Chen, N.[Ning],
Zhu, J.[Jun],
Sun, F.C.[Fu-Chun],
Xing, E.P.[Eric Poe],
Large-Margin Predictive Latent Subspace Learning for Multiview Data
Analysis,
PAMI(34), No. 12, December 2012, pp. 2365-2378.
IEEE DOI
1210
BibRef
Wang, Y.[Yang],
Lin, X.M.[Xue-Min],
Wu, L.[Lin],
Zhang, W.J.[Wen-Jie],
Zhang, Q.[Qing],
Huang, X.D.[Xiao-Di],
Robust Subspace Clustering for Multi-View Data by Exploiting
Correlation Consensus,
IP(24), No. 11, November 2015, pp. 3939-3949.
IEEE DOI
1509
compressed sensing
BibRef
Yin, Q.Y.[Qi-Yue],
Wu, S.[Shu],
Wang, L.[Liang],
Unified subspace learning for incomplete and unlabeled multi-view
data,
PR(67), No. 1, 2017, pp. 313-327.
Elsevier DOI
1704
Multi-view learning
BibRef
Brbic, M.[Maria],
Kopriva, I.[Ivica],
Multi-view low-rank sparse subspace clustering,
PR(73), No. 1, 2018, pp. 247-258.
Elsevier DOI
1709
Subspace clustering
BibRef
Chen, X.J.[Xiao-Jun],
Yang, M.[Min],
Huang, J.Z.[Joshua Zhexue],
Ming, Z.[Zhong],
TWCC: Automated Two-way Subspace Weighting Partitional Co-Clustering,
PR(76), No. 1, 2018, pp. 404-415.
Elsevier DOI
1801
Data mining
BibRef
You, X.G.[Xin-Ge],
Xu, J.M.[Jia-Miao],
Yuan, W.[Wei],
Jing, X.Y.[Xiao-Yuan],
Tao, D.C.[Da-Cheng],
Zhang, T.P.[Tai-Ping],
Multi-view common component discriminant analysis for cross-view
classification,
PR(92), 2019, pp. 37-51.
Elsevier DOI
1905
Cross-view classification, Local geometry preservation,
Multi-view learning, Subspace learning
BibRef
Chen, Y.Y.[Yong-Yong],
Xiao, X.L.[Xiao-Lin],
Zhou, Y.C.[Yi-Cong],
Jointly Learning Kernel Representation Tensor and Affinity Matrix for
Multi-View Clustering,
MultMed(22), No. 8, August 2020, pp. 1985-1997.
IEEE DOI
2007
Tensors, Kernel, Symmetric matrices, Sparse matrices,
Matrix decomposition, Correlation, Clustering algorithms,
adaptive weight
See also Generalized Nonconvex Low-Rank Tensor Approximation for Multi-View Subspace Clustering.
BibRef
Chen, Y.Y.[Yong-Yong],
Xiao, X.L.[Xiao-Lin],
Zhou, Y.C.[Yi-Cong],
Multi-View Subspace Clustering via Simultaneously Learning the
Representation Tensor and Affinity Matrix,
PR(106), 2020, pp. 107441.
Elsevier DOI
2006
Multi-view subspace clustering, Low-rank tensor representation, Local manifold
BibRef
Xiao, X.L.[Xiao-Lin],
Gong, Y.J.[Yue-Jiao],
Hua, Z.Y.[Zhong-Yun],
Chen, W.N.[Wei-Neng],
On Reliable Multi-View Affinity Learning for Subspace Clustering,
MultMed(23), 2021, pp. 4555-4566.
IEEE DOI
2112
Tensors, Sparse matrices, Data structures, Correlation, Data models,
Robustness, Manifolds, Affinity learning,
self-representation
BibRef
Chen, Y.Y.[Yong-Yong],
Xiao, X.L.[Xiao-Lin],
Peng, C.[Chong],
Lu, G.M.[Guang-Ming],
Zhou, Y.C.[Yi-Cong],
Low-Rank Tensor Graph Learning for Multi-View Subspace Clustering,
CirSysVideo(32), No. 1, January 2022, pp. 92-104.
IEEE DOI
2201
Tensors, Matrix decomposition, Clustering methods,
Adaptation models, Correlation, Clustering algorithms, graph learning
BibRef
Kang, K.[Kehan],
Chen, C.L.Z.[Cheng-Li-Zhao],
Peng, C.[Chong],
Consensus Low-Rank Multi-View Subspace Clustering With Cross-View
Diversity Preserving,
SPLetters(30), 2023, pp. 1512-1516.
