22.2.1 Land Use, General Problems

Chapter Contents (Back)
Land Use. Clearly an overlaping subset of Land Cover.
See also Land Use Change Analysis.
See also Subpixel Target, Subpixel Land Use, Tiny Objects.
See also Sentinel-1, -2, -3 for Land Cover, Remote Sensing.
See also Remote Sensing Semantic Segmentation.

Bischof, H.[Horst], Schneider, W.[Werner], Pinz, A.[Axel],
Multispectral Classification of Landsat Images Using Neural Networks,
GeoRS(30), No. 3, 1992, pp. 482-490. BibRef 9200

Bischof, H.[Horst], Leonardis, A.[Ales],
Finding Optimal Neural Networks for Land Use Classification,
GeoRS(36), No. 1, 1998, pp. 337-341. BibRef 9800

Ji, C.Y.,
Land-Use Classification of Remotely Sensed Data Using Kohonen Self-Organizing Feature Map Neural Networks,
PhEngRS(66), No. 12, December 2000, pp. 1451-1460. Results are compared to those of the maximum-likelihood method and of the BP neural networks. 0101
BibRef

Yuan, H., van der Wiele, C., Khorram, S.,
An Automated Artificial Neural Network System for Land Use/Land Cover Classification from Landsat TM Imagery,
RS(1), No. 3, September 2009, pp. 243-265.
DOI Link 1203
BibRef

Manandhar, R., Odeh, I., Ancev, T.,
Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data Using Post-Classification Enhancement,
RS(1), No. 3, September 2009, pp. 330-344.
DOI Link 1203
BibRef

Clark, M., Aide, T.,
Virtual Interpretation of Earth Web-Interface Tool (VIEW-IT) for Collecting Land-Use/Land-Cover Reference Data,
RS(3), No. 3, March 2011, pp. 601-620.
DOI Link 1203
BibRef

Martínez, S., Mollicone, D.,
From Land Cover to Land Use: A Methodology to Assess Land Use from Remote Sensing Data,
RS(4), No. 4, April 2012, pp. 1024-1045.
DOI Link 1202
BibRef

Kitada, K., Fukuyama, K.,
Land-Use and Land-Cover Mapping Using a Gradable Classification Method,
RS(4), No. 6, June 2012, pp. 1544-1558.
DOI Link 1208
BibRef

Jiao, L.M.[Li-Min], Liu, Y.L.[Yao-Lin], Li, H.L.[Hong-Liang],
Characterizing land-use classes in remote sensing imagery by shape metrics,
PandRS(72), No. 1, August 2012, pp. 46-55.
Elsevier DOI 1209
Land-use; Image segmentation; Landscape metrics; Shape metrics; Image classification BibRef

Jiao, L.M., Liu, Y.L.,
Analyzing the Shape Characteristics of Land Use Classes in Remote Sensing Imagery,
AnnalsPRS(I-7), No. 2012, pp. 135-140.
HTML Version. 1209
BibRef

Chen, Y.[Yanlei], Gong, P.[Peng],
Clustering based on eigenspace transformation: CBEST for efficient classification,
PandRS(83), No. 1, 2013, pp. 64-80.
Elsevier DOI 1308
Land cover/use mapping BibRef

Chen, S.Z.[Shi-Zhi], Tian, Y.L.[Ying-Li],
Pyramid of Spatial Relatons for Scene-Level Land Use Classification,
GeoRS(53), No. 4, April 2015, pp. 1947-1957.
IEEE DOI 1502
data structures BibRef

Pereira, D.R.[Danillo Roberto], Papa, J.P.[Joăo Paulo],
A new approach to contextual learning using interval arithmetic and its applications for land-use classification,
PRL(83, Part 2), No. 1, 2016, pp. 188-194.
Elsevier DOI 1609
Sliding Window BibRef

Fan, J., Chen, T., Lu, S.,
Unsupervised Feature Learning for Land-Use Scene Recognition,
GeoRS(55), No. 4, April 2017, pp. 2250-2261.
IEEE DOI 1704
geophysical techniques BibRef

