Bischof, H.[Horst],
Schneider, W.[Werner],
Pinz, A.[Axel],
Multispectral Classification of Landsat Images Using Neural Networks,
GeoRS(30), No. 3, 1992, pp. 482-490.
BibRef
9200
Bischof, H.[Horst],
Leonardis, A.[Ales],
Finding Optimal Neural Networks for Land Use Classification,
GeoRS(36), No. 1, 1998, pp. 337-341.
BibRef
9800
Ji, C.Y.,
Land-Use Classification of Remotely Sensed Data Using Kohonen
Self-Organizing Feature Map Neural Networks,
PhEngRS(66), No. 12, December 2000, pp. 1451-1460.
Results are compared to those of the maximum-likelihood method and of
the BP neural networks.
0101
BibRef
Yuan, H.,
van der Wiele, C.,
Khorram, S.,
An Automated Artificial Neural Network System for Land Use/Land Cover
Classification from Landsat TM Imagery,
RS(1), No. 3, September 2009, pp. 243-265.
DOI Link
1203
BibRef
Manandhar, R.,
Odeh, I.,
Ancev, T.,
Improving the Accuracy of Land Use and Land Cover Classification of
Landsat Data Using Post-Classification Enhancement,
RS(1), No. 3, September 2009, pp. 330-344.
DOI Link
1203
BibRef
Clark, M.,
Aide, T.,
Virtual Interpretation of Earth Web-Interface Tool (VIEW-IT) for
Collecting Land-Use/Land-Cover Reference Data,
RS(3), No. 3, March 2011, pp. 601-620.
DOI Link
1203
BibRef
Martínez, S.,
Mollicone, D.,
From Land Cover to Land Use:
A Methodology to Assess Land Use from Remote Sensing Data,
RS(4), No. 4, April 2012, pp. 1024-1045.
DOI Link
1202
BibRef
Kitada, K.,
Fukuyama, K.,
Land-Use and Land-Cover Mapping Using a Gradable Classification Method,
RS(4), No. 6, June 2012, pp. 1544-1558.
DOI Link
1208
BibRef
Jiao, L.M.[Li-Min],
Liu, Y.L.[Yao-Lin],
Li, H.L.[Hong-Liang],
Characterizing land-use classes in remote sensing imagery by shape
metrics,
PandRS(72), No. 1, August 2012, pp. 46-55.
Elsevier DOI
1209
Land-use; Image segmentation; Landscape metrics; Shape metrics; Image
classification
BibRef
Jiao, L.M.,
Liu, Y.L.,
Analyzing the Shape Characteristics of Land Use Classes in Remote
Sensing Imagery,
AnnalsPRS(I-7), No. 2012, pp. 135-140.
DOI Link
1209
BibRef
Chen, Y.[Yanlei],
Gong, P.[Peng],
Clustering based on eigenspace transformation:
CBEST for efficient classification,
PandRS(83), No. 1, 2013, pp. 64-80.
Elsevier DOI
1308
Land cover/use mapping
BibRef
Chen, S.Z.[Shi-Zhi],
Tian, Y.L.[Ying-Li],
Pyramid of Spatial Relatons for Scene-Level Land Use Classification,
GeoRS(53), No. 4, April 2015, pp. 1947-1957.
IEEE DOI
1502
data structures
BibRef
Pereira, D.R.[Danillo Roberto],
Papa, J.P.[João Paulo],
A new approach to contextual learning using interval arithmetic and
its applications for land-use classification,
PRL(83, Part 2), No. 1, 2016, pp. 188-194.
Elsevier DOI
1609
Sliding Window
BibRef
Fan, J.,
Chen, T.,
Lu, S.,
Unsupervised Feature Learning for Land-Use Scene Recognition,
GeoRS(55), No. 4, April 2017, pp. 2250-2261.