IEEE DOI
2311
BibRef
Wang, S.Q.[Shu-Qin],
Lin, Z.P.[Zhi-Ping],
Cao, Q.[Qi],
Cen, Y.G.[Yi-Gang],
Chen, Y.Y.[Yong-Yong],
Bi-Nuclear Tensor Schatten-p Norm Minimization for Multi-View
Subspace Clustering,
IP(32), 2023, pp. 4059-4072.
IEEE DOI
2307
Tensors, Clustering methods, Correlation, Minimization, Estimation,
Computational complexity, Optimization,
Schatten-p norm
BibRef
Xiao, X.L.[Xiao-Lin],
Wu, Y.[Yue],
Gong, Y.J.[Yue-Jiao],
Relative Comparison-Based Consensus Learning for Multi-View Subspace
Clustering,
CirSysVideo(34), No. 12, December 2024, pp. 12376-12387.
IEEE DOI
2501
Clustering algorithms, Data models, Kernel, Computational modeling,
Vectors, Tensors, Symmetric matrices, Consensus learning,
relative comparison
BibRef
Zhu, W.C.[Wen-Cheng],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
Structured general and specific multi-view subspace clustering,
PR(93), 2019, pp. 392-403.
Elsevier DOI
1906
Subspace clustering, Multi-view learning,
Structure consistence, Diversity
BibRef
Xie, Y.[Yuan],
Tao, D.C.[Da-Cheng],
Zhang, W.S.[Wen-Sheng],
Liu, Y.[Yan],
Zhang, L.[Lei],
Qu, Y.Y.[Yan-Yun],
On Unifying Multi-view Self-Representations for Clustering by Tensor
Multi-rank Minimization,
IJCV(126), No. 11, November 2018, pp. 1157-1179.
Springer DOI
1809
multi-view subspace clustering problem
BibRef
Wang, X.B.[Xiao-Bo],
Lei, Z.[Zhen],
Guo, X.J.[Xiao-Jie],
Zhang, C.Q.[Chang-Qing],
Shi, H.L.[Hai-Lin],
Li, S.Z.[Stan Z.],
Multi-view subspace clustering with intactness-aware similarity,
PR(88), 2019, pp. 50-63.
Elsevier DOI
1901
Intact space, Intactness-aware similarity, Multi-view subspace clustering
BibRef
Xue, Z.,
Du, J.,
Du, D.,
Li, G.,
Huang, Q.,
Lyu, S.,
Deep Constrained Low-Rank Subspace Learning for Multi-View
Semi-Supervised Classification,
SPLetters(26), No. 8, August 2019, pp. 1177-1181.
IEEE DOI
1908
learning (artificial intelligence), matrix decomposition,
pattern classification,
semi-supervised classification
BibRef
Yang, Z.,
Xu, Q.,
Zhang, W.,
Cao, X.,
Huang, Q.,
Split Multiplicative Multi-View Subspace Clustering,
IP(28), No. 10, October 2019, pp. 5147-5160.
IEEE DOI
1909
Clustering methods, Sparse matrices, Optimization,
Periodic structures, Information security, Computer security,
image representation
BibRef
Zhang, C.Q.[Chang-Qing],
Fu, H.Z.[Hua-Zhu],
Hu, Q.H.[Qing-Hua],
Cao, X.C.[Xiao-Chun],
Xie, Y.[Yuan],
Tao, D.C.[Da-Cheng],
Xu, D.[Dong],
Generalized Latent Multi-View Subspace Clustering,
PAMI(42), No. 1, January 2020, pp. 86-99.
