Lalanne, F., Bustos-Jiménez, J., Schneidewind, J., Keim, D., Schreck, T.,
Urban Mobility Analysis With Mobile Network Data: A Visual Analytics Approach,
ITS(19), No. 5, May 2018, pp. 1537-1546.
Antennas, Data visualization, GSM, Mobile communication, Trajectory, Urban areas, Visual analytics, Visual analytics, urban dynamics BibRef

Kim, Y.S.[Young-Sung], Ghorpade, A.[Ajinkya], Zhao, F.[Fang], Pereira, F.C.[Francisco C.], Zegras, P.C.[P. Christopher], Ben-Akiva, M.[Moshe],
Activity Recognition for a Smartphone and Web-Based Human Mobility Sensing System,
IEEE_Int_Sys(33), No. 4, July 2018, pp. 5-23.
Earlier: A1, A4, A3, A2, A5, A6:
Activity Recognition for a Smartphone Based Travel Survey Based on Cross-User History Data,
Frequency modulation, Quantization (signal), Activity recognition, Global Positioning System, Sociology, interactive data collection. Accuracy. Transport models, why the trip is made. BibRef

Zhou, Z.P.[Zhu-Ping], Yang, J.[Jiwei], Qi, Y.[Yong], Cai, Y.F.[Yi-Fei],
Support vector machine and back propagation neutral network approaches for trip mode prediction using mobile phone data,
IET-ITS(12), No. 10, December 2018, pp. 1220-1226.
DOI Link 1812

Ghahramani, M., Zhou, M., Hon, C.T.,
Extracting Significant Mobile Phone Interaction Patterns Based on Community Structures,
ITS(20), No. 3, March 2019, pp. 1031-1041.
Mobile handsets, Urban areas, Data analysis, Clustering methods, Transportation, Planning, Spatial databases, Big data, spatio-temporal analysis BibRef

Gao, Z.Q.[Zhi-Qiang], Liu, D.W.[Da-Wei], Huang, K.[Kaizhu], Huang, Y.[Yi],
Context-Aware Human Activity and Smartphone Position-Mining with Motion Sensors,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911

Demissie, M.G., Phithakkitnukoon, S., Kattan, L.,
Trip Distribution Modeling Using Mobile Phone Data: Emphasis on Intra-Zonal Trips,
ITS(20), No. 7, July 2019, pp. 2605-2617.
Mobile handsets, Poles and towers, Data models, Estimation, Gravity, Transportation, Sociology, Gravity model, intra-zonal trips, trip distribution model BibRef

He, S.L.[Shang-Lu], Ding, F.[Fan], Zhou, Y.[Yang], Cheng, Y.[Yang], Ran, B.[Bin],
Investigating and modelling the relationship between traffic volume and extracts from cellphone activity data,
IET-ITS(13), No. 8, August 2019, pp. 1299-1308.
DOI Link 1908

Wu, H.[Hao], Liu, L.B.[Ling-Bo], Yu, Y.[Yang], Peng, Z.H.[Zheng-Hong], Jiao, H.Z.[Hong-Zan], Niu, Q.A.[Qi-Ang],
An Agent-based Model Simulation of Human Mobility Based on Mobile Phone Data: How Commuting Relates to Congestion,
IJGI(8), No. 7, 2019, pp. xx-yy.
DOI Link 1908

Rupi, F.[Federico], Poliziani, C.[Cristian], Schweizer, J.[Joerg],
Data-driven Bicycle Network Analysis Based on Traditional Counting Methods and GPS Traces from Smartphone,
IJGI(8), No. 8, 2019, pp. xx-yy.
DOI Link 1909

Gore, N.[Ninad], Arkatkar, S.[Shriniwas], Joshi, G.[Gaurang], Bhaskar, A.[Ashish],
Exploring credentials of Wi-Fi sensors as a complementary transport data: an Indian experience,
IET-ITS(13), No. 12, December 2019, pp. 1860-1869.
DOI Link 1912

Derrmann, T., Frank, R., Viti, F., Engel, T.,
How Road and Mobile Networks Correlate: Estimating Urban Traffic Using Handovers,
ITS(21), No. 2, February 2020, pp. 521-530.
Handover, Roads, Data models, Mobile handsets, Urban areas, Mobile network, cellular, traffic state, traffic flow theory, macroscopic fundamental diagram BibRef