IEEE DOI
1704
geophysical techniques
BibRef
Chen, Y.B.[Yang-Bo],
Dou, P.[Peng],
Yang, X.J.[Xiao-Jun],
Improving Land Use/Cover Classification with a Multiple Classifier
System Using AdaBoost Integration Technique,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Zhang, B.[Bin],
Wang, C.P.[Cun-Peng],
Shen, Y.L.[Yong-Lin],
Liu, Y.Y.[Yue-Yan],
Fully Connected Conditional Random Fields for High-Resolution Remote
Sensing Land Use/Land Cover Classification with Convolutional Neural
Networks,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Qi, K.L.[Kun-Lun],
Yang, C.[Chao],
Hu, C.L.[Chu-Li],
Shen, Y.L.[Yong-Lin],
Shen, S.Y.[Sheng-Yu],
Wu, H.Y.[Hua-Yi],
Rotation Invariance Regularization for Remote Sensing Image Scene
Classification with Convolutional Neural Networks,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Wang, Q.[Qing],
Sun, H.[Hua],
Li, R.P.[Ruo-Pu],
Wang, G.X.[Guang-Xing],
A new stochastic simulation algorithm for image-based classification:
Feature-space indicator simulation,
PandRS(152), 2019, pp. 145-165.
Elsevier DOI
1905
Remote sensing, Image classification, Feature space,
Geostatistics, Stochastic simulation, Land use and land cover
BibRef
Ray, R.L.[Ram L.],
Ibironke, A.[Ademola],
Kommalapati, R.[Raghava],
Fares, A.[Ali],
Quantifying the Impacts of Land-Use and Climate on Carbon Fluxes
Using Satellite Data across Texas, U.S.,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Hou, W.[Wan],
Hou, X.Y.[Xi-Yong],
Data Fusion and Accuracy Analysis of Multi-Source Land Use/Land Cover
Datasets along Coastal Areas of the Maritime Silk Road,
IJGI(8), No. 12, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Talukdar, S.[Swapan],
Singha, P.[Pankaj],
Mahato, S.[Susanta],
Shahfahad,
Pal, S.[Swades],
Liou, Y.A.[Yuei-An],
Rahman, A.[Atiqur],
Land-Use Land-Cover Classification by Machine Learning Classifiers
for Satellite Observations: A Review,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Su, M.[Mo],
Guo, R.Z.[Ren-Zhong],
Chen, B.[Bin],
Hong, W.Y.[Wu-Yang],
Wang, J.Q.[Jia-Qi],
Feng, Y.M.[Yi-Mei],
Xu, B.[Bing],
Sampling Strategy for Detailed Urban Land Use Classification: A
Systematic Analysis in Shenzhen,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Tian, Y.[Ye],
Chen, C.[Chenru],
Chen, X.Y.[Xin-Yi],
Zhang, Q.Q.[Qian-Qian],
Sun, R.Z.[Rui-Zhi],
Research on real-time analysis technology of urban land use based on
support vector machine,
PRL(133), 2020, pp. 320-326.