IEEE DOI
1912
Clustering methods, Correlation, Neural networks,
Task analysis, Clustering algorithms, Minimization,
neural networks
BibRef
Zhang, C.Q.[Chang-Qing],
Fu, H.Z.[Hua-Zhu],
Liu, S.[Si],
Liu, G.,
Cao, X.C.[Xiao-Chun],
Low-Rank Tensor Constrained Multiview Subspace Clustering,
ICCV15(1582-1590)
IEEE DOI
1602
Aerospace electronics
BibRef
Li, R.H.[Rui-Huang],
Zhang, C.Q.[Chang-Qing],
Fu, H.Z.[Hua-Zhu],
Peng, X.[Xi],
Zhou, J.T.Y.[Joey Tian-Yi],
Hu, Q.H.[Qing-Hua],
Reciprocal Multi-Layer Subspace Learning for Multi-View Clustering,
ICCV19(8171-8179)
IEEE DOI
2004
learning (artificial intelligence), optimisation,
pattern clustering, multiview clustering, high-dimensional data
BibRef
Cao, X.C.[Xiao-Chun],
Zhang, C.Q.[Chang-Qing],
Fu, H.Z.[Hua-Zhu],
Liu, S.[Si],
Zhang, H.[Hua],
Diversity-induced Multi-view Subspace Clustering,
CVPR15(586-594)
IEEE DOI
1510
BibRef
Zhang, C.Q.[Chang-Qing],
Hu, Q.H.[Qing-Hua],
Fu, H.Z.[Hua-Zhu],
Zhu, P.,
Cao, X.C.[Xiao-Chun],
Latent Multi-view Subspace Clustering,
CVPR17(4333-4341)
IEEE DOI
1711
Clustering algorithms, Clustering methods, Erbium, Kernel,
Linear programming, Optimization, Robustness
BibRef
Zhang, C.Q.[Chang-Qing],
Fu, H.Z.[Hua-Zhu],
Wang, J.[Jing],
Li, W.[Wen],
Cao, X.C.[Xiao-Chun],
Hu, Q.H.[Qing-Hua],
Tensorized Multi-view Subspace Representation Learning,
IJCV(128), No. 8-9, September 2020, pp. 2344-2361.
Springer DOI
2008
BibRef
Yan, F.[Fei],
Wang, X.D.[Xiao-Dong],
Zeng, Z.Q.[Zhi-Qiang],
Hong, C.Q.[Chao-Qun],
Adaptive multi-view subspace clustering for high-dimensional data,
PRL(130), 2020, pp. 299-305.
Elsevier DOI
2002
Subspace clustering, Multi-view clustering, Adaptive learning,
Feature selection
BibRef
Tao, H.[Hong],
Hou, C.P.[Chen-Ping],
Qian, Y.H.[Yu-Hua],
Zhu, J.B.[Ju-Bo],
Yi, D.Y.[Dong-Yun],
Latent Complete Row Space Recovery for Multi-View Subspace Clustering,
IP(29), 2020, pp. 8083-8096.
IEEE DOI
2008
Clustering algorithms, Clustering methods, Video surveillance,
Sparse matrices, Tensile stress, Unsupervised learning,
row space recovery
BibRef
Fan, R.D.[Rui-Dong],
Luo, T.J.[Ting-Jin],
Zhuge, W.Z.[Wen-Zhang],
Qiang, S.[Sheng],
Hou, C.P.[Chen-Ping],
Multi-view subspace learning via bidirectional sparsity,
PR(108), 2020, pp. 107524.
Elsevier DOI
2008
Multi-view clustering, Subspace learning,
Bidirectional sparsity, Non-convex optimization
BibRef
Paul, D.[Dipanjyoti],
Saha, S.[Sriparna],
Kumar, A.[Abhishek],
Mathew, J.[Jimson],
Evolutionary multi-objective optimization based overlapping subspace
clustering,
PRL(145), 2021, pp. 208-215.
Elsevier DOI
2104
Subspace clustering, Multi-objective optimization, ICC-index,
PSM-index, MNR-index
BibRef
Mitra, S.[Sayantan],
Saha, S.[Sriparna],
A Multi-task Multi-view based Multi-objective Clustering Algorithm,
ICPR21(4720-4727)
IEEE DOI
2105
Clustering algorithms, Classification algorithms,
Indexes, Task analysis, Optimization,
Cluster validity index
BibRef
Chumachenko, K.[Kateryna],
Raitoharju, J.[Jenni],
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Speed-up and multi-view extensions to subclass discriminant analysis,
PR(111), 2021, pp. 107660.
Elsevier DOI
2012
Subclass discriminant analysis, Spectral regression,
Multi-view learning, Kernel regression, Subspace learning
BibRef
Wu, Z.J.[Zhi-Jian],
Li, J.[Jun],
Xu, J.H.[Jian-Hua],
Yang, W.K.[Wan-Kou],
Beyond ITQ: Efficient binary multi-view subspace learning for
instance retrieval,
JVCIR(79), 2021, pp. 103234.
Elsevier DOI
2109
Instance retrieval, Multi-view fusion, Hamming subspace, Unsupervised learning
BibRef
Ma, J.[Junbo],
Wang, R.[Ruili],
Ji, W.T.[Wan-Ting],
Zhao, J.W.[Jia-Wei],
Zong, M.[Ming],
Gilman, A.[Andrew],
Robust multi-view continuous subspace clustering,
PRL(150), 2021, pp. 306-312.