Chen, Y.B.[Yang-Bo], Dou, P.[Peng], Yang, X.J.[Xiao-Jun],
Improving Land Use/Cover Classification with a Multiple Classifier System Using AdaBoost Integration Technique,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Zhang, B.[Bin], Wang, C.P.[Cun-Peng], Shen, Y.L.[Yong-Lin], Liu, Y.Y.[Yue-Yan],
Fully Connected Conditional Random Fields for High-Resolution Remote Sensing Land Use/Land Cover Classification with Convolutional Neural Networks,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Qi, K.L.[Kun-Lun], Yang, C.[Chao], Hu, C.L.[Chu-Li], Shen, Y.L.[Yong-Lin], Shen, S.Y.[Sheng-Yu], Wu, H.Y.[Hua-Yi],
Rotation Invariance Regularization for Remote Sensing Image Scene Classification with Convolutional Neural Networks,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Wang, Q.[Qing], Sun, H.[Hua], Li, R.P.[Ruo-Pu], Wang, G.X.[Guang-Xing],
A new stochastic simulation algorithm for image-based classification: Feature-space indicator simulation,
PandRS(152), 2019, pp. 145-165.
Elsevier DOI 1905
Remote sensing, Image classification, Feature space, Geostatistics, Stochastic simulation, Land use and land cover BibRef

Ray, R.L.[Ram L.], Ibironke, A.[Ademola], Kommalapati, R.[Raghava], Fares, A.[Ali],
Quantifying the Impacts of Land-Use and Climate on Carbon Fluxes Using Satellite Data across Texas, U.S.,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Hou, W.[Wan], Hou, X.Y.[Xi-Yong],
Data Fusion and Accuracy Analysis of Multi-Source Land Use/Land Cover Datasets along Coastal Areas of the Maritime Silk Road,
IJGI(8), No. 12, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Talukdar, S.[Swapan], Singha, P.[Pankaj], Mahato, S.[Susanta], Shahfahad, Pal, S.[Swades], Liou, Y.A.[Yuei-An], Rahman, A.[Atiqur],
Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations: A Review,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Su, M.[Mo], Guo, R.Z.[Ren-Zhong], Chen, B.[Bin], Hong, W.Y.[Wu-Yang], Wang, J.Q.[Jia-Qi], Feng, Y.M.[Yi-Mei], Xu, B.[Bing],
Sampling Strategy for Detailed Urban Land Use Classification: A Systematic Analysis in Shenzhen,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Tian, Y.[Ye], Chen, C.[Chenru], Chen, X.Y.[Xin-Yi], Zhang, Q.Q.[Qian-Qian], Sun, R.Z.[Rui-Zhi],
Research on real-time analysis technology of urban land use based on support vector machine,
PRL(133), 2020, pp. 320-326.
Elsevier DOI 2005
Support vector machine, Data processing, Data analysis, Web mining, Text analysis BibRef

Sun, J.[Jing], Wang, H.[Hong], Song, Z.L.[Zheng-Lin], Lu, J.B.[Jin-Bo], Meng, P.Y.[Peng-Yu], Qin, S.H.[Shu-Hong],
Mapping Essential Urban Land Use Categories in Nanjing by Integrating Multi-Source Big Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Chang, S.[Shouzhi], Wang, Z.M.[Zong-Ming], Mao, D.H.[De-Hua], Guan, K.[Kehan], Jia, M.M.[Ming-Ming], Chen, C.[Chaoqun],
Mapping the Essential Urban Land Use in Changchun by Applying Random Forest and Multi-Source Geospatial Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Qian, Z.[Zhen], Liu, X.[Xintao], Tao, F.[Fei], Zhou, T.[Tong],
Identification of Urban Functional Areas by Coupling Satellite Images and Taxi GPS Trajectories,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Vali, A.[Ava], Comai, S.[Sara], Matteucci, M.[Matteo],
Deep Learning for Land Use and Land Cover Classification based on Hyperspectral and Multispectral Earth Observation Data: A Review,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Müller, I.[Inken], Taubenböck, H.[Hannes], Kuffer, M.[Monika], Wurm, M.[Michael],
Misperceptions of Predominant Slum Locations? Spatial Analysis of Slum Locations in Terms of Topography Based on Earth Observation Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Anugraha, A.S.[Adindha Surya], Chu, H.J.[Hone-Jay], Ali, M.Z.[Muhammad Zeeshan],
Social Sensing for Urban Land Use Identification,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Andrade, R.[Renato], Alves, A.[Ana], Bento, C.[Carlos],
POI Mining for Land Use Classification: A Case Study,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Tassi, A.[Andrea], Vizzari, M.[Marco],
Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link 2011
Land Use-Land Cover. BibRef