Elsevier DOI
2005
Support vector machine, Data processing, Data analysis,
Web mining, Text analysis
BibRef
Sun, J.[Jing],
Wang, H.[Hong],
Song, Z.L.[Zheng-Lin],
Lu, J.B.[Jin-Bo],
Meng, P.Y.[Peng-Yu],
Qin, S.H.[Shu-Hong],
Mapping Essential Urban Land Use Categories in Nanjing by Integrating
Multi-Source Big Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Chang, S.Z.[Shou-Zhi],
Wang, Z.M.[Zong-Ming],
Mao, D.H.[De-Hua],
Guan, K.[Kehan],
Jia, M.M.[Ming-Ming],
Chen, C.[Chaoqun],
Mapping the Essential Urban Land Use in Changchun by Applying Random
Forest and Multi-Source Geospatial Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Vali, A.[Ava],
Comai, S.[Sara],
Matteucci, M.[Matteo],
Deep Learning for Land Use and Land Cover Classification based on
Hyperspectral and Multispectral Earth Observation Data: A Review,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Müller, I.[Inken],
Taubenböck, H.[Hannes],
Kuffer, M.[Monika],
Wurm, M.[Michael],
Misperceptions of Predominant Slum Locations? Spatial Analysis of
Slum Locations in Terms of Topography Based on Earth Observation Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Anugraha, A.S.[Adindha Surya],
Chu, H.J.[Hone-Jay],
Ali, M.Z.[Muhammad Zeeshan],
Social Sensing for Urban Land Use Identification,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Andrade, R.[Renato],
Alves, A.[Ana],
Bento, C.[Carlos],
POI Mining for Land Use Classification: A Case Study,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Tassi, A.[Andrea],
Vizzari, M.[Marco],
Object-Oriented LULC Classification in Google Earth Engine Combining
SNIC, GLCM, and Machine Learning Algorithms,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
Land Use-Land Cover.
BibRef
Rajendran, G.B.[Ganesh B.],
Kumarasamy, U.M.[Uma M.],
Zarro, C.[Chiara],
Divakarachari, P.B.[Parameshachari B.],
Ullo, S.L.[Silvia L.],
Land-Use and Land-Cover Classification Using a Human Group-Based
Particle Swarm Optimization Algorithm with an LSTM Classifier on
Hybrid Pre-Processing Remote-Sensing Images,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Smaczynski, M.[Maciej],
Medynska-Gulij, B.[Beata],
Halik, L.[Lukasz],
The Land Use Mapping Techniques (Including the Areas Used by
Pedestrians) Based on Low-Level Aerial Imagery,
IJGI(9), No. 12, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Li, X.T.[Xiao-Ting],
Hu, T.Y.[Teng-Yun],
Gong, P.[Peng],
Du, S.H.[Shi-Hong],
Chen, B.[Bin],
Li, X.C.[Xue-Cao],
Dai, Q.[Qi],
Mapping Essential Urban Land Use Categories in Beijing with a Fast
Area of Interest (AOI)-Based Method,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Pan, T.T.[Ting-Ting],
Zhang, Y.[Yu],
Su, F.Z.[Fen-Zhen],
Lyne, V.[Vincent],
Cheng, F.[Fei],
Xiao, H.[Han],
Practical Efficient Regional Land-Use Planning Using Constrained
Multi-Objective Genetic Algorithm Optimization,
IJGI(10), No. 2, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Shuangao, W.[Wang],
Padmanaban, R.[Rajchandar],
Mbanze, A.A.[Aires A.],
Silva, J.M.N.[João M. N.],
Shamsudeen, M.[Mohamed],
Cabral, P.[Pedro],
Campos, F.S.[Felipe S.],
Using Satellite Image Fusion to Evaluate the Impact of Land Use
Changes on Ecosystem Services and Their Economic Values,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Pinto, N.[Nuno],
Antunes, A.P.[António P.],
Roca, J.[Josep],
A Cellular Automata Model for Integrated Simulation of Land Use and
Transport Interactions,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Bui, D.H.[Dang Hung],
Mucsi, L.[László],
From Land Cover Map to Land Use Map: A Combined Pixel-Based and
Object-Based Approach Using Multi-Temporal Landsat Data, a Random
Forest Classifier, and Decision Rules,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Pedrayes, O.D.[Oscar D.],
Lema, D.G.[Darío G.],
García, D.F.[Daniel F.],
Usamentiaga, R.[Rubén],
Alonso, Á.[Ángela],
Evaluation of Semantic Segmentation Methods for Land Use with
Spectral Imaging Using Sentinel-2 and PNOA Imagery,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Sanlang, S.[Siji],
Cao, S.[Shisong],