Elsevier DOI
2109
Multi-view learning, Clustering, Common subspace,
Representation, Big data analysis
BibRef
Hu, Y.L.[Yong-Li],
Luo, C.C.[Cui-Cui],
Wang, B.Y.[Bo-Yue],
Gao, J.B.[Jun-Bin],
Sun, Y.F.[Yan-Feng],
Yin, B.C.[Bao-Cai],
Complete/incomplete multi-view subspace clustering via soft
block-diagonal-induced regulariser,
IET-CV(15), No. 8, 2021, pp. 618-632.
DOI Link
2110
BibRef
Qin, Y.[Yalan],
Wu, H.Z.[Han-Zhou],
Zhang, X.P.[Xin-Peng],
Feng, G.R.[Guo-Rui],
Semi-Supervised Structured Subspace Learning for Multi-View
Clustering,
IP(31), 2022, pp. 1-14.
IEEE DOI
2112
Image reconstruction, Image coding, Clustering algorithms,
Deep learning, Clustering methods, Unsupervised learning,
enhanced structural consistency
BibRef
Si, X.M.[Xiao-Meng],
Yin, Q.Y.[Qi-Yue],
Zhao, X.J.[Xiao-Jie],
Yao, L.[Li],
Consistent and diverse multi-View subspace clustering with structure
constraint,
PR(121), 2022, pp. 108196.
Elsevier DOI
2109
Subspace self-representation, Multi-view clustering,
Consistency, Diversity, Clustering structure
BibRef
An, J.[Jing],
Liu, X.X.[Xiao-Xia],
Shi, M.[Mei],
Guo, J.[Jun],
Gong, X.Q.[Xiao-Qing],
Li, Z.H.[Zhi-Hui],
Weighted multi-view common subspace learning method,
PRL(151), 2021, pp. 355-361.
Elsevier DOI
2110
Weighted parameter, Multi-view learning,
Common subspace learning, Supervised learning
BibRef
Wang, Q.Q.[Qian-Qian],
Cheng, J.F.[Jia-Feng],
Gao, Q.X.[Quan-Xue],
Zhao, G.S.[Guo-Shuai],
Jiao, L.C.[Li-Cheng],
Deep Multi-View Subspace Clustering With Unified and Discriminative
Learning,
MultMed(23), 2021, pp. 3483-3493.
IEEE DOI
2110
Clustering methods, Correlation, Decoding, Feature extraction,
Intserv networks, Convolution, Databases, Multi-view clustering,
discriminative learning
BibRef
Zhao, L.[Liang],
Zhang, J.[Jie],
Wang, Q.H.[Qiu-Hao],
Chen, Z.K.[Zhi-Kui],
Dual Alignment Self-Supervised Incomplete Multi-View Subspace
Clustering Network,
SPLetters(28), 2021, pp. 2122-2126.
IEEE DOI
2112
Data models, Manifolds, Kernel, Decoding, Clustering algorithms,
Software, Semantics, Incomplete multi-view clustering,
auto-encoders
BibRef
Yuan, X.[Xu],
Gu, S.K.[Shao-Kui],
Liu, Z.J.[Zhen-Jiao],
Zhao, L.[Liang],
Mining Multi-View Clustering Space With Interpretable Space Search
Constraint,
SPLetters(30), 2023, pp. 1422-1426.
IEEE DOI
2310
BibRef
Chen, Z.K.[Zhi-Kui],
Li, Y.[Yue],
Lou, K.[Kai],
Zhao, L.[Liang],
Incomplete Multi-View Clustering With Complete View Guidance,
SPLetters(30), 2023, pp. 1247-1251.
IEEE DOI
2310
BibRef
Chen, Y.Y.[Yong-Yong],
Wang, S.Q.[Shu-Qin],
Peng, C.[Chong],
Hua, Z.Y.[Zhong-Yun],
Zhou, Y.C.[Yi-Cong],
Generalized Nonconvex Low-Rank Tensor Approximation for Multi-View
Subspace Clustering,
IP(30), 2021, pp. 4022-4035.
IEEE DOI
2104
Tensors, Correlation, Sparse matrices, Clustering methods,
Task analysis, Estimation, Pairwise error probability,
subspace clustering
See also Jointly Learning Kernel Representation Tensor and Affinity Matrix for Multi-View Clustering.
