Zhang, Q.J.[Qing-Jiu],
Sun, S.L.[Shi-Liang],
Multiple-view multiple-learner active learning,
PR(43), No. 9, September 2010, pp. 3113-3119.
Elsevier DOI
1006
Multiple-view learning; Multiple-learner learning; Active learning;
Artificial neural network
BibRef
Chen, N.[Ning],
Zhu, J.[Jun],
Sun, F.C.[Fu-Chun],
Xing, E.P.[Eric Poe],
Large-Margin Predictive Latent Subspace Learning for Multiview Data
Analysis,
PAMI(34), No. 12, December 2012, pp. 2365-2378.
IEEE DOI
1210
BibRef
Wang, Z.[Zhe],
Chen, S.C.[Song-Can],
Gao, D.[Daqi],
A novel multi-view learning developed from single-view patterns,
PR(44), No. 10-11, October-November 2011, pp. 2395-2413.
Elsevier DOI
1101
Multi-view learning; Classifier design; Rademacher complexity;
Ensemble learning; Ho-Kashyap classifier; Regularization learning;
Pattern recognition
See also Algorithm for Linear Inequalities and its Applications, An.
BibRef
Wang, Z.[Zhe],
Zhu, C.M.[Chang-Ming],
Gao, D.[Daqi],
Chen, S.C.[Song-Can],
Three-fold structured classifier design based on matrix pattern,
PR(46), No. 6, June 2013, pp. 1532-1555.
Elsevier DOI
1302
Vector pattern; Matrix pattern; Global structure; Local structure;
Classifier design; Pattern recognition
BibRef
Chen, X.H.[Xiao-Hong],
Chen, S.C.[Song-Can],
Xue, H.[Hui],
Zhou, X.D.[Xu-Dong],
A unified dimensionality reduction framework for semi-paired and
semi-supervised multi-view data,
PR(45), No. 5, May 2012, pp. 2005-2018.
Elsevier DOI
1201
Multi-view data; Correlation analysis; Semi-supervised learning;
Semi-paired learning; Dimensionality reduction
BibRef
Xu, C.[Chang],
Tao, D.C.[Da-Cheng],
Xu, C.[Chao],
Multi-View Learning With Incomplete Views,
IP(24), No. 12, December 2015, pp. 5812-5825.
IEEE DOI
1512
learning (artificial intelligence)
BibRef
Zhu, X.F.[Xiao-Feng],
Li, X.L.[Xue-Long],
Zhang, S.C.[Shi-Chao],
Block-Row Sparse Multiview Multilabel Learning for Image
Classification,
Cyber(46), No. 2, February 2016, pp. 450-461.
IEEE DOI
1601
Multiview, multilabel
BibRef
Pang, Y.W.[Yan-Wei],
Ma, Z.[Zhao],
Yuan, Y.[Yuan],
Li, X.L.[Xue-Long],
Wang, K.Q.[Kong-Qiao],
Multimodal learning for multi-label image classification,
ICIP11(1797-1800).
IEEE DOI
1201
BibRef
Zhang, Z.Y.[Zhen-Yue],
Zhai, Z.[Zheng],
Li, L.M.[Li-Min],
Uniform Projection for Multi-View Learning,
PAMI(39), No. 8, August 2017, pp. 1675-1689.
IEEE DOI
1707
Convergence, Distortion measurement,
Eigenvalues and eigenfunctions, Kernel, Nonlinear distortion,
Optimization, Multi-view learning, clustering,
low-dimensional projection, unsupervised learning
BibRef
Tao, H.[Hong],
Hou, C.P.[Chen-Ping],
Nie, F.P.[Fei-Ping],
Zhu, J.[Jubo],
Yi, D.Y.[Dong-Yun],
Scalable Multi-View Semi-Supervised Classification via Adaptive
Regression,
IP(26), No. 9, September 2017, pp. 4283-4296.
IEEE DOI
1708
image classification, learning (artificial intelligence),
matrix algebra, minimisation, regression analysis, vectors, MVAR,
adaptive optimized weight coefficient, adaptive regression,
BibRef
Yang, M.[Muli],
Deng, C.[Cheng],
Nie, F.P.[Fei-Ping],
Adaptive-weighting discriminative regression for multi-view
classification,
PR(88), 2019, pp. 236-245.
Elsevier DOI
1901
Multi-view learning, Supervised learning, Classification
BibRef
Zhuge, W.Z.[Wen-Zhang],
Luo, T.J.[Ting-Jin],
Fan, R.D.[Rui-Dong],
Tao, H.[Hong],
Hou, C.P.[Chen-Ping],
Yi, D.Y.[Dong-Yun],
Absent Multiview Semisupervised Classification,
Cyber(54), No. 3, March 2024, pp. 1708-1721.
IEEE DOI
2402
Task analysis, Representation learning, Optimization,
Image retrieval, Fuses, Fans, Data collection, Anchor strategy,
semisupervised classification
BibRef
Nie, F.,
Cai, G.,
Li, J.,
Li, X.,
Auto-Weighted Multi-View Learning for Image Clustering and
Semi-Supervised Classification,
IP(27), No. 3, March 2018, pp. 1501-1511.