Du, M.Y.[Ming-Yi],
Mo, Y.[You],
Chen, Q.[Qiang],
He, W.[Wen],
Integrating Aerial LiDAR and Very-High-Resolution Images for Urban
Functional Zone Mapping,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Kim, D.H.[Do-Hyung],
López, G.[Guzmán],
Kiedanski, D.[Diego],
Maduako, I.[Iyke],
Ríos, B.[Braulio],
Descoins, A.[Alan],
Zurutuza, N.[Naroa],
Arora, S.[Shilpa],
Fabian, C.[Christopher],
Bias in Deep Neural Networks in Land Use Characterization for
International Development,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
McCutchan, M.[Marvin],
Comber, A.J.[Alexis J.],
Giannopoulos, I.[Ioannis],
Canestrini, M.[Manuela],
Semantic Boosting: Enhancing Deep Learning Based LULC Classification,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
McCutchan, M.[Marvin],
Giannopoulos, I.[Ioannis],
Encoding Geospatial Vector Data for Deep Learning: LULC as a Use Case,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Li, Q.W.[Qing-Wen],
Yan, D.M.[Dong-Mei],
Wu, W.[Wanrong],
Remote Sensing Image Scene Classification Based on Global
Self-Attention Module,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Ostafin, K.[Krzysztof],
Pietrzak, M.[Malgorzata],
Kaim, D.[Dominik],
Impact of the Cartographer's Position and Topographic
Accessibility on the Accuracy of Historical Land Use Information:
Case of the Second Military Survey Maps of the Habsburg Empire,
IJGI(10), No. 12, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Nasiri, V.[Vahid],
Deljouei, A.[Azade],
Moradi, F.[Fardin],
Sadeghi, S.M.M.[Seyed Mohammad Moein],
Borz, S.A.[Stelian Alexandru],
Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite
Images, and Google Earth Engine: A Comparison of Two Composition
Methods,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Zheng, K.[Kang],
Wang, H.Y.[Hai-Ying],
Qin, F.[Fen],
Han, Z.G.[Zhi-Gang],
A Land Use Classification Model Based on Conditional Random Fields
and Attention Mechanism Convolutional Networks,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Zhang, X.D.[Xue-Dong],
Wang, X.[Xuedi],
Zhou, Z.[Zexu],
Li, M.W.[Meng-Wei],
Jing, C.F.[Chang-Feng],
Spatial Quantitative Model of Human Activity Disturbance Intensity
and Land Use Intensity Based on GF-6 Image, Empirical Study in
Southwest Mountainous County, China,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Stateczny, A.[Andrzej],
Bolugallu, S.M.[Shanthi Mandekolu],
Divakarachari, P.B.[Parameshachari Bidare],
Ganesan, K.[Kavithaa],
Muthu, J.R.[Jamuna Rani],
Multiplicative Long Short-Term Memory with Improved Mayfly
Optimization for LULC Classification,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Koko, A.F.[Auwalu Faisal],
Han, Z.[Zexu],
Wu, Y.[Yue],
Abubakar, G.A.[Ghali Abdullahi],
Bello, M.[Muhammed],
Spatiotemporal Land Use/Land Cover Mapping and Prediction Based on
Hybrid Modeling Approach:
A Case Study of Kano Metropolis, Nigeria (2020-2050),
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhang, J.[Junbo],
Xu, S.F.[Shi-Feng],
Sun, J.[Jun],
Ou, D.H.[Ding-Hua],
Wu, X.B.[Xiao-Bo],
Wang, M.T.[Man-Tao],
Unsupervised Adversarial Domain Adaptation for Agricultural Land
Extraction of Remote Sensing Images,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Schuh, L.A.[Leila A.],
Santos, M.J.[Maria J.],
Schaepman, M.E.[Michael E.],
Furrer, R.[Reinhard],
An Empirical Bayesian Approach to Quantify Multi-Scale Spatial
Structural Diversity in Remote Sensing Data,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Beroho, M.[Mohamed],
Briak, H.[Hamza],
Cherif, E.[El_Khalil],
Boulahfa, I.[Imane],
Ouallali, A.[Abdessalam],
Mrabet, R.[Rachid],
Kebede, F.[Fassil],
Bernardino, A.[Alexandre],
Aboumaria, K.[Khadija],
Future Scenarios of Land Use/Land Cover (LULC) Based on a CA-Markov
Simulation Model: Case of a Mediterranean Watershed in Morocco,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Li, C.[Cheng],
Zhao, J.[Jie],
Hou, W.[Wei],
Nonlinear Effects of Landscape Patterns on Ecosystem Services at
Multiple Scales Based on Gradient Boosting Decision Tree Models,
RS(15), No. 7, 2023, pp. 1919.