BibRef
Wang, S.W.[Si-Wei],
Liu, X.W.[Xin-Wang],
Zhu, X.Z.[Xin-Zhong],
Zhang, P.[Pei],
Zhang, Y.[Yi],
Gao, F.[Feng],
Zhu, E.[En],
Fast Parameter-Free Multi-View Subspace Clustering With Consensus
Anchor Guidance,
IP(31), 2022, pp. 556-568.
IEEE DOI
2112
Clustering algorithms, Time complexity, Optimization,
Matrix decomposition, Symmetric matrices, Convergence,
multiple view clustering
BibRef
Ma, H.M.[Hui-Min],
Wang, S.W.[Si-Wei],
Zhang, J.[Junpu],
Yu, S.J.[Sheng-Ju],
Liu, S.Y.[Su-Yuan],
Liu, X.W.[Xin-Wang],
He, K.L.[Kun-Lun],
Symmetric Multi-View Subspace Clustering With Automatic Neighbor
Discovery,
CirSysVideo(34), No. 9, September 2024, pp. 8766-8778.
IEEE DOI
2410
Symmetric matrices, Optimization, Task analysis, Laplace equations,
Kernel, Circuits and systems, Vectors,
automatic neighbor discovery
BibRef
Chen, Y.Y.[Yong-Yong],
Wang, S.Q.[Shu-Qin],
Xiao, X.L.[Xiao-Lin],
Liu, Y.F.[You-Fa],
Hua, Z.Y.[Zhong-Yun],
Zhou, Y.C.[Yi-Cong],
Self-Paced Enhanced Low-Rank Tensor Kernelized Multi-View Subspace
Clustering,
MultMed(24), 2022, pp. 4054-4066.
IEEE DOI
2208
Tensors, Kernel, Streaming media, Feature extraction, Videos,
Reliability, Clustering methods, Multi-view clustering,
self-paced learning
BibRef
Wang, S.Q.[Shu-Qin],
Chen, Y.Y.[Yong-Yong],
Cen, Y.G.[Yi-Gang],
Zhang, L.[Linna],
Voronin, V.[Viacheslav],
Low-Rank and Sparse Tensor Representation for Multi-View Subspace
Clustering,
ICIP21(1534-1538)
IEEE DOI
2201
Tensors, Image processing, Clustering methods, Convex functions,
Sparse matrices, Optimization, Multi-view clustering,
sparse constraint.
BibRef
Fu, L.[Lele],
Chen, Z.L.[Zhao-Liang],
Chen, Y.Y.[Yong-Yong],
Wang, S.P.[Shi-Ping],
Unified Low-Rank Tensor Learning and Spectral Embedding for
Multi-View Subspace Clustering,
MultMed(25), 2023, pp. 4972-4985.
IEEE DOI
2311
BibRef
Li, Z.L.[Zheng-Lai],
Tang, C.[Chang],
Zheng, X.[Xiao],
Liu, X.W.[Xin-Wang],
Zhang, W.[Wei],
Zhu, E.[En],
High-Order Correlation Preserved Incomplete Multi-View Subspace
Clustering,
IP(31), 2022, pp. 2067-2080.
IEEE DOI
2203
Correlation, Tensors, Task analysis, Optimization, Kernel,
Image reconstruction, Sparse matrices,
missing view imputation
BibRef
Sun, M.J.[Meng-Jing],
Wang, S.W.[Si-Wei],
Zhang, P.[Pei],
Liu, X.W.[Xin-Wang],
Guo, X.F.[Xi-Feng],
Zhou, S.H.[Si-Hang],
Zhu, E.[En],
Projective Multiple Kernel Subspace Clustering,
MultMed(24), 2022, pp. 2567-2579.
IEEE DOI
2205
Kernel, Optimization, Clustering algorithms, Integrated circuits,
Hilbert space, Redundancy, Clustering methods, Kernel clustering,
multi-view information fusion
BibRef
Lan, M.C.[Meng-Cheng],
Meng, M.[Min],
Yu, J.[Jun],
Wu, J.G.[Ji-Gang],
Generalized Multi-View Collaborative Subspace Clustering,
CirSysVideo(32), No. 6, June 2022, pp. 3561-3574.
IEEE DOI
2206
Collaboration, Correlation, Tensors, Task analysis, Optimization,
Linear programming, Deep learning, Multi-view clustering,
low-rank representation
BibRef
Tang, Y.Q.[Yong-Qiang],
Xie, Y.[Yuan],
Zhang, C.Y.[Chen-Yang],
Zhang, W.[Wensheng],
Constrained Tensor Representation Learning for Multi-View
Semi-Supervised Subspace Clustering,
MultMed(24), 2022, pp. 3920-3933.