IEEE DOI
1801
Clustering algorithms, Clustering methods, Correlation, Kernel,
Laplace equations, Manifolds, Tensile stress, Auto-weight learning,
semi-supervised classification
BibRef
Nie, F.,
Li, J.,
Li, X.,
Convex Multiview Semi-Supervised Classification,
IP(26), No. 12, December 2017, pp. 5718-5729.
IEEE DOI
1710
hyperparameter elimination, local-minimum problem,
multiview data context, optimization method,
Data mining, Optimization methods,
Semisupervised learning,
BibRef
Zhu, P.F.[Peng-Fei],
Hu, Q.[Qi],
Hu, Q.H.[Qing-Hua],
Zhang, C.Q.[Chang-Qing],
Feng, Z.[Zhizhao],
Multi-view label embedding,
PR(84), 2018, pp. 126-135.
Elsevier DOI
1809
Multi-label classification, Multi-view label embedding,
Label space dimension reduction
BibRef
Huang, L.[Ling],
Chao, H.Y.[Hong-Yang],
Wang, C.D.[Chang-Dong],
Multi-view intact space clustering,
PR(86), 2019, pp. 344-353.
Elsevier DOI
1811
Multi-view clustering, Latent intact space, View-insufficiency,
Representation learning
BibRef
Pan, H.[Heng],
He, J.R.[Jin-Rong],
Ling, Y.[Yu],
Ju, L.[Lie],
He, G.L.[Guo-Liang],
Graph regularized multiview marginal discriminant projection,
JVCIR(57), 2018, pp. 12-22.
Elsevier DOI
1812
Marginal discriminant projection, Graph Laplacian,
Manifold regularization, Multiview learning,
Hyperspectral images classification
BibRef
Cao, H.L.[Hong-Liu],
Bernard, S.[Simon],
Sabourin, R.[Robert],
Heutte, L.[Laurent],
Random forest dissimilarity based multi-view learning for Radiomics
application,
PR(88), 2019, pp. 185-197.
Elsevier DOI
1901
BibRef
Earlier: A1, A2, A4, A3:
Dynamic Voting in Multi-view Learning for Radiomics Applications,
SSSPR18(32-41).
Springer DOI
1810
Radiomics, Dissimilarity space, Random forest, Machine learning,
Feature selection, Multi-view learning, High dimension, Low sample size
BibRef
Liu, B.[Bo],
Jing, L.P.[Li-Ping],
Li, J.[Jia],
Yu, J.[Jian],
Gittens, A.[Alex],
Mahoney, M.W.[Michael W.],
Group Collaborative Representation for Image Set Classification,
IJCV(127), No. 2, February 2019, pp. 181-206.
Springer DOI
1902
Recognition from multiple images.
BibRef
Aeini, F.[Faraein],
Moghadam, A.M.E.[Amir Masoud Eftekhari],
Mahmoudi, F.[Fariborz],
A regularized approach for unsupervised multi-view multi-manifold
learning,
SIViP(13), No. 2, March 2019, pp. 253-261.
Springer DOI
1904
BibRef
You, X.G.[Xin-Ge],
Xu, J.M.[Jia-Miao],
Yuan, W.[Wei],
Jing, X.Y.[Xiao-Yuan],
Tao, D.C.[Da-Cheng],
Zhang, T.P.[Tai-Ping],
Multi-view common component discriminant analysis for cross-view
classification,
PR(92), 2019, pp. 37-51.
Elsevier DOI
1905
Cross-view classification, Local geometry preservation,
Multi-view learning, Subspace learning
BibRef
Li, J.X.[Jin-Xing],
Zhang, B.[Bob],
Lu, G.M.[Guang-Ming],
Ren, H.[Hu],
Zhang, D.[David],
Visual Classification With Multikernel Shared Gaussian Process Latent
Variable Model,
Cyber(49), No. 8, August 2019, pp. 2886-2899.
IEEE DOI
1905
Kernel, Feature extraction, Manifolds, Testing, Visualization,
Gaussian processes, Biomedical imaging, Gaussian process (GP),
multiview
BibRef
Yin, Q.Y.[Qi-Yue],
Zhang, J.G.[Jun-Ge],
Wu, S.[Shu],
Li, H.X.[He-Xi],
Multi-view clustering via joint feature selection and partially
constrained cluster label learning,
PR(93), 2019, pp. 380-391.
Elsevier DOI
1906
Multi-view clustering, Feature selection, Prior information, Cluster indicator
BibRef
Jia, K.,
Lin, J.,
Tan, M.,
Tao, D.,
Deep Multi-View Learning Using Neuron-Wise Correlation-Maximizing
Regularizers,
IP(28), No. 10, October 2019, pp. 5121-5134.