Rajendran, G.B.[Ganesh B.], Kumarasamy, U.M.[Uma M.], Zarro, C.[Chiara], Divakarachari, P.B.[Parameshachari B.], Ullo, S.L.[Silvia L.],
Land-Use and Land-Cover Classification Using a Human Group-Based Particle Swarm Optimization Algorithm with an LSTM Classifier on Hybrid Pre-Processing Remote-Sensing Images,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Smaczynski, M.[Maciej], Medynska-Gulij, B.[Beata], Halik, L.[Lukasz],
The Land Use Mapping Techniques (Including the Areas Used by Pedestrians) Based on Low-Level Aerial Imagery,
IJGI(9), No. 12, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Huang, Z.[Zihao], Du, H.Q.[Hua-Qiang], Li, X.J.[Xue-Jian], Zhang, M.[Meng], Mao, F.J.[Fang-Jie], Zhu, D.[Di'en], He, S.B.[Shao-Bai], Liu, H.[Hua],
Spatiotemporal LUCC Simulation under Different RCP Scenarios Based on the BPNN_CA_Markov Model: A Case Study of Bamboo Forest in Anji County,
IJGI(9), No. 12, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Li, X.T.[Xiao-Ting], Hu, T.Y.[Teng-Yun], Gong, P.[Peng], Du, S.H.[Shi-Hong], Chen, B.[Bin], Li, X.C.[Xue-Cao], Dai, Q.[Qi],
Mapping Essential Urban Land Use Categories in Beijing with a Fast Area of Interest (AOI)-Based Method,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102
BibRef

Zhu, J.W.[Jia-Wei], Tao, C.[Chao], Lin, X.[Xin], Peng, J.[Jian], Huang, H.[Haozhe], Chen, L.[Li], Wang, Q.J.[Qiong-Jie],
A Multiple Subspaces-Based Model: Interpreting Urban Functional Regions with Big Geospatial Data,
IJGI(10), No. 2, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Pan, T.T.[Ting-Ting], Zhang, Y.[Yu], Su, F.Z.[Fen-Zhen], Lyne, V.[Vincent], Cheng, F.[Fei], Xiao, H.[Han],
Practical Efficient Regional Land-Use Planning Using Constrained Multi-Objective Genetic Algorithm Optimization,
IJGI(10), No. 2, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Shuangao, W.[Wang], Padmanaban, R.[Rajchandar], Mbanze, A.A.[Aires A.], Silva, J.M.N.[Joăo M. N.], Shamsudeen, M.[Mohamed], Cabral, P.[Pedro], Campos, F.S.[Felipe S.],
Using Satellite Image Fusion to Evaluate the Impact of Land Use Changes on Ecosystem Services and Their Economic Values,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Pinto, N.[Nuno], Antunes, A.P.[António P.], Roca, J.[Josep],
A Cellular Automata Model for Integrated Simulation of Land Use and Transport Interactions,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Czesak, B.[Barbara], Rózycka-Czas, R.[Renata], Salata, T.[Tomasz], Dixon-Gough, R.[Robert], Hernik, J.[Józef],
Determining the Intangible: Detecting Land Abandonment at Local Scale,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Bui, D.H.[Dang Hung], Mucsi, L.[László],
From Land Cover Map to Land Use Map: A Combined Pixel-Based and Object-Based Approach Using Multi-Temporal Landsat Data, a Random Forest Classifier, and Decision Rules,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Sun, Z.H.[Zhi-Hao], Jiao, H.Z.[Hong-Zan], Wu, H.[Hao], Peng, Z.H.[Zheng-Hong], Liu, L.B.[Ling-Bo],
Block2vec: An Approach for Identifying Urban Functional Regions by Integrating Sentence Embedding Model and Points of Interest,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Pedrayes, O.D.[Oscar D.], Lema, D.G.[Darío G.], García, D.F.[Daniel F.], Usamentiaga, R.[Rubén], Alonso, Á.[Ángela],
Evaluation of Semantic Segmentation Methods for Land Use with Spectral Imaging Using Sentinel-2 and PNOA Imagery,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Sanlang, S.[Siji], Cao, S.[Shisong], Du, M.Y.[Ming-Yi], Mo, Y.[You], Chen, Q.[Qiang], He, W.[Wen],
Integrating Aerial LiDAR and Very-High-Resolution Images for Urban Functional Zone Mapping,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link 2107
BibRef