IEEE DOI
2208
Representation learning, Tensors, Correlation,
Clustering algorithms, Minimization, Task analysis, Optimization,
tensor singular value decomposition (t-SVD)
BibRef
Zheng, Q.H.[Qing-Hai],
Large-Scale Multi-View Clustering via Fast Essential Subspace
Representation Learning,
SPLetters(29), 2022, pp. 1893-1897.
IEEE DOI
2209
Signal processing algorithms, Optimization, Costs,
Representation learning, Time complexity, Clustering algorithms,
linear computational complexity
BibRef
Liu, Q.L.[Qi-Liang],
Huan, W.H.[Wei-Hua],
Deng, M.[Min],
A Method with Adaptive Graphs to Constrain Multi-View Subspace
Clustering of Geospatial Big Data from Multiple Sources,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Tan, J.P.[Jun-Peng],
Yang, Z.J.[Zhi-Jing],
Ren, J.C.[Jin-Chang],
Wang, B.[Bing],
Cheng, Y.Q.[Yong-Qiang],
Ling, W.K.[Wing-Kuen],
A Novel Robust Low-rank Multi-view Diversity Optimization Model with
Adaptive-Weighting Based Manifold Learning,
PR(122), 2022, pp. 108298.
Elsevier DOI
2112
Low-rank Representation (LRR), Multi-view Subspace Clustering (MVSC),
Adaptive-Weighting Manifold Learning (AWML)
BibRef
Yu, Z.W.[Zhi-Wen],
Wang, D.X.[Da-Xing],
Meng, X.B.[Xian-Bing],
Chen, C.L.P.[C. L. Philip],
Clustering Ensemble Based on Hybrid Multiview Clustering,
Cyber(52), No. 7, July 2022, pp. 6518-6530.
IEEE DOI
2207
Clustering algorithms, Kernel, Machine learning algorithms,
Research and development, Machine learning, Fuses,
random subspace transformation
BibRef
Wang, S.[Shiye],
Li, C.S.[Chang-Sheng],
Li, Y.M.[Yan-Ming],
Yuan, Y.[Ye],
Wang, G.R.[Guo-Ren],
Self-Supervised Information Bottleneck for Deep Multi-View Subspace
Clustering,
IP(32), 2023, pp. 1555-1567.
IEEE DOI
2303
Mutual information, Deep learning, Data models, Training, Task analysis,
Representation learning, Feature extraction, subspace clustering
BibRef
Zhao, J.B.[Jin-Biao],
Lu, G.F.[Gui-Fu],
Clean affinity matrix learning with rank equality constraint for
multi-view subspace clustering,
PR(134), 2023, pp. 109118.
Elsevier DOI
2212
Low-rank representation, Robust principal component analysis,
Outliers value, Affinity matrix, Low-rank matrix decomposition
BibRef
Cai, B.[Bing],
Lu, G.F.[Gui-Fu],
Yao, L.[Liang],
Li, H.[Hua],
High-order manifold regularized multi-view subspace clustering with
robust affinity matrices and weighted TNN,
PR(134), 2023, pp. 109067.
Elsevier DOI
2212
High-order manifold regularization, Robust affinity matrices,
Multi-view subspace clustering, Weighted TNN
BibRef
Guo, J.P.[Ji-Peng],
Sun, Y.F.[Yan-Feng],
Gao, J.B.[Jun-Bin],
Hu, Y.L.[Yong-Li],
Yin, B.C.[Bao-Cai],
Multi-Attribute Subspace Clustering via Auto-Weighted Tensor Nuclear
Norm Minimization,
IP(31), 2022, pp. 7191-7205.
IEEE DOI
2212
Tensors, Optimization, Minimization, Correlation, Clustering methods,
Task analysis, Sun, Subspace clustering, auto-weighted tensor nuclear norm
BibRef
Guo, J.P.[Ji-Peng],
Sun, Y.F.[Yan-Feng],
Gao, J.B.[Jun-Bin],
Hu, Y.L.[Yong-Li],
Yin, B.C.[Bao-Cai],
Logarithmic Schatten-p Norm Minimization for Tensorial Multi-View
Subspace Clustering,
PAMI(45), No. 3, March 2023, pp. 3396-3410.
IEEE DOI
2302
Tensors, Correlation, Clustering algorithms, Task analysis, Sun,
Periodic structures, Minimization, Convergence guarantees
BibRef
Wu, H.J.[Hong-Jie],
Huang, S.D.[Shu-Dong],
Tang, C.W.[Chen-Wei],
Zhang, Y.C.[Yan-Cheng],
Lv, J.C.[Jian-Cheng],
Pure graph-guided multi-view subspace clustering,
PR(136), 2023, pp. 109187.