Ebrahimpour, Z.[Zeinab], Wan, W.G.[Wang-Gen], García, J.L.V.[José Luis Velázquez], Cervantes, O.[Ofelia], Hou, L.[Li],
Analyzing Social-Geographic Human Mobility Patterns Using Large-Scale Social Media Data,
IJGI(9), No. 2, 2020, pp. xx-yy.
DOI Link 2003

Liu, X.D.[Xu-Dong], Tian, Y.Z.[Yong-Zhong], Zhang, X.Q.[Xue-Qian], Wan, Z.[Zuyi],
Identification of Urban Functional Regions in Chengdu Based on Taxi Trajectory Time Series Data,
IJGI(9), No. 3, 2020, pp. xx-yy.
DOI Link 2004

Mei, Z.Y.[Zhen-Yu], Ding, W.C.[Wen-Chao], Feng, C.[Chi], Shen, L.[Liting],
Identifying commuters based on random forest of smartcard data,
IET-ITS(14), No. 4, April 2020, pp. 207-212.
DOI Link 2004

Kim, K.,
Identifying the Structure of Cities by Clustering Using a New Similarity Measure Based on Smart Card Data,
ITS(21), No. 5, May 2020, pp. 2002-2011.
Urban areas, Public transportation, Smart cards, Clustering algorithms, Feature extraction, Detection algorithms, data mining BibRef

Gong, L.S.[Lun-Sheng], Jin, M.H.[Mei-Han], Liu, Q.A.[Qi-Ang], Gong, Y.X.[Yong-Xi], Liu, Y.[Yu],
Identifying Urban Residents' Activity Space at Multiple Geographic Scales Using Mobile Phone Data,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link 2005

Sakamanee, P.[Pitchaya], Phithakkitnukoon, S.[Santi], Smoreda, Z.[Zbigniew], Ratti, C.[Carlo],
Methods for Inferring Route Choice of Commuting Trip From Mobile Phone Network Data,
IJGI(9), No. 5, 2020, pp. xx-yy.
DOI Link 2005

Bicakci, Y.S.[Yunus Serhat], Seker, D.Z.[Dursun Zafer], Demirel, H.[Hande],
Location-Based Analyses for Electronic Monitoring of Parolees,
IJGI(9), No. 5, 2020, pp. xx-yy.
DOI Link 2005

Yazdizadeh, A., Patterson, Z., Farooq, B.,
Ensemble Convolutional Neural Networks for Mode Inference in Smartphone Travel Survey,
ITS(21), No. 6, June 2020, pp. 2232-2239.
Global Positioning System, Trajectory, Transportation, Predictive models, Feature extraction, machine learning BibRef

Peng, Z.H.[Zheng-Hong], Wang, R.[Ru], Liu, L.B.[Ling-Bo], Wu, H.[Hao],
Fine-Scale Dasymetric Population Mapping with Mobile Phone and Building Use Data Based on Grid Voronoi Method,
IJGI(9), No. 6, 2020, pp. xx-yy.
DOI Link 2006

He, L.[Li], Páez, A.[Antonio], Jiao, J.M.[Jian-Min], An, P.[Ping], Lu, C.T.[Chun-Tian], Mao, W.[Wen], Long, D.P.[Dong-Ping],
Ambient Population and Larceny-Theft: A Spatial Analysis Using Mobile Phone Data,
IJGI(9), No. 6, 2020, pp. xx-yy.
DOI Link 2006

Zhang, G.Y.[Guang-Yuan], Rui, X.P.[Xiao-Ping], Poslad, S.[Stefan], Song, X.F.[Xian-Feng], Fan, Y.[Yonglei], Wu, B.[Bang],
A Method for the Estimation of Finely-Grained Temporal Spatial Human Population Density Distributions Based on Cell Phone Call Detail Records,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008

Zheng, L.J.[Lin-Jiang], Xia, D.[Dong], Chen, L.[Li], Sun, D.H.[Di-Hua],
Understanding Citywide Resident Mobility Using Big Data of Electronic Registration Identification of Vehicles,
ITS(21), No. 10, October 2020, pp. 4363-4377.
Trajectory, Automobiles, Public transportation, Roads, Global Positioning System, Urban areas, attractive area BibRef

