Roellinger, Jr., F.X.,
Kahveci, A.E.,
Chang, J.K.,
Harlow, C.A.,
Dwyer, III, S.J.,
Lodwick, G.S.,
Computer Analysis of Chest Radiographs,
CGIP(2), 1973, pp. 232-251.
BibRef
7300
Toriwaki, J.I.,
Suenaga, Y.,
Negoro, T.,
Fukumura, T.,
Pattern Recognition of Chest X-Ray Images,
CGIP(2), 1973, pp. 252-271.
BibRef
7300
Ballard, D.M., and
Sklansky, J.,
A Ladder-Structured Decision Tree for Recognizing Tumors in
Chest Radiographs,
TC(25), No. 5, May 1976, pp. 503-513.
BibRef
7605
Cocklin, M.L.,
Gourlay, A.R.,
Jackson, P.H.,
Kaye, G.,
Kerr, I.H.,
Lams, P.,
Digital Processing of Chest Radiographs,
IVC(1), No. 2, May 1983, pp. 67-78.
Elsevier DOI
BibRef
8305
Hasegawa, A.,
Lo, S.C.B.,
Lin, J.S.,
Freedman, M.T.,
Mun, S.K.,
A Shift-Invariant Neural Network for the Lung Field Segmentation in
Chest Radiography,
VLSIVideo(18), No. 3, April 1998, pp. 241-250.
9806
BibRef
van Ginneken, B.,
ter Haar Romeny, B.M.,
Viergever, M.A.,
Computer-aided diagnosis in chest radiography: a survey,
MedImg(20), No. 12, December 2001, pp. 1228-1241.
IEEE Top Reference.
0201
Survey, Radiography.
BibRef
van Ginneken, B.[Bram],
Katsuragawa, S.,
ter Haar Romeny, B.M.,
Doi, K.[Kunio],
Viergever, M.A.,
Automatic detection of abnormalities in chest radiographs using local
texture analysis,
MedImg(21), No. 2, February 2002, pp. 139-149.
IEEE Top Reference.
0204
BibRef
Shi, Y.,
Qi, F.,
Xue, Z.,
Chen, L.,
Ito, K.,
Matsuo, H.,
Shen, D.,
Segmenting Lung Fields in Serial Chest Radiographs Using Both
Population-Based and Patient-Specific Shape Statistics,
MedImg(27), No. 4, April 2008, pp. 481-494.
IEEE DOI
0804
BibRef
Philipsen, R.H.H.M.,
Maduskar, P.,
Hogeweg, L.,
Melendez, J.,
Sanchez, C.I.,
van Ginneken, B.,
Localized Energy-Based Normalization of Medical Images:
Application to Chest Radiography,
MedImg(34), No. 9, September 2015, pp. 1965-1975.
IEEE DOI
1509
Biomedical imaging
BibRef
Salehinejad, H.,
Colak, E.,
Dowdell, T.,
Barfett, J.,
Valaee, S.,
Synthesizing Chest X-Ray Pathology for Training Deep Convolutional
Neural Networks,
MedImg(38), No. 5, May 2019, pp. 1197-1206.
IEEE DOI
1905
X-ray imaging, Computed tomography,
Biomedical imaging, Magnetic resonance imaging, Training,
synthesized images
BibRef
Bozorgtabar, B.[Behzad],
Mahapatra, D.[Dwarikanath],
von Teng, H.[Hendrik],
Pollinger, A.[Alexander],
Ebner, L.[Lukas],
Thiran, J.P.[Jean-Phillipe],
Reyes, M.[Mauricio],
Informative sample generation using class aware generative
adversarial networks for classification of chest Xrays,
CVIU(184), 2019, pp. 57-65.
Elsevier DOI
1906
GAN, Active learning, Classification, Chest xray, Informative samples
BibRef
Jin, Y.[Yan],
Jiang, X.B.[Xiao-Ben],
Wei, Z.K.[Zhen-Kun],
Li, Y.[Yuan],
Chest X-ray image denoising method based on deep convolution neural
network,
IET-IPR(13), No. 11, 19 September 2019, pp. 1970-1978.
DOI Link
1909
BibRef
Guan, Q.J.[Qing-Ji],
Huang, Y.P.[Ya-Ping],
Multi-label chest X-ray image classification via category-wise
residual attention learning,
PRL(130), 2020, pp. 259-266.
Elsevier DOI
2002
Chest X-ray, Residual attention, Convolutional neural network,
Image classification
BibRef
Luo, L.,
Yu, L.,
Chen, H.,
Liu, Q.,
Wang, X.,
Xu, J.,
Heng, P.A.,
Deep Mining External Imperfect Data for Chest X-Ray Disease Screening,
MedImg(39), No. 11, November 2020, pp. 3583-3594.