Elsevier DOI
2301
Multi-view learning, Subspace clustering, Graph learning, Pure graph
BibRef
Wang, S.Q.[Shu-Qin],
Chen, Y.Y.[Yong-Yong],
Lin, Z.P.[Zhi-Ping],
Cen, Y.G.[Yi-Gang],
Cao, Q.[Qi],
Robustness Meets Low-Rankness: Unified Entropy and Tensor Learning
for Multi-View Subspace Clustering,
CirSysVideo(33), No. 11, November 2023, pp. 6302-6316.
IEEE DOI
2311
BibRef
Chen, Z.[Zhe],
Wu, X.J.[Xiao-Jun],
Xu, T.Y.[Tian-Yang],
Kittler, J.V.[Josef V.],
Fast Self-Guided Multi-View Subspace Clustering,
IP(32), 2023, pp. 6514-6525.
IEEE DOI Code:
WWW Link.
2312
BibRef
Du, Y.F.[Yang-Fan],
Lu, G.F.[Gui-Fu],
Ji, G.[Guangyan],
Robust Least Squares Regression for Subspace Clustering:
A Multi-View Clustering Perspective,
IP(33), 2024, pp. 216-227.
IEEE DOI
2312
BibRef
Long, Z.[Zhen],
Zhu, C.[Ce],
Chen, J.[Jie],
Li, Z.H.[Zi-Han],
Ren, Y.Z.[Ya-Zhou],
Liu, Y.P.[Yi-Peng],
Multi-View MERA Subspace Clustering,
MultMed(26), 2024, pp. 3102-3112.
IEEE DOI
2402
Tensors, Correlation, Matrix decomposition, Clustering algorithms,
Task analysis, Sparse matrices, Singular value decomposition,
self-representation learning
BibRef
Chen, Y.Y.[Yong-Yong],
Wang, S.Q.[Shu-Qin],
Zhao, Y.P.[Yin-Ping],
Chen, C.L.P.[C. L. Philip],
Double Discrete Cosine Transform-Oriented Multi-View Subspace
Clustering,
IP(33), 2024, pp. 2491-2501.
IEEE DOI
2404
Tensors, Discrete Fourier transforms, Discrete cosine transforms,
Matrix decomposition, Correlation, Clustering methods,
discrete cosine transform
BibRef
Chang, W.[Wei],
Chen, H.M.[Hui-Min],
Nie, F.P.[Fei-Ping],
Wang, R.[Rong],
Li, X.L.[Xue-Long],
Tensorized and Compressed Multi-View Subspace Clustering via
Structured Constraint,
PAMI(46), No. 12, December 2024, pp. 10434-10451.
IEEE DOI
2411
Dictionaries, Tensors, Costs, Bipartite graph, Optimization,
Clustering methods, Clustering algorithms,
optimal bipartite graph
BibRef
Mi, Y.[Yong],
Chen, H.M.[Hong-Mei],
Yuan, Z.[Zhong],
Luo, C.[Chuan],
Horng, S.J.[Shi-Jinn],
Li, T.R.[Tian-Rui],
Fast Multi-view Subspace Clustering with Balance Anchors Guidance,
PR(145), 2024, pp. 109895.
Elsevier DOI
2311
Multi-view subspace clustering, Anchor-based MVSC methods,
Balance structure, Anchor graph
BibRef
Wang, Y.N.[Yi-Nuo],
Guo, Y.[Yu],
Wang, Z.[Zheng],
Wang, F.[Fei],
Joint learning of latent subspace and structured graph for multi-view
clustering,
PR(154), 2024, pp. 110592.
Elsevier DOI
2406
Multi-view clustering, Latent space, Subspace clustering, Graph learning
BibRef
Xie, D.[Deyan],
Yang, M.[Ming],
Gao, Q.X.[Quan-Xue],
Song, W.[Wei],
Non-convex tensorial multi-view clustering by integrating L1-based
sliced-Laplacian regularization and L2,p-sparsity,
PR(154), 2024, pp. 110605.
Elsevier DOI
2406
Multi-view subspace clustering, t-SVD
BibRef
Cai, B.[Bing],
Lu, G.F.[Gui-Fu],
Li, H.[Hua],
Song, W.H.[Wei-Hong],
Tensorized Scaled Simplex Representation for Multi-View Clustering,
MultMed(26), 2024, pp. 6621-6631.