Chen, L.[Li], Zheng, L.J.[Lin-Jiang], Xia, D.[Dong], Cai, X.L.[Xiao-Lin], Sun, D.H.[Di-Hua], Liu, W.N.[Wei-Ning],
Recognizing and Analyzing Private Car Commuters Using Big Data of Electronic Registration Identification of Vehicles,
ITS(23), No. 9, September 2022, pp. 15629-15643.
Automobiles, Public transportation, Roads, Feature extraction, Trajectory, Urban areas, RFID tags, Hierarchical clustering, mobility pattern BibRef

Carboni, A.[Angela], Deflorio, F.[Francesco], Chiara, B.D.[Bruno Dalla],
Monitoring truck's operations at freight intermodal terminals: traffic observation by scanning on-board devices,
IET-ITS(14), No. 12, December 2020, pp. 1638-1646.
DOI Link 2011

Das, R.D., Purves, R.S.,
Exploring the Potential of Twitter to Understand Traffic Events and Their Locations in Greater Mumbai, India,
ITS(21), No. 12, December 2020, pp. 5213-5222.
Twitter, Roads, Sensors, Task analysis, Urban areas, Accidents, Georeference, jaccard distance, placename, toponym, traffic, tweet, geographical information science (GIS) BibRef

Scholz, J.[Johannes], Jeznik, J.[Janja],
Evaluating Geo-Tagged Twitter Data to Analyze Tourist Flows in Styria, Austria,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link 2012

Tu, L., Wang, S., Zhang, D., Zhang, F., He, T.,
ViFi-MobiScanner: Observe Human Mobility via Vehicular Internet Service,
ITS(22), No. 1, January 2021, pp. 280-292.
Wireless fidelity, Global Positioning System, Sensors, Web and internet services, Urban areas, Observability, multi-source data mining BibRef

Sun, R., Cheng, Q., Xie, F., Zhang, W., Lin, T., Ochieng, W.Y.,
Combining Machine Learning and Dynamic Time Wrapping for Vehicle Driving Event Detection Using Smartphones,
ITS(22), No. 1, January 2021, pp. 194-207.
Smart phones, Sensors, Event detection, Machine learning algorithms, Vehicles, Bagging, Acceleration, dynamic time wrapping BibRef

Wei, M., Liu, T., Sun, B.,
Optimal Routing Design of Feeder Transit With Stop Selection Using Aggregated Cell Phone Data and Open Source GIS Tool,
ITS(22), No. 4, April 2021, pp. 2452-2463.
Routing, Mathematical model, Transportation, Analytical models, Programming, Tools, Mathematical programming, open source GIS tool BibRef

Liu, J.[Jian], Meng, B.[Bin], Wang, J.[Juan], Chen, S.[Siyu], Tian, B.[Bin], Zhi, G.Q.[Guo-Qing],
Exploring the Spatiotemporal Patterns of Residents' Daily Activities Using Text-Based Social Media Data: A Case Study of Beijing, China,
IJGI(10), No. 6, 2021, pp. xx-yy.
DOI Link 2106

Wang, B.Q.[Bing-Qing], Meng, B.[Bin], Wang, J.[Juan], Chen, S.[Siyu], Liu, J.[Jian],
Perceiving Residents' Festival Activities Based on Social Media Data: A Case Study in Beijing, China,
IJGI(10), No. 7, 2021, pp. xx-yy.
DOI Link 2108

Zhang, X.M.[Xiao-Ming], Gao, F.[Feng], Liao, S.[Shunyi], Zhou, F.[Fan], Cai, G.F.[Guan-Fang], Li, S.Y.[Shao-Ying],
Portraying Citizens' Occupations and Assessing Urban Occupation Mixture with Mobile Phone Data: A Novel Spatiotemporal Analytical Framework,
IJGI(10), No. 6, 2021, pp. xx-yy.
DOI Link 2106

Wan, W.[Wei], Cai, M.[Ming],
Phone-vehicle trajectory matching framework based on ALPR and cellular signalling data,
IET-ITS(15), No. 1, 2021, pp. 107-118.
DOI Link 2106