DOI Link
2304
BibRef
Zhang, Y.H.[Yong-Hong],
Zhao, H.J.[Hua-Jun],
Ma, G.Y.[Guang-Yi],
Xie, D.L.[Dong-Lin],
Geng, S.[Sutong],
Lu, H.Y.[Huan-Yu],
Tian, W.[Wei],
Sian, K.T.C.L.K.[Kenny Thiam Choy Lim Kam],
MAAFEU-Net: A Novel Land Use Classification Model Based on Mixed
Attention Module and Adjustable Feature Enhancement Layer in Remote
Sensing Images,
IJGI(12), No. 5, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Luan, C.X.[Chao-Xu],
Liu, R.Z.[Ren-Zhi],
Sun, J.[Jing],
Su, S.R.[Shang-Ren],
Shen, Z.Y.[Zhen-Yao],
An Improved Future Land-Use Simulation Model with Dynamically Nested
Ecological Spatial Constraints,
RS(15), No. 11, 2023, pp. 2921.
DOI Link
2306
BibRef
Yu, X.R.[Xin-Ran],
Xiao, J.T.[Jiang-Tao],
Huang, K.[Ke],
Li, Y.Y.[Yuan-Yuan],
Lin, Y.[Yang],
Qi, G.[Gang],
Liu, T.[Tao],
Ren, P.[Ping],
Simulation of Land Use Based on Multiple Models in the Western
Sichuan Plateau,
RS(15), No. 14, 2023, pp. 3629.
DOI Link
2307
BibRef
Zhang, P.F.[Peng-Fei],
Wu, Y.J.[Yi-Jin],
Li, C.[Chang],
Li, R.H.[Ren-Hua],
Yao, H.[He],
Zhang, Y.[Yong],
Zhang, G.[Genlin],
Li, D.H.[De-Hua],
National-Standards- and Deep-Learning-Oriented Raster and Vector
Benchmark Dataset (RVBD) for Land-Use/Land-Cover Mapping in the
Yangtze River Basin,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Macarringue, L.S.[Lucrêncio Silvestre],
Bolfe, É.L.[Édson Luis],
Duverger, S.G.[Soltan Galano],
Sano, E.E.[Edson Eyji],
Caldas, M.M.[Marcellus Marques],
Ferreira, M.C.[Marcos César],
Junior, J.Z.[Jurandir Zullo],
Matias, L.F.[Lindon Fonseca],
Land Use and Land Cover Classification in the Northern Region of
Mozambique Based on Landsat Time Series and Machine Learning,
IJGI(12), No. 8, 2023, pp. 342.
DOI Link
2309
BibRef
Guo, N.[Ningbo],
Jiang, M.Y.[Ming-Yong],
Gao, L.[Lijing],
Li, K.[Kaitao],
Zheng, F.J.[Feng-Jie],
Chen, X.N.[Xiang-Ning],
Wang, M.D.[Ming-Dong],
HFCC-Net: A Dual-Branch Hybrid Framework of CNN and CapsNet for
Land-Use Scene Classification,
RS(15), No. 20, 2023, pp. 5044.