IEEE DOI
2404
Tensors, Task analysis, Information technology, Fuses, Correlation,
Adaptation models, Transforms, Scaled simplex representation,
multi-view clustering
BibRef
Cai, B.[Bing],
Lu, G.F.[Gui-Fu],
Guo, X.X.[Xiao-Xing],
Wu, T.[Tong],
Tensorized latent representation with automatic dimensionality
selection for multi-view clustering,
PR(160), 2025, pp. 111192.
Elsevier DOI
2501
Multi-view clustering, Latent representation,
Singular value decomposition, Tensor subspace learning
BibRef
Du, Y.F.[Yang-Fan],
Lu, G.F.[Gui-Fu],
Joint local smoothness and low-rank tensor representation for robust
multi-view clustering,
PR(157), 2025, pp. 110944.
Elsevier DOI
2409
Subspace clustering, Tensor, Tensor nuclear norm, Total variation
BibRef
Shi, L.[Long],
Cao, L.[Lei],
Wang, J.[Jun],
Chen, B.D.[Ba-Dong],
Enhanced Latent Multi-View Subspace Clustering,
CirSysVideo(34), No. 12, December 2024, pp. 12480-12495.
IEEE DOI
2501
Sparse matrices, Optimization, Clustering methods, Kernel,
Principal component analysis,
sparse regularization
BibRef
Ji, J.T.[Jin-Tian],
Feng, S.[Songhe],
Anchor Structure Regularization Induced Multi-view Subspace
Clustering via Enhanced Tensor Rank Minimization,
ICCV23(19286-19295)
IEEE DOI
2401
BibRef
Song, J.[Jinjoo],
Yoon, G.J.[Gang-Joon],
Baek, S.[Sangwon],
Yoon, S.M.[Sang Min],
Multi-View Feature Boosting Network for Deep Subspace Clustering,
ICIP22(496-500)
IEEE DOI
2211
Fuses, Clustering methods, Noise reduction, Neural networks,
Benchmark testing, Boosting, Feature extraction, Data mining,
Feature boosting
BibRef
Wu, S.,
Lu, Z.,
Tang, H.,
Yan, Y.,
Zhu, S.,
Jing, X.,
Li, Z.,
Joint Learning of Self-Representation and Indicator for Multi-View
Image Clustering,
ICIP19(4095-4099)
IEEE DOI
1910
Multi-view Clustering, Subspace Clustering, Self-representation Learning
BibRef
Wang, X.B.[Xiao-Bo],
Guo, X.J.[Xiao-Jie],
Lei, Z.[Zhen],
Zhang, C.Q.[Chang-Qing],
Li, S.Z.[Stan Z.],
Exclusivity-Consistency Regularized Multi-view Subspace Clustering,
CVPR17(1-9)
IEEE DOI
1711
Benchmark testing, Clustering algorithms,
Optimization, Standards
BibRef
Zhang, Y.,
Wang, X.,
Gao, X.,
Adaptive Latent Representation for Multi-view Subspace Learning,
ICPR18(1229-1234)
IEEE DOI
1812
Clustering methods, Linear programming, Learning systems,
Noise measurement, Optimization methods, Sparse matrices
BibRef
Wang, L.[Lei],
Li, D.P.[Dan-Ping],
He, T.C.[Tian-Cheng],
Xue, Z.[Zhong],
Manifold Regularized Multi-view Subspace Clustering for image
representation,
ICPR16(283-288)
IEEE DOI
1705
Clustering algorithms, Data models, Laplace equations, Manifolds,
Optimization, Sparse matrices, Standards
BibRef
Gao, H.,
Nie, F.,
Li, X.,
Huang, H.,
Multi-view Subspace Clustering,
ICCV15(4238-4246)
IEEE DOI
1602
Benchmark testing
BibRef
Kobayashi, T.[Takumi],
BFO Meets HOG: Feature Extraction Based on Histograms of Oriented
p.d.f. Gradients for Image Classification,
CVPR13(747-754)
IEEE DOI
1309
BibRef
Earlier:
Generalized Mutual Subspace Based Methods for Image Set Classification,
ACCV12(I:578-592).
Springer DOI
1304
BibRef
And:
Higher-order Co-occurrence Features based on Discriminative Co-clusters
for Image Classification,
BMVC12(64).
DOI Link
1301
bag of features
See also Motion Recognition Using Local Auto-Correlation of Space-Time Gradients.
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Distance Measures, Criteria for Clustering .