IEEE DOI
1909
Training, Neurons, Task analysis, Correlation, Benchmark testing,
Object recognition, Feature extraction, Multi-view learning,
canonical correlation analysis
BibRef
Liu, X.W.[Xin-Wang],
Zhu, X.Z.[Xin-Zhong],
Li, M.M.[Miao-Miao],
Wang, L.[Lei],
Tang, C.[Chang],
Yin, J.P.[Jian-Ping],
Shen, D.G.[Ding-Gang],
Wang, H.M.[Huai-Min],
Gao, W.[Wen],
Late Fusion Incomplete Multi-View Clustering,
PAMI(41), No. 10, October 2019, pp. 2410-2423.
IEEE DOI
1909
Kernel, Clustering algorithms, Optimization, Convergence,
Partitioning algorithms, Pattern analysis,
incomplete kernel learning
BibRef
Zhang, C.J.[Chun-Jie],
Cheng, J.[Jian],
Tian, Q.[Qi],
Unsupervised and Semi-Supervised Image Classification With Weak
Semantic Consistency,
MultMed(21), No. 10, October 2019, pp. 2482-2491.
IEEE DOI
1910
image classification, image representation,
learning (artificial intelligence), pattern clustering,
semantic consistency
BibRef
Zhang, C.J.[Chun-Jie],
Cheng, J.[Jian],
Tian, Q.[Qi],
Multi-View Image Classification With Visual, Semantic and View
Consistency,
IP(29), No. 1, 2020, pp. 617-627.
IEEE DOI
1910
image classification, optimisation, visual correlations,
semantic correlations,
view consistency
BibRef
Zhang, C.J.[Chun-Jie],
Wang, D.H.[Da-Han],
Exploring the Prediction Consistency of Multiple Views for
Transductive Visual Recognition,
SPLetters(28), 2021, pp. 668-672.
IEEE DOI
2104
Visualization, Image recognition, Correlation,
Convolutional neural networks, Optimization, Encoding, Semantics,
visual recognition
BibRef
Zhang, C.,
Li, Z.,
Cai, R.,
Chao, H.,
Rui, Y.,
Joint Multiview Segmentation and Localization of RGB-D Images Using
Depth-Induced Silhouette Consistency,
CVPR16(4031-4039)
IEEE DOI
1612
BibRef
Zhang, X.P.[Xiao-Peng],
Yang, Y.[Yang],
Xiong, H.,
Feng, J.S.[Jia-Shi],
PML-LocNet: Improving Object Localization With Prior-Induced
Multi-View Learning Network,
IP(29), 2020, pp. 2568-2582.
IEEE DOI
2001
BibRef
Earlier: A1, A2, A4, Only:
ML-LocNet: Improving Object Localization with Multi-view Learning
Network,
ECCV18(III: 248-263).
Springer DOI
1810
Training, Optimization, Reliability, Detectors, Noise measurement,
Object detection, Image representation,
semi-supervised learning
BibRef
Yang, L.,
Shen, C.,
Hu, Q.,
Jing, L.,
Li, Y.,
Adaptive Sample-Level Graph Combination for Partial Multiview
Clustering,
IP(29), 2020, pp. 2780-2794.
IEEE DOI
2001
Partial multiview clustering, graph combination, adaptive weights
BibRef
Jamshidpour, N.[Nasehe],
Safari, A.[Abdolreza],
Homayouni, S.[Saeid],
A GA-Based Multi-View, Multi-Learner Active Learning Framework for
Hyperspectral Image Classification,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Zhang, J.,
Wang, Z.,
Li, Y.,
Wang, S.,
Node-Adaptive Multi-Graph Fusion Using Extreme Value Theory,
SPLetters(27), 2020, pp. 351-355.
IEEE DOI
2004
Multi-view graph fusion, extreme value theory, clustering
BibRef
Yuan, J.[Jirui],
Gao, K.[Ke],
Zhu, P.F.[Peng-Fei],
Egiazarian, K.[Karen],
Multi-view predictive latent space learning,
PRL(132), 2020, pp. 56-61.
Elsevier DOI
2005
Multi-view learning, Predictive latent space learning,
Unsupervised clustering, Unsupervised dimension reduction
BibRef
Li, Y.,
Lu, T.,
Li, S.,
Subpixel-Pixel-Superpixel-Based Multiview Active Learning for
Hyperspectral Images Classification,
GeoRS(58), No. 7, July 2020, pp. 4976-4988.
IEEE DOI
2006
Training, Labeling, Data mining, Uncertainty, Hyperspectral imaging,
Estimation, Feature extraction, Active learning (AL),
multiview learning
BibRef
Chen, Y.Y.[Yong-Yong],
Xiao, X.L.[Xiao-Lin],
Zhou, Y.C.[Yi-Cong],
Jointly Learning Kernel Representation Tensor and Affinity Matrix for
Multi-View Clustering,
MultMed(22), No. 8, August 2020, pp. 1985-1997.