Cumbane, S.P.[Silvino Pedro], Gidófalvi, G.[Gyozo],
Spatial Distribution of Displaced Population Estimated Using Mobile Phone Data to Support Disaster Response Activities,
IJGI(10), No. 6, 2021, pp. xx-yy.
DOI Link 2106

Zhu, X.Y.[Xiao-Yu], Luo, Y.Y.[Yue-Yi], Liu, A.F.[An-Feng], Tang, W.J.[Wen-Juan], Bhuiyan, M.Z.A.[Md. Zakirul Alam],
A Deep Learning-Based Mobile Crowdsensing Scheme by Predicting Vehicle Mobility,
ITS(22), No. 7, July 2021, pp. 4648-4659.
Sensors, Urban areas, Trajectory, Task analysis, Recruitment, Prediction algorithms, Data centers, Mobile crowdsensing, data collection BibRef

Shit, R.C.[Rathin Chandra], Sharma, S.[Suraj], Yelamarthi, K.[Kumar], Puthal, D.[Deepak],
AI-Enabled Fingerprinting and Crowdsource-Based Vehicle Localization for Resilient and Safe Transportation Systems,
ITS(22), No. 7, July 2021, pp. 4660-4669.
Location awareness, Fingerprint recognition, Machine learning, Training, Databases, Machine learning algorithms, fingerprinting BibRef

Antar, A.D.[Anindya Das], Ahmed, M.[Masud], Ahad, M.A.R.[Md Atiqur Rahman],
Recognition of human locomotion on various transportations fusing smartphone sensors,
PRL(148), 2021, pp. 146-153.
Elsevier DOI 2107
Activity recognition, Deep learning, Feature selection, Mode technique, Post processing, Statistical classification, Smartphone sensors impact BibRef

Liu, S.J.[Shao-Jun], Long, Y.[Yi], Zhang, L.[Ling], Liu, H.[Hao],
Semantic Enhancement of Human Urban Activity Chain Construction Using Mobile Phone Signaling Data,
IJGI(10), No. 8, 2021, pp. xx-yy.
DOI Link 2108

Wang, C.X.[Chen-Xing], Luo, H.Y.[Hai-Yong], Zhao, F.[Fang], Qin, Y.J.[Yan-Jun],
Combining Residual and LSTM Recurrent Networks for Transportation Mode Detection Using Multimodal Sensors Integrated in Smartphones,
ITS(22), No. 9, September 2021, pp. 5473-5485.
Feature extraction, Global Positioning System, Smart phones, Public transportation, Intelligent sensors, Context awareness, activity recognition BibRef

Determe, J.F.[Jean-François], Singh, U.[Utkarsh], Horlin, F.[François], de Doncker, P.[Philippe],
Forecasting Crowd Counts With Wi-Fi Systems: Univariate, Non-Seasonal Models,
ITS(22), No. 10, October 2021, pp. 6407-6419.
Wireless fidelity, Sensors, Forecasting, Predictive models, Probes, Monitoring, Computational modeling, Crowd monitoring and control, Box-Cox transformation BibRef

Wilby, M.R.[Mark Richard], González, A.B.R.[Ana Belén Rodríguez], Pozo, R.F.[Rubén Fernández], Díaz, J.J.V.[Juan José Vinagre],
Short-Term Prediction of Level of Service in Highways Based on Bluetooth Identification,
ITS(23), No. 1, January 2022, pp. 142-151.
Bluetooth, Roads, Measurement, Vehicles, Estimation, Data models, Level of service, traffic prediction, Bluetooth identification, travel time BibRef

He, B.[Bing], Hu, J.X.[Jin-Xing], Liu, K.[Kang], Xue, J.Z.[Jian-Zhang], Ning, L.[Li], Fan, J.P.[Jian-Ping],
Exploring Park Visit Variability Using Cell Phone Data in Shenzhen, China,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202

Garrido-Valenzuela, F.[Francisco], Raveau, S.[Sebastián], Herrera, J.C.[Juan C.],
Bayesian Route Choice Inference to Address Missed Bluetooth Detections,
ITS(23), No. 3, March 2022, pp. 1865-1874.
Sensors, Bluetooth, Wireless fidelity, Trajectory, Roads, Bayes methods, Directed graphs, Wi-Fi technology, MAC address BibRef