Kim, D.H.[Do-Hyung], López, G.[Guzmán], Kiedanski, D.[Diego], Maduako, I.[Iyke], Ríos, B.[Braulio], Descoins, A.[Alan], Zurutuza, N.[Naroa], Arora, S.[Shilpa], Fabian, C.[Christopher],
Bias in Deep Neural Networks in Land Use Characterization for International Development,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link 2108
BibRef

McCutchan, M.[Marvin], Comber, A.J.[Alexis J.], Giannopoulos, I.[Ioannis], Canestrini, M.[Manuela],
Semantic Boosting: Enhancing Deep Learning Based LULC Classification,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

He, S.[Shan], Shao, H.Y.[Huai-Yong], Xian, W.[Wei], Zhang, S.H.[Shu-Hui], Zhong, J.L.[Jia-Long], Qi, J.G.[Jia-Guo],
Extraction of Abandoned Land in Hilly Areas Based on the Spatio-Temporal Fusion of Multi-Source Remote Sensing Images,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110
BibRef


Rawal, D., Chhabra, A., Pandya, M., Vyas, A.,
Land Use and Land Cover Mapping - A Case Study of Ahmedabad District,
ISPRS20(B3:189-193).
DOI Link 2012
BibRef

Bergado, J.R., Persello, C., Stein, A.,
Land Use Classification Using Deep Multitask Networks,
ISPRS20(B3:17-21).
DOI Link 2012
BibRef

Guliyeva, S.H.,
Land Cover-Land Use Monitoring for Agriculture Features Classification,
ISPRS20(B3:61-65).
DOI Link 2012
BibRef

Mohd Kamal, N.A., Razak, K.A., Rambat, S.,
Land Use/land Cover Assessment in a Seismically Active Region In Kundasang, Sabah,
GGT19(433-440).
DOI Link 1912
BibRef

Men, J., Fang, L., Liu, Y., Sun, Y.,
Land Use Classification Based On Multi-structure Convolution Neural Network Features Cascading,
PIA19(163-167).
DOI Link 1912
BibRef

Yang, C., Rottensteiner, F., Heipke, C.,
Towards Better Classification of Land Cover and Land Use Based On Convolutional Neural Networks,
Semantics3D19(139-146).
DOI Link 1912
BibRef

Jamali, A., Abdul Rahman, A.,
Evaluation of Advanced Data Mining Algorithms in Land Use/land Cover Mapping,
GGT19(283-289).
DOI Link 1912
BibRef

Nguyen, H.T.T., Doan, T.M., Radeloff, V.,
Applying Random Forest Classification to Map Land Use/land Cover Using Landsat 8 OLI,
Gi4DM18(363-367).
DOI Link 1805
BibRef

Mansor, S.B., Pormanafi, S., Mahmud, A.R.B., Pirasteh, S.,
Optimization of Land Use Suitability for Agriculture Using Integrated Geospatial Model and Genetic Algorithms,
AnnalsPRS(I-2), No. 2012, pp. 229-234.
HTML Version. 1209
BibRef

Heremans, S.[Stien], Orshoven, J.V.[Jos Vand_],
Effect of the learning algorithm on the accuracy of sub-pixel land use classifications with multilayer perceptrons,
MultiTemp11(193-196).
IEEE DOI 1109
BibRef

Ma, S.[Shifa], He, J.H.[Jian-Hua], Liu, F.[Feng],
Land-use Spatial Optimization Model Based On Particle Swarm Optimization,
VCGVA09(xx-yy). 0910
Particle Swarm Optimization PSO, Land-Use Spatial Allocation, Spatial Modeling, GIS BibRef

Hefnawy, A.A.,
A High Accuracy Land Use/Cover Retrieval System,
HighRes09(xx-yy).
PDF File. 0906
BibRef

Pan, C.H.[Chun-Hong], Wu, G.[Gang], Prinet, V.[Veronique], Yang, Q.[Qing], Ma, S.D.[Song-De],
A Band-Weighted Landuse Classification Method for Multispectral Images,
CVPR05(I: 96-102).
IEEE DOI 0507
BibRef

Mathieu, S., Berthod, M., Leymarie, P.,
Determination of proportions and entropy of land use mixing in pixels of a multispectral satellite image,
ICPR94(A:798-800).
IEEE DOI 9410
BibRef

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Habitat Analysis .


Last update:Oct 16, 2021 at 11:54:21