IEEE DOI
2007
Tensors, Kernel, Symmetric matrices, Sparse matrices,
Matrix decomposition, Correlation, Clustering algorithms,
adaptive weight
See also Generalized Nonconvex Low-Rank Tensor Approximation for Multi-View Subspace Clustering.
BibRef
Chen, Y.Y.[Yong-Yong],
Xiao, X.L.[Xiao-Lin],
Zhou, Y.C.[Yi-Cong],
Multi-View Subspace Clustering via Simultaneously Learning the
Representation Tensor and Affinity Matrix,
PR(106), 2020, pp. 107441.
Elsevier DOI
2006
Multi-view subspace clustering, Low-rank tensor representation, Local manifold
BibRef
Xiao, X.L.[Xiao-Lin],
Gong, Y.J.[Yue-Jiao],
Hua, Z.Y.[Zhong-Yun],
Chen, W.N.[Wei-Neng],
On Reliable Multi-View Affinity Learning for Subspace Clustering,
MultMed(23), 2021, pp. 4555-4566.
IEEE DOI
2112
Tensors, Sparse matrices, Data structures, Correlation, Data models,
Robustness, Manifolds, Affinity learning,
self-representation
BibRef
Wan, J.,
Zhu, F.,
Cost-Sensitive Canonical Correlation Analysis for Semi-Supervised
Multi-View Learning,
SPLetters(27), 2020, pp. 1330-1334.
IEEE DOI
2008
Correlation, Training data, Loss measurement, Optimization,
Semantics, Hafnium, Propagation losses, Cost-sensitive learning,
multi-view
BibRef
Zhao, L.[Liang],
Zhao, T.Y.[Tian-Yang],
Sun, T.T.[Ting-Ting],
Liu, Z.[Zhuo],
Chen, Z.K.[Zhi-Kui],
Multi-View Robust Feature Learning for Data Clustering,
SPLetters(27), 2020, pp. 1750-1754.
IEEE DOI
2010
Optimization, Matrix decomposition, Learning systems,
Clustering algorithms, Noise measurement, Aerospace electronics,
robust feature learning
BibRef
Yu, H.[Hong],
Xiong, J.[Jing],
Zhang, X.X.[Xiao-Xia],
Multi-view clustering by exploring complex mapping relationship
between views,
PRL(138), 2020, pp. 230-236.
Elsevier DOI
2010
Multi-view clustering, Complex mapping relationship,
Partial multi-view clustering, Non-negative matrix factorization (NMF)
BibRef
Deng, S.Y.[Si-Yang],
Xia, W.[Wei],
Gao, Q.X.[Quan-Xue],
Gao, X.B.[Xin-Bo],
Cross-view classification by joint adversarial learning and
class-specificity distribution,
PR(110), 2021, pp. 107633.
Elsevier DOI
2011
Cross-view, View consistency, Class-specificity distribution,
Adversarial learning
BibRef
Chumachenko, K.[Kateryna],
Raitoharju, J.[Jenni],
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Speed-up and multi-view extensions to subclass discriminant analysis,
PR(111), 2021, pp. 107660.
Elsevier DOI
2012
Subclass discriminant analysis, Spectral regression,
Multi-view learning, Kernel regression, Subspace learning
BibRef
Yang, M.[Ming],
Luo, Q.L.[Qi-Lun],
Li, W.[Wen],
Xiao, M.Q.[Ming-Qing],
Multiview Clustering of Images with Tensor Rank Minimization via
Nonconvex Approach,
SIIMS(13), No. 4, 2020, pp. 2361-2392.
DOI Link
2012
BibRef
Wang, Q.,
Ding, Z.,
Tao, Z.,
Gao, Q.,
Fu, Y.,
Generative Partial Multi-View Clustering With Adaptive Fusion and
Cycle Consistency,
IP(30), 2021, pp. 1771-1783.
IEEE DOI
2101
Generative adversarial networks, Adaptation models,
Visualization, Task analysis, Kernel, Data models,
generative adversarial networks
BibRef
Luo, J.Q.[Jian-Qiao],
Wang, Y.H.[Yi-Han],
Ou, Y.[Yang],
He, B.[Biao],
Li, B.L.[Bai-Lin],
Neighbor-Based Label Distribution Learning to Model Label Ambiguity
for Aerial Scene Classification,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Liu, J.L.[Jian-Lun],
Teng, S.H.[Shao-Hua],
Fei, L.K.[Lun-Ke],
Zhang, W.[Wei],
Fang, X.Z.[Xiao-Zhao],
Zhang, Z.X.[Zhu-Xiu],
Wu, N.Q.[Nai-Qi],
A novel consensus learning approach to incomplete multi-view
clustering,
PR(115), 2021, pp. 107890.
Elsevier DOI
2104
Multi-view clustering, Incomplete multi-view clustering,
Consensus representation, Consensus similarity graph
BibRef
Li, Z.L.[Zheng-Lai],
Tang, C.[Chang],
Liu, X.W.[Xin-Wang],
Zheng, X.[Xiao],
Zhang, W.[Wei],
Zhu, E.[En],
Consensus Graph Learning for Multi-View Clustering,
MultMed(24), 2022, pp. 2461-2472.