IEEE DOI
2011
Diseases, X-ray imaging, Training, Task analysis, Training data,
Biomedical imaging, Predictive models, uncertainty
BibRef
Cho, Y.[Yongwon],
Lee, S.M.[Sang Min],
Cho, Y.H.[Young-Hoon],
Lee, J.G.[June-Goo],
Park, B.[Beomhee],
Lee, G.[Gaeun],
Kim, N.[Namkug],
Seo, J.B.[Joon Beom],
Deep chest X-ray: Detection and classification of lesions based on
deep convolutional neural networks,
IJIST(31), No. 1, 2021, pp. 72-81.
DOI Link
2102
chest radiographs, computer-aided detection, deep learning,
lung diseases, machine learning, radiography
BibRef
Yang, B.[Bing],
Kang, Y.[Yan],
Zhang, L.[Lan],
Li, H.[Hao],
GGAC: Multi-relational image gated GCN with attention convolutional
binary neural tree for identifying disease with chest X-rays,
PR(120), 2021, pp. 108113.
Elsevier DOI
2109
Multi-relational graph, Gated graph convolutional network,
Identifying disease, Attention transformer
BibRef
Paul, A.[Angshuman],
Shen, T.C.[Thomas C.],
Lee, S.[Sungwon],
Balachandar, N.[Niranjan],
Peng, Y.F.[Yi-Fan],
Lu, Z.Y.[Zhi-Yong],
Summers, R.M.[Ronald M.],
Generalized Zero-Shot Chest X-Ray Diagnosis Through Trait-Guided
Multi-View Semantic Embedding With Self-Training,
MedImg(40), No. 10, October 2021, pp. 2642-2655.
IEEE DOI
2110
Semantics, X-ray imaging, Computed tomography, Radiology,
Visualization, Diseases, Training, Multi-view, self-training, x-ray, zero-shot
BibRef
Ouyang, X.[Xi],
Karanam, S.[Srikrishna],
Wu, Z.[Ziyan],
Chen, T.[Terrence],
Huo, J.[Jiayu],
Zhou, X.S.[Xiang Sean],
Wang, Q.[Qian],
Cheng, J.Z.[Jie-Zhi],
Learning Hierarchical Attention for Weakly-Supervised Chest X-Ray
Abnormality Localization and Diagnosis,
MedImg(40), No. 10, October 2021, pp. 2698-2710.
IEEE DOI
2110
Location awareness, Annotations, Task analysis, X-ray imaging,
Visualization, Diseases, Image analysis, Weakly supervised,
hierarchical attention
BibRef
Yin, B.C.[Bao-Cai],
Liu, W.C.[Wen-Chao],
Fu, Z.H.[Zhong-Hua],
Zhang, J.[Jing],
Liu, C.[Cong],
Wang, Z.F.[Zeng-Fu],
Generative domain adaptation for chest X-ray image analysis,
IET-IPR(15), No. 13, 2021, pp. 3118-3129.
DOI Link
2110
BibRef
Monajatipoor, M.[Masoud],
Rouhsedaghat, M.[Mozhdeh],
Li, L.H.[Liunian Harold],
Chien, A.[Aichi],
Kuo, C.C.J.[C.C. Jay],
Scalzo, F.[Fabien],
Chang, K.W.[Kai-Wei],
BERTHop: An Effective Vision-and-Language Model for Chest X-ray
Disease Diagnosis,
CVAMD21(3327-3336)
IEEE DOI
2112
Visualization, Transformers,
Knowledge discovery, Data models, Medical diagnosis
BibRef
Kim, E.[Eunji],
Kim, S.[Siwon],
Seo, M.J.[Min-Ji],
Yoon, S.[Sungroh],
XProtoNet:
Diagnosis in Chest Radiography with Global and Local Explanations,
CVPR21(15714-15723)
IEEE DOI
2111
Location awareness, Deep learning,
Computational modeling, Prototypes, Pattern recognition, Diagnostic radiography
BibRef
Zhang, L.[Lipei],
Liu, A.[Aozhi],
Xiao, J.[Jing],
Taylor, P.[Paul],
Dual Encoder Fusion U-Net (DEFU-Net) for Cross-manufacturer Chest
X-ray Segmentation,
ICPR21(9333-9339)
IEEE DOI
2105
Deep learning, Image segmentation, Hospitals, Feature extraction,
Data models, Decoding, Convolutional neural networks,
DEFU-Net
BibRef
Reiß, S.[Simon],
Seibold, C.[Constantin],
Freytag, A.[Alexander],
Rodner, E.[Erik],
Stiefelhagen, R.[Rainer],
Every Annotation Counts:
Multi-label Deep Supervision for Medical Image Segmentation,
CVPR21(9527-9537)
IEEE DOI
2111
Training, Image segmentation, Biomedical equipment, Annotations,
Mission critical systems, Medical services, Retina
BibRef
Seibold, C.[Constantin],
Kleesiek, J.[Jens],
Schlemmer, H.P.[Heinz-Peter],
Stiefelhagen, R.[Rainer],
Self-guided Multiple Instance Learning for Weakly Supervised Disease
Classification and Localization in Chest Radiographs,
ACCV20(V:617-634).