DOI Link
2310
BibRef
Zhong, Y.Q.[Yu-Qing],
Zhang, X.X.[Xiao-Xiang],
Yang, Y.F.[Yan-Fei],
Xue, M.H.[Ming-Hui],
Optimization and Simulation of Mountain City Land Use Based on
MOP-PLUS Model: A Case Study of Caijia Cluster, Chongqing,
IJGI(12), No. 11, 2023, pp. xx-yy.
DOI Link
2312
BibRef
Li, W.B.[Wang-Bin],
Sun, K.M.[Kai-Min],
Li, W.Z.[Wen-Zhuo],
Huang, X.[Xiao],
Wei, J.J.[Jin-Jiang],
Chen, Y.[Yepei],
Cui, W.[Wei],
Chen, X.[Xueyu],
Lv, X.W.[Xian-Wei],
Assisted learning for land use classification: The important role of
semantic correlation between heterogeneous images,
PandRS(208), 2024, pp. 158-175.
Elsevier DOI Code:
WWW Link.
2402
Land use classification, Knowledge distillation,
Heterogeneous images, Semantic correlation
BibRef
Bhungeni, O.[Orlando],
Ramjatan, A.[Ashadevi],
Gebreslasie, M.[Michael],
Evaluating Machine-Learning Algorithms for Mapping LULC of the
uMngeni Catchment Area, KwaZulu-Natal,
RS(16), No. 12, 2024, pp. 2219.
DOI Link
2406
BibRef
Vali, A.[Ava],
Comai, S.[Sara],
Matteucci, M.[Matteo],
An Automated Machine Learning Framework for Adaptive and Optimized
Hyperspectral-Based Land Cover and Land-Use Segmentation,
RS(16), No. 14, 2024, pp. 2561.
DOI Link
2408
BibRef
Cheng, M.H.[Ming-Han],
Liu, K.[Kaihua],
Liu, Z.X.[Zhang-Xin],
Xu, J.[Junzeng],
Zhang, Z.X.[Zheng-Xian],
Sun, C.M.[Cheng-Ming],
Combination of Multiple Variables and Machine Learning for Regional
Cropland Water and Carbon Fluxes Estimation:
A Case Study in the Haihe River Basin,
RS(16), No. 17, 2024, pp. 3280.
DOI Link
2409
BibRef
Thepade, S.D.[Sudeep D.],
Chauhan, S.[Sandeep],
Integrating Thepade SBTC and Niblack thresholding features for
identification of land usage from aerial images using ensemble of
machine learning algorithms,
IJCVR(14), No. 6, 2024, pp. 615-630.
DOI Link
2410
BibRef
Ding, X.[Xue],
Wang, Z.Q.[Zhao-Qian],
Peng, S.[Shuangyun],
Shao, X.[Xin],
Deng, R.[Ruifang],
Research on Land Use and Land Cover Information Extraction Methods
for Remote Sensing Images Based on Improved Convolutional Neural
Networks,
IJGI(13), No. 11, 2024, pp. 386.
DOI Link
2412
BibRef
Mondal, S.[Suresh],
Parveen, M.T.[Mst Tania],
Alam, A.[Asraful],
Rukhsana,
Islam, N.[Nazrul],
Calka, B.[Beata],
Bashir, B.[Bashar],
Zhran, M.[Mohamed],
Future Site Suitability for Urban Waste Management in English Bazar
and Old Malda Municipalities, West Bengal: A Geospatial and Machine
Learning Approach,
IJGI(13), No. 11, 2024, pp. 388.
DOI Link
2412
BibRef
Lee, J.[Jeonghee],
Kim, K.[Kwangseob],
Lee, K.[Kiwon],
Multi-Sensor Image Classification Using the Random Forest Algorithm
in Google Earth Engine with KOMPSAT-3/5 and CAS500-1 Images,
RS(16), No. 24, 2024, pp. 4622.
DOI Link
2501
Multiple sources.