IEEE DOI
2205
Tensors, Clustering methods, Optimization, Streaming media,
Feature extraction, Task analysis, Correlation,
weighted tensor nuclear norm
BibRef
Jia, X.D.[Xiao-Dong],
Jing, X.Y.[Xiao-Yuan],
Zhu, X.[Xiaoke],
Chen, S.C.[Song-Can],
Du, B.[Bo],
Cai, Z.Y.[Zi-Yun],
He, Z.Y.[Zhen-Yu],
Yue, D.[Dong],
Semi-Supervised Multi-View Deep Discriminant Representation Learning,
PAMI(43), No. 7, July 2021, pp. 2496-2509.
IEEE DOI
2106
Redundancy, Feature extraction, Measurement, Machine learning,
Taxonomy, Semisupervised learning,
density clustering
BibRef
Liu, X.W.[Xin-Wang],
Li, M.M.[Miao-Miao],
Tang, C.[Chang],
Xia, J.Y.[Jing-Yuan],
Xiong, J.[Jian],
Liu, L.[Li],
Kloft, M.[Marius],
Zhu, E.[En],
Efficient and Effective Regularized Incomplete Multi-View Clustering,
PAMI(43), No. 8, August 2021, pp. 2634-2646.
IEEE DOI
2107
Kernel, Clustering algorithms, Optimization, Complexity theory,
Task analysis, Convergence, Pattern analysis,
incomplete kernel learning
BibRef
Huang, A.[Aiping],
Chen, W.L.[Wei-Ling],
Zhao, T.S.[Tie-Song],
Chen, C.W.[Chang Wen],
Joint Learning of Latent Similarity and Local Embedding for
Multi-View Clustering,
IP(30), 2021, pp. 6772-6784.
IEEE DOI
2108
Symmetric matrices, Clustering methods, Robustness,
Feature extraction, Manifolds, Laplace equations, Kernel, nuclear norm
BibRef
Huang, A.P.[Ai-Ping],
Wang, Z.[Zheng],
Zheng, Y.N.[Yan-Nan],
Zhao, T.S.[Tie-Song],
Lin, C.W.[Chia-Wen],
Embedding Regularizer Learning for Multi-View Semi-Supervised
Classification,
IP(30), 2021, pp. 6997-7011.
IEEE DOI
2108
Deep learning, Linear regression, Prediction algorithms,
Robustness, Classification algorithms, Sparse matrices,
embedding regularizer
BibRef
Tan, J.P.[Jun-Peng],
Shi, Y.[Yukai],
Yang, Z.J.[Zhi-Jing],
Wen, C.Z.[Cai-Zhen],
Lin, L.[Liang],
Unsupervised Multi-View Clustering by Squeezing Hybrid Knowledge From
Cross View and Each View,
MultMed(23), 2021, pp. 2943-2956.
IEEE DOI
2109
Sparse matrices, Clustering algorithms, Matrix decomposition,
Feature extraction, Data mining, Adaptation models,
adaptive graph regularization (AGR)
BibRef
Wu, Z.J.[Zhi-Jian],
Li, J.[Jun],
Xu, J.H.[Jian-Hua],
Yang, W.K.[Wan-Kou],
Beyond ITQ: Efficient binary multi-view subspace learning for
instance retrieval,
JVCIR(79), 2021, pp. 103234.
Elsevier DOI
2109
Instance retrieval, Multi-view fusion, Hamming subspace, Unsupervised learning
BibRef
Ma, J.[Junbo],
Wang, R.[Ruili],
Ji, W.T.[Wan-Ting],
Zhao, J.W.[Jia-Wei],
Zong, M.[Ming],
Gilman, A.[Andrew],
Robust multi-view continuous subspace clustering,
PRL(150), 2021, pp. 306-312.
Elsevier DOI
2109
Multi-view learning, Clustering, Common subspace,
Representation, Big data analysis
BibRef
Wang, H.Y.[Hai-Yan],
Han, G.Q.[Guo-Qiang],
Zhang, B.[Bin],
Tao, G.H.[Gui-Hua],
Cai, H.M.[Hong-Min],
Multi-View Learning a Decomposable Affinity Matrix via Tensor
Self-Representation on Grassmann Manifold,
IP(30), 2021, pp. 8396-8409.
IEEE DOI
2110
Tensors, Manifolds, Task analysis, Matrix decomposition,
Sparse matrices, Merging, Clustering methods,
Grassmann manifold
BibRef
Wang, X.L.[Xiao-Li],
Zhu, Z.F.[Zhi-Fan],
Song, Y.[Yan],
Fu, H.J.[Hai-Juan],
GRNet: Graph-based remodeling network for multi-view semi-supervised
classification,
PRL(151), 2021, pp. 95-102.