Zhang, H.T.[Hai-Tao], Shen, H.X.[Hui-Xian], Ji, K.[Kang], Song, R.[Rui], Liu, J.Y.[Jin-Yuan], Yang, Y.X.[Yu-Xin],
An Urban Hot/Cold Spot Detection Method Based on the Page Rank Value of Spatial Interaction Networks Constructed from Human Communication Records,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link 2204

Wang, X.H.[Xiao-Han], Zhang, Z.[Zepei], Luo, Y.[Yonglong],
Clustering Methods Based on Stay Points and Grid Density for Hotspot Detection,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link 2204

Li, P.[Pei], Abdel-Aty, M.[Mohamed], Cai, Q.[Qing], Islam, Z.[Zubayer],
A Deep Learning Approach to Detect Real-Time Vehicle Maneuvers Based on Smartphone Sensors,
ITS(23), No. 4, April 2022, pp. 3148-3157.
Accelerometers, Magnetic sensors, Gyroscopes, Global Positioning System, Magnetometers, Cameras, sensor fusion BibRef

Zhang, K.[Kaisa], Chuai, G.[Gang], Zhang, J.X.[Jin-Xi], Chen, X.Y.[Xiang-Yu], Si, Z.W.[Zhi-Wei], Maimaiti, S.[Saidiwaerdi],
DIC-ST: A Hybrid Prediction Framework Based on Causal Structure Learning for Cellular Traffic and Its Application in Urban Computing,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link 2204

Ferreira, G.[Gonçalo], Alves, A.[Ana], Veloso, M.[Marco], Bento, C.[Carlos],
Identification and Classification of Routine Locations Using Anonymized Mobile Communication Data,
IJGI(11), No. 4, 2022, pp. xx-yy.
DOI Link 2205

Lin, Y.H.[Yen-Hsun], Chen, Y.C.[Yi-Chung], Chiu, S.M.[Sheng-Min], Lee, C.A.[Chi-Ang], Wang, F.C.[Fu-Cheng],
Applying Check-in Data and User Profiles to Identify Optimal Store Locations in a Road Network,
IJGI(11), No. 5, 2022, pp. xx-yy.
DOI Link 2206

Lu, D.[Danni], Li, Y.[Ye], Guo, F.[Feng],
Evaluating Spatial and Temporal Characteristics of Population Density Using Cellular Data,
ITS(23), No. 6, June 2022, pp. 5717-5726.
Statistics, Sociology, Poles and towers, Urban areas, Transportation, Correlation, Planning, Cellular call detail record, traffic demand, megacities BibRef

Advani, C.[Chintan], Bhaskar, A.[Ashish], Haque, M.M.[Md. Mazharul], Cholette, M.E.[Michael E.],
STATER: Slit-Based Trajectory Reconstruction for Dense Urban Network With Overlapping Bluetooth Scanning Zones,
ITS(23), No. 7, July 2022, pp. 8316-8326.
Trajectory, Roads, Bluetooth, Databases, Radiofrequency identification, slit based trajectory reconstruction (STATER) algorithm BibRef

Yang, L.[Lintao], Zhu, Y.[Yashu], Mei, Q.K.[Qi-Kai], Zeng, Y.Y.[Yuan-Yuan], Jiang, H.[Hao],
Individual Differentiated Multidimensional Hawkes Model: Uncovering Urban Spatial Interaction Using Mobile-Phone Data,
ITS(23), No. 7, July 2022, pp. 7987-7997.
Urban areas, Data models, Trajectory, Gravity, Spatiotemporal phenomena, Spatial databases, Urban planning, urban planning BibRef

Grujic, N.[Nastasija], Brdar, S.[Sanja], Osinga, S.[Sjoukje], Hofstede, G.J.[Gert Jan], Athanasiadis, I.N.[Ioannis N.], Pljakic, M.[Miloš], Obrenovic, N.[Nikola], Govedarica, M.[Miro], Crnojevic, V.[Vladimir],
Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments: An Agent-Based Approach,
IJGI(11), No. 7, 2022, pp. xx-yy.
DOI Link 2208

Hadachi, A.[Amnir], Pourmoradnasseri, M.[Mozhgan],
A Survey on the Advancement of Travel Time Estimation Using Mobile Phone Network Data,
ITS(23), No. 8, August 2022, pp. 11779-11788.
Estimation, Sensors, Roads, Mobile handsets, Global Positioning System, Cellular networks, Handover, urban mobility dynamics BibRef