Springer DOI
2103
BibRef
Majdi, M.S.,
Salman, K.N.,
Morris, M.F.,
Merchant, N.C.,
Rodriguez, J.J.,
Deep Learning Classification of Chest X-Ray Images,
SSIAI20(116-119)
IEEE DOI
2009
computerised tomography, diagnostic radiography, diseases,
image classification, learning (artificial intelligence),
cardiomegaly
BibRef
Liu, J.,
Zhao, G.,
Fei, Y.,
Zhang, M.,
Wang, Y.,
Yu, Y.,
Align, Attend and Locate: Chest X-Ray Diagnosis via Contrast Induced
Attention Network With Limited Supervision,
ICCV19(10631-10640)
IEEE DOI
2004
diagnostic radiography, diseases,
learning (artificial intelligence), medical image processing,
Visualization
BibRef
Zhou, B.[Bo],
Lin, X.[Xunyu],
Eck, B.[Brendan],
Hou, J.[Jun],
Wilson, D.[David],
Generation of Virtual Dual Energy Images from Standard Single-Shot
Radiographs Using Multi-scale and Conditional Adversarial Network,
ACCV18(I:298-313).
Springer DOI
1906
Dual-energy (DE) chest radiographs.
BibRef
Wang, C.L.[Chun-Liang],
Segmentation of Multiple Structures in Chest Radiographs Using
Multi-task Fully Convolutional Networks,
SCIA17(II: 282-289).
Springer DOI
1706
BibRef
Wan Ahmad, W.S.H.M.[Wan Siti Halimatul Munirah],
Wan Zaki, W.M.D.[Wan Mimi Diyana],
Ahmad Fauzi, M.F.[Mohammad Faizal],
Tan, W.H.[Wooi Haw],
Classification of Infection and Fluid Regions in Chest X-Ray Images,
DICTA16(1-5)
IEEE DOI
1701
Feature extraction
BibRef
Shin, H.C.,
Roberts, K.,
Lu, L.,
Demner-Fushman, D.,
Yao, J.,
Summers, R.M.,
Learning to Read Chest X-Rays: Recurrent Neural Cascade Model for
Automated Image Annotation,
CVPR16(2497-2506)
IEEE DOI
1612
BibRef
Hirano, Y.S.[Yasu-Shi],
Mekada, Y.[Yoshito],
Hasegawa, J.I.[Jun-Ichi],
Toriwaki, J.I.[Jun-Ichiro],
Quantification of the Spatial Distributionof Line Segments with
Applications to CAD of Chest X-Ray CT Images,
WTRCV02(389-412).
0204
BibRef
Ramachandran, J.,
Pattichis, M.S.,
Soliz, P.,
Pre-classification of chest radiographs for improved active shape model
segmentation of ribs,
Southwest02(188-192).
IEEE Top Reference.
0208
BibRef
Pattichis, M.S.,
Muralidharan, H.,
Pattichis, C.S.,
Soliz, P.,
New image processing models for opacity image analysis in chest
radiographs,
Southwest02(260-264).
IEEE Top Reference.
0208
BibRef
Ugurlu, Y.[Yucel],
Ohkura, K.[Keiko],
Obi, T.[Takashi],
Hasegawa, A.[Akira],
Yamaguchi, M.[Masahiro],
Ohyama, N.[Nagaaki],
Detection of Increasing Profusion of Opacities from a Sequence of
Personal Chest Radiographs,
ICIP99(III:402-406).
IEEE DOI
BibRef
9900
Hasegawa, J.I.[Jun-Ichi],
Hirano, Y.S.[Yasu-Shi],
Toriwaki, J.I.[Jun-Ichiro],
Ohmatsu, N.[Nobuhiro],
Mekada, Y.[Yoshito],
Eguchi, K.[Kenji],
Three Dimensional Concentration Index:
A Local Feature for Analyzing Three Dimensional Digital Line Patterns
and Its Application to Chest X-Ray CT Images,
ICPR98(Vol II: 1040-1043).
IEEE DOI
9808
BibRef
Hara, T.,
Fujita, H.,
Lee, Y.B.[Yong-Bum],
Yoshimura, H.,
Kido, S.,
Automated lesion detection methods for 2D and 3D chest X-ray images,
CIAP99(768-773).
IEEE DOI
9909
BibRef
Zhang, Y.Q.,
Loew, M.H.,
Pickholtz, R.L.,
On modeling the distribution of chest X-ray images and their stochastic
properties,
ICPR90(II: 218-223).
IEEE DOI
9208
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Lung Motion Analysis, Respiration, Breathing .