Elsevier DOI
2110
Multi-view semi-supervised learning, Remodeling network,
Consistency and complementation
BibRef
Wang, X.L.[Xiao-Li],
Fu, L.Y.[Li-Yong],
Zhang, Y.D.[Yu-Dong],
Wang, Y.L.[Yong-Li],
Li, Z.C.[Ze-Chao],
MMatch: Semi-Supervised Discriminative Representation Learning for
Multi-View Classification,
CirSysVideo(32), No. 9, September 2022, pp. 6425-6436.
IEEE DOI
2209
Representation learning, Training, Predictive models, Forestry,
Feature extraction, Entropy, Task analysis,
pseudo-labeling
BibRef
Wang, X.L.[Xiao-Li],
Wang, Y.L.[Yong-Li],
Wang, Y.P.[Yu-Peng],
Huang, A.[Anqi],
Liu, J.[Jun],
Trusted Semi-Supervised Multi-View Classification with Contrastive
Learning,
MultMed(26), 2024, pp. 8268-8278.
IEEE DOI
2408
Uncertainty, Semantics, Self-supervised learning, Deep learning,
Ensemble learning, Ions, Estimation, Semi-supervised learning,
uncertainty estimation
BibRef
Jiang, Y.[Yu],
Liu, J.[Jing],
Li, Z.C.[Ze-Chao],
Lu, H.Q.[Han-Qing],
Semi-Supervised Unified Latent Factor learning with Multi-View Data,
MVA(25), No. 7, October 2014, pp. 1635-1645.
Springer DOI
1410
BibRef
Hu, Y.L.[Yong-Li],
Luo, C.C.[Cui-Cui],
Wang, B.Y.[Bo-Yue],
Gao, J.B.[Jun-Bin],
Sun, Y.F.[Yan-Feng],
Yin, B.C.[Bao-Cai],
Complete/incomplete multi-view subspace clustering via soft
block-diagonal-induced regulariser,
IET-CV(15), No. 8, 2021, pp. 618-632.
DOI Link
2110
BibRef
Wang, L.C.[Li-Chen],
Liu, Y.Y.[Yun-Yu],
Di, H.[Hang],
Qin, C.[Can],
Sun, G.[Gan],
Fu, Y.[Yun],
Semi-Supervised Dual Relation Learning for Multi-Label Classification,
IP(30), 2021, pp. 9125-9135.
IEEE DOI
2112
Semantics, Feature extraction, Correlation, Training, Tensors,
Task analysis, Sun, Label relation learning,
image annotation
BibRef
Liu, Y.Y.[Yun-Yu],
Wang, L.C.[Li-Chen],
Bai, Y.[Yue],
Qin, C.[Can],
Ding, Z.M.[Zheng-Ming],
Fu, Y.[Yun],
Generative View-Correlation Adaptation for Semi-Supervised Multi-View
Learning,
ECCV20(XIV:318-334).
Springer DOI
2011
BibRef
Sun, S.L.[Shi-Liang],
Dong, W.B.[Wen-Bo],
Liu, Q.Y.[Qiu-Yang],
Multi-View Representation Learning With Deep Gaussian Processes,
PAMI(43), No. 12, December 2021, pp. 4453-4468.
IEEE DOI
2112
Global Positioning System, Gaussian processes, Uncertainty,
Data models, Task analysis, Neural networks, Learning systems,
representation learning
BibRef
Dong, W.B.[Wen-Bo],
Sun, S.L.[Shi-Liang],
Multi-View Deep Gaussian Processes for Supervised Learning,
PAMI(45), No. 12, December 2023, pp. 15137-15153.
IEEE DOI
2311
BibRef
Zhang, N.[Nan],
Sun, S.L.[Shi-Liang],
Incomplete multiview nonnegative representation learning with
multiple graphs,
PR(123), 2022, pp. 108412.
Elsevier DOI
2112
Multiview clustering, Graph learning,
Incomplete multiview clustering, Nonnegative matrix factorization
BibRef
Yin, J.[Jun],
Sun, S.L.[Shi-Liang],
Incomplete multi-view clustering with cosine similarity,
PR(123), 2022, pp. 108371.
Elsevier DOI
2112
Multi-view learning, Missing view, Cosine similarity,
Gradient descent, Matrix factorization
BibRef
Hu, Y.L.[Yong-Li],
Song, Z.[Zuolong],
Wang, B.Y.[Bo-Yue],
Gao, J.B.[Jun-Bin],
Sun, Y.F.[Yan-Feng],
Yin, B.C.[Bao-Cai],
AKM3C: Adaptive K-Multiple-Means for Multi-View Clustering,
CirSysVideo(31), No. 11, November 2021, pp. 4214-4226.
IEEE DOI
2112
Clustering methods, Bipartite graph, Kernel, Matrix decomposition,
Tensors, Fuses, Adaptation models, Multi-view clustering, K-means,
Laplacian rank constraint
BibRef
Li, Z.H.[Zi-Heng],
Wu, D.Y.[Dan-Yang],
Nie, F.P.[Fei-Ping],
Wang, R.[Rong],
Sun, Z.S.[Zhen-Sheng],
Li, X.L.[Xue-Long],
Multi-View Clustering Based on Invisible Weights,
SPLetters(28), 2021, pp. 1051-1055.