Cai, M.[Ming], Zhang, Z.X.[Zi-Xuan], Xiong, C.[Chen], Gou, C.[Chao],
An Adaptive Staying Point Recognition Algorithm Based on Spatiotemporal Characteristics Using Cellular Signaling Data,
ITS(23), No. 8, August 2022, pp. 10458-10468.
Spatiotemporal phenomena, Trajectory, Clustering algorithms, Modeling, Cleaning, Cellular phones, Base stations, clustering method BibRef

Li, Z.S.[Zhi-Shuai], Xiong, G.[Gang], Wei, Z.B.[Ze-Bing], Zhang, Y.[Yu], Zheng, M.[Meng], Liu, X.L.[Xiao-Li], Tarkoma, S.[Sasu], Huang, M.[Min], Lv, Y.S.[Yi-Sheng], Wu, C.[Chuheng],
Trip Purposes Mining From Mobile Signaling Data,
ITS(23), No. 8, August 2022, pp. 13190-13202.
Cellular networks, Trajectory, Semantics, Unsupervised learning, Supervised learning, Resource management, Public transportation, big data BibRef

Zia, M.[Mohammed], Fürle, J.[Johannes], Ludwig, C.[Christina], Lautenbach, S.[Sven], Gumbrich, S.[Stefan], Zipf, A.[Alexander],
SocialMedia2Traffic: Derivation of Traffic Information from Social Media Data,
IJGI(11), No. 9, 2022, pp. xx-yy.
DOI Link 2209

Fu, X.[Xiao], Yu, G.[Guanyi], Liu, Z.Y.[Zhi-Yuan],
Spatial-Temporal Convolutional Model for Urban Crowd Density Prediction Based on Mobile-Phone Signaling Data,
ITS(23), No. 9, September 2022, pp. 14661-14673.
Predictive models, Convolution, Hidden Markov models, Task analysis, Data models, Data mining, Deep learning, activity choice behavior BibRef

Jiang, H.H.[Hai-Hang], Yang, F.[Fei], Su, W.J.[Wei-Jie], Yao, Z.X.[Zhen-Xing], Dai, Z.[Zhuang],
Activity location recognition from mobile phone data using improved HAC and Bi-LSTM,
IET-ITS(16), No. 10, 2022, pp. 1364-1379.
DOI Link 2209

Wei, Y.J.[Yi-Jun], Mahnaz, F.[Faria], Bulan, O.[Orhan], Mengistu, Y.[Yehenew], Mahesh, S.[Sheetal], Losh, M.A.[Michael A.],
Creating Semantic HD Maps From Aerial Imagery and Aggregated Vehicle Telemetry for Autonomous Vehicles,
ITS(23), No. 9, September 2022, pp. 15382-15395.
Roads, Image edge detection, Feature extraction, Telemetry, Image segmentation, Navigation, Soft sensors, Autonomous vehicles, telemetry BibRef

Pintér, G.[Gergo], Felde, I.[Imre],
Commuting Analysis of the Budapest Metropolitan Area Using Mobile Network Data,
IJGI(11), No. 9, 2022, pp. xx-yy.
DOI Link 2209

Daraio, E.[Elena], Cagliero, L.[Luca], Chiusano, S.[Silvia], Garza, P.[Paolo],
Complementing Location-Based Social Network Data With Mobility Data: A Pattern-Based Approach,
ITS(23), No. 11, November 2022, pp. 21216-21227.
Urban areas, Social networking (online), Data models, Soft sensors, Data mining, Public transportation, Automobiles, sequential pattern mining BibRef

Yang, C.[Chao], Guo, T.Y.[Tang-Yi], Wang, Y.[Yinhai],
The Smartphone-Based Person Travel Survey System: Data Collection, Trip Extraction, and Travel Mode Detection,
ITS(23), No. 12, December 2022, pp. 23399-23407.
Legged locomotion, Global Positioning System, Smart phones, Trajectory, Data collection, Interviews, Data mining, Travel survey, smartphone BibRef