BibRef
Yang, C.,
Rottensteiner, F.[Franz],
Heipke, C.[Christian],
CNN-based Multi-scale Hierarchical Land Use Classification for The
Verification of Geospatial Databases,
ISPRS21(B2-2021: 495-502).
DOI Link
2201
BibRef
Yassine, H.,
Tout, K.,
Jaber, M.,
Improving LULC Classification From Satellite Imagery Using Deep
Learning - Eurosat Dataset,
ISPRS21(B3-2021: 369-376).
DOI Link
2201
BibRef
Rawal, D.,
Chhabra, A.,
Pandya, M.,
Vyas, A.,
Land Use and Land Cover Mapping - A Case Study of Ahmedabad District,
ISPRS20(B3:189-193).
DOI Link
2012
BibRef
Bergado, J.R.,
Persello, C.,
Stein, A.,
Land Use Classification Using Deep Multitask Networks,
ISPRS20(B3:17-21).
DOI Link
2012
BibRef
Guliyeva, S.H.,
Land Cover-Land Use Monitoring for Agriculture Features
Classification,
ISPRS20(B3:61-65).
DOI Link
2012
BibRef
Mohd Kamal, N.A.,
Razak, K.A.,
Rambat, S.,
Land Use/land Cover Assessment in a Seismically Active Region In
Kundasang, Sabah,
GGT19(433-440).
DOI Link
1912
BibRef
Men, J.,
Fang, L.,
Liu, Y.,
Sun, Y.,
Land Use Classification Based On Multi-structure Convolution Neural
Network Features Cascading,
PIA19(163-167).
DOI Link
1912
BibRef
Yang, C.,
Rottensteiner, F.,
Heipke, C.,
Towards Better Classification of Land Cover and Land Use Based On
Convolutional Neural Networks,
Semantics3D19(139-146).
DOI Link
1912
BibRef
Jamali, A.,
Abdul Rahman, A.,
Evaluation of Advanced Data Mining Algorithms in Land Use/land Cover
Mapping,
GGT19(283-289).
DOI Link
1912
BibRef
Nguyen, H.T.T.,
Doan, T.M.,
Radeloff, V.,
Applying Random Forest Classification to Map Land Use/land Cover Using
Landsat 8 OLI,
Gi4DM18(363-367).
DOI Link
1805
BibRef
Mansor, S.B.,
Pormanafi, S.,
Mahmud, A.R.B.,
Pirasteh, S.,
Optimization of Land Use Suitability for Agriculture Using Integrated
Geospatial Model and Genetic Algorithms,
AnnalsPRS(I-2), No. 2012, pp. 229-234.
DOI Link
1209
BibRef
Heremans, S.[Stien],
Orshoven, J.V.[Jos Vand_],
Effect of the learning algorithm on the accuracy of sub-pixel land use
classifications with multilayer perceptrons,
MultiTemp11(193-196).
IEEE DOI
1109
BibRef
Ma, S.[Shifa],
He, J.H.[Jian-Hua],
Liu, F.[Feng],
Land-use Spatial Optimization Model Based On Particle Swarm
Optimization,
VCGVA09(xx-yy).
0910
Particle Swarm Optimization PSO, Land-Use Spatial Allocation, Spatial
Modeling, GIS
BibRef
Hefnawy, A.A.,
A High Accuracy Land Use/Cover Retrieval System,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Pan, C.H.[Chun-Hong],
Wu, G.[Gang],
Prinet, V.[Veronique],
Yang, Q.[Qing],
Ma, S.D.[Song-De],
A Band-Weighted Landuse Classification Method for Multispectral Images,
CVPR05(I: 96-102).
IEEE DOI
0507
BibRef
Mathieu, S.,
Berthod, M.,
Leymarie, P.,
Determination of proportions and entropy of land use mixing in pixels
of a multispectral satellite image,
ICPR94(A:798-800).
IEEE DOI
9410
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Habitat Analysis, Habitat Quality .