IEEE DOI
2106
Computational complexity, Signal processing algorithms, Kernel,
Adaptation models, Cybernetics, Speech processing,
invisible weights
BibRef
Qin, Y.[Yalan],
Wu, H.Z.[Han-Zhou],
Zhang, X.P.[Xin-Peng],
Feng, G.R.[Guo-Rui],
Semi-Supervised Structured Subspace Learning for Multi-View
Clustering,
IP(31), 2022, pp. 1-14.
IEEE DOI
2112
Image reconstruction, Image coding, Clustering algorithms,
Deep learning, Clustering methods, Unsupervised learning,
enhanced structural consistency
BibRef
Tan, J.P.[Jun-Peng],
Yang, Z.J.[Zhi-Jing],
Ren, J.C.[Jin-Chang],
Wang, B.[Bing],
Cheng, Y.Q.[Yong-Qiang],
Ling, W.K.[Wing-Kuen],
A Novel Robust Low-rank Multi-view Diversity Optimization Model with
Adaptive-Weighting Based Manifold Learning,
PR(122), 2022, pp. 108298.
Elsevier DOI
2112
Low-rank Representation (LRR), Multi-view Subspace Clustering (MVSC),
Adaptive-Weighting Manifold Learning (AWML)
BibRef
Hu, S.Z.[Shi-Zhe],
Lou, Z.Z.[Zheng-Zheng],
Ye, Y.D.[Yang-Dong],
View-Wise Versus Cluster-Wise Weight:
Which Is Better for Multi-View Clustering?,
IP(31), 2022, pp. 58-71.
IEEE DOI
2112
Mutual information, Optimization, Linear programming,
Image color analysis, Clustering algorithms, Shape, weight learning
BibRef
Li, X.L.[Xue-Long],
Zhang, H.[Han],
Wang, R.[Rong],
Nie, F.P.[Fei-Ping],
Multiview Clustering:
A Scalable and Parameter-Free Bipartite Graph Fusion Method,
PAMI(44), No. 1, January 2022, pp. 330-344.
IEEE DOI
2112
Laplace equations, Clustering algorithms, Bipartite graph,
Optical imaging, Data models, Computer science,
initialization-independent
BibRef
Zhang, C.Q.[Chang-Qing],
Cui, Y.J.[Ya-Jie],
Han, Z.B.[Zong-Bo],
Zhou, J.T.Y.[Joey Tian-Yi],
Fu, H.Z.[Hua-Zhu],
Hu, Q.H.[Qing-Hua],
Deep Partial Multi-View Learning,
PAMI(44), No. 5, May 2022, pp. 2402-2415.
IEEE DOI
2204
Correlation, Encoding, Training, Image reconstruction, Data models,
Testing, Neural networks, Multi-view learning, latent representation
BibRef
Prasad, S.[Shitala],
Li, Y.Q.[Yi-Qun],
Lin, D.Y.[Dong-Yun],
Dong, S.[Sheng],
Nwe, M.T.L.[Ma Tin Lay],
A Progressive Multi-View Learning Approach for Multi-Loss
Optimization in 3D Object Recognition,
SPLetters(29), 2022, pp. 707-711.
IEEE DOI
2204
Object recognition, Training, Task analysis, Visualization,
Prototypes, Solid modeling, 3D unseen learning, DCNN,
self-supervised learning
BibRef
Wu, D.Y.[Dan-Yang],
Dong, X.[Xia],
Nie, F.P.[Fei-Ping],
Wang, R.[Rong],
Li, X.L.[Xue-Long],
An attention-based framework for multi-view clustering on Grassmann
manifold,
PR(128), 2022, pp. 108610.
Elsevier DOI
2205
Multi-view clustering, Grassmann manifold, Principle angles,
Attentive weighted-learning scheme
BibRef
Yu, X.[Xiao],
Liu, H.[Hui],
Lin, Y.X.[Yu-Xiu],
Wu, Y.[Yan],
Zhang, C.M.[Cai-Ming],
Auto-weighted sample-level fusion with anchors for incomplete
multi-view clustering,
PR(130), 2022, pp. 108772.
Elsevier DOI
2206
Incomplete data, Multi-view clustering, Anchor, Auto-weighted, Large-scale
BibRef
Yu, X.[Xiao],
Liu, H.[Hui],
Zhang, Y.[Yan],
Sun, S.[Shanbao],
Zhang, C.M.[Cai-Ming],
Multi-view clustering via efficient representation learning with
anchors,
PR(144), 2023, pp. 109860.
Elsevier DOI
2310
Multi-view clustering, Large-scale, Anchor, Representation learning
BibRef
Yu, Z.W.[Zhi-Wen],
Wang, D.X.[Da-Xing],
Meng, X.B.[Xian-Bing],
Chen, C.L.P.[C. L. Philip],
Clustering Ensemble Based on Hybrid Multiview Clustering,
Cyber(52), No. 7, July 2022, pp. 6518-6530.