Berjisian, E.[Elmira], Bigazzi, A.[Alexander],
Evaluation of map-matching algorithms for smartphone-based active travel data,
IET-ITS(17), No. 1, 2023, pp. 227-242.
DOI Link 2301

Wang, F.[Fuyou], Gao, C.F.[Cheng-Fa], Shang, R.[Rui], Zhang, R.C.[Rui-Cheng], Gan, L.[Lu], Liu, Q.[Qi], Wang, J.C.[Jian-Chao],
An In-Vehicle Smartphone RTK/DR Positioning Method Combined with OSM Road Network,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link 2301

Chen, X.Y.[Xiang-Yu], Zhang, K.[Kaisa], Chuai, G.[Gang], Gao, W.D.[Wei-Dong], Si, Z.W.[Zhi-Wei], Hou, Y.J.[Yi-Jian], Liu, X.W.[Xue-Wen],
Urban Area Characterization and Structure Analysis: A Combined Data-Driven Approach by Remote Sensing Information and Spatial-Temporal Wireless Data,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303

Zhang, J.[Jielu], Mu, L.[Lan], Zhang, D.[Donglan], Rajbhandari-Thapa, J.[Janani], Chen, Z.[Zhuo], Pagán, J.A.[José A.], Li, Y.[Yan], Son, H.[Heejung], Liu, J.X.[Jun-Xiu],
Spatiotemporal Optimization for the Placement of Automated External Defibrillators Using Mobile Phone Data,
IJGI(12), No. 3, 2023, pp. xx-yy.
DOI Link 2303

Li, J.Z.[Jun-Zhuo], Li, W.Y.[Wen-Yong], Lian, G.[Guan],
Urban Resident Travel Survey Method Based on Cellular Signaling Data,
IJGI(12), No. 8, 2023, pp. 304.
DOI Link 2309

Rodrigues, C.[Cláudia], Veloso, M.[Marco], Alves, A.[Ana], Bento, C.[Carlos],
Sensing Mobility and Routine Locations through Mobile Phone and Crowdsourced Data: Analyzing Travel and Behavior during COVID-19,
IJGI(12), No. 8, 2023, pp. 308.
DOI Link 2309

Qu, L.[Lin], Zhou, Y.[Yue], Li, J.X.[Jiang-Xin], Yu, Q.[Qiong], Jiang, X.G.[Xin-Guo],
HMM-Based Map Matching and Spatiotemporal Analysis for Matching Errors with Taxi Trajectories,
IJGI(12), No. 8, 2023, pp. 330.
DOI Link 2309

Servizi, V.[Valentino], Persson, D.R.[Dan Roland], Pereira, F.C.[Francisco Camara], Villadsen, H.[Hannah], Bækgaard, P.[Per], Peled, I.[Inon], Nielsen, O.A.[Otto Anker],
'Is Not the Truth the Truth?': Analyzing the Impact of User Validations for Bus In/Out Detection in Smartphone-Based Surveys,
ITS(24), No. 11, November 2023, pp. 11905-11920.

Guo, Y.D.[Yu-Dong], Yang, F.[Fei], Yan, H.M.[Hao-Min], Xie, S.Y.[Si-Yuan], Liu, H.[Haode], Dai, Z.[Zhuang],
Activity-based model based on multi-day cellular data: Considering the lack of personal attributes and activity type,
IET-ITS(17), No. 12, 2023, pp. 2474-2492.
DOI Link 2312
demand forecasting, traffic, traffic and demand managing, traveller information BibRef

Chen, X.C.[Xing-Can], Zou, Y.[Yi], Li, C.L.[Cheng-Lin], Xiao, W.D.[Wen-Dong],
A Deep Learning Based Lightweight Human Activity Recognition System Using Reconstructed WiFi CSI,
HMS(54), No. 1, February 2024, pp. 68-78.
Wireless fidelity, Tensors, Human activity recognition, Signal representation, Convolutional neural networks, WiFi channel state information (CSI) BibRef

Miao, Y.[Yu], Tang, X.H.[Xue-Hua], Wang, Z.Y.[Zhong-Yuan],
An Automatic Semantic Map Generation Method Using Trajectory Data,
DOI Link 2012
Features for cell phone trajectory data. BibRef

Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Traffic Flow Analysis, GPS, GNSS .

Last update:May 6, 2024 at 15:50:14