IEEE DOI
2207
Clustering algorithms, Kernel, Machine learning algorithms,
Research and development, Machine learning, Fuses,
random subspace transformation
BibRef
Liu, X.[Xu],
Jiao, L.C.[Li-Cheng],
Li, L.L.[Ling-Ling],
Cheng, L.[Lin],
Liu, F.[Fang],
Yang, S.Y.[Shu-Yuan],
Hou, B.[Biao],
Deep Multiview Union Learning Network for Multisource Image
Classification,
Cyber(52), No. 6, June 2022, pp. 4534-4546.
IEEE DOI
2207
Feature extraction, Laser radar, Data mining, Deep learning,
Correlation, Imaging, Sensors, Classification, deep learning,
multiview learning
BibRef
Zheng, Q.H.[Qing-Hai],
Zhu, J.[Jihua],
Li, Z.Y.[Zhong-Yu],
Collaborative Unsupervised Multi-View Representation Learning,
CirSysVideo(32), No. 7, July 2022, pp. 4202-4210.
IEEE DOI
2207
Correlation, Tensors, Uniform resource locators, Task analysis,
Feature extraction, Collaboration, Kernel, Multi-view learning,
multi-view representation learning
BibRef
Xia, W.[Wei],
Wang, Q.Q.[Qian-Qian],
Gao, Q.X.[Quan-Xue],
Zhang, X.D.[Xiang-Dong],
Gao, X.B.[Xin-Bo],
Self-Supervised Graph Convolutional Network for Multi-View Clustering,
MultMed(24), 2022, pp. 3182-3192.
IEEE DOI
2207
Feature extraction, Decoding, Transforms, Task analysis,
Clustering methods, Social networking (online), Correlation,
self-supervision
BibRef
Shu, X.C.[Xiao-Chuang],
Zhang, X.D.[Xiang-Dong],
Gao, Q.X.[Quan-Xue],
Yang, M.[Ming],
Wang, R.[Rong],
Gao, X.B.[Xin-Bo],
Self-Weighted Anchor Graph Learning for Multi-View Clustering,
MultMed(25), 2023, pp. 5485-5499.
IEEE DOI
2311
BibRef
Li, J.[Jing],
Wang, Q.Q.[Qian-Qian],
Yang, M.[Ming],
Gao, Q.X.[Quan-Xue],
Gao, X.B.[Xin-Bo],
Efficient Anchor Graph Factorization for Multi-View Clustering,
MultMed(26), 2024, pp. 5834-5845.
IEEE DOI
2404
Tensors, Matrix decomposition, Computational complexity,
Data models, Clustering methods, Clustering algorithms,
tensor Schatten p-norm
BibRef
Zhao, W.H.[Wen-Hui],
Li, Q.[Qin],
Xu, H.[Huafu],
Gao, Q.X.[Quan-Xue],
Wang, Q.Q.[Qian-Qian],
Gao, X.B.[Xin-Bo],
Anchor Graph-Based Feature Selection for One-Step Multi-View
Clustering,
MultMed(26), 2024, pp. 7413-7425.
IEEE DOI
2405
Sparse matrices, Feature extraction, Tensors, Clustering methods,
Clustering algorithms, Noise measurement, Sparse approximation,
sparse representation
BibRef
Wang, S.P.[Shi-Ping],
Chen, Z.L.[Zhao-Liang],
Du, S.[Shide],
Lin, Z.C.[Zhou-Chen],
Learning Deep Sparse Regularizers With Applications to Multi-View
Clustering and Semi-Supervised Classification,
PAMI(44), No. 9, September 2022, pp. 5042-5055.
IEEE DOI
2208
Neural networks, Optimization, Task analysis, Minimization,
Deep learning, Compressed sensing, Backpropagation, Deep learning,
multi-view learning
BibRef
Luong, K.[Khanh],
Nayak, R.[Richi],
Balasubramaniam, T.[Thirunavukarasu],
Bashar, M.A.[Md Abul],
Multi-layer manifold learning for deep non-negative matrix
factorization-based multi-view clustering,
PR(131), 2022, pp. 108815.
Elsevier DOI
2208
Multi-view data/clustering, Manifold learning,
Non-negative Matrix Factorization (NMF),
Deep Non-negative Matrix Factorization (Deep-NMF)
BibRef
Huang, S.D.[Shu-Dong],
Shi, W.[Wei],
Xu, Z.L.[Zeng-Lin],
Tsang, I.W.[Ivor W.],
Lv, J.C.[Jian-Cheng],
Efficient federated multi-view learning,
PR(131), 2022, pp. 108817.
Elsevier DOI
2208
Federated learning, Multi-view learning, Matrix factorization, Clustering
BibRef
Lv, Z.Y.[Zi-Yu],
Gao, Q.X.[Quan-Xue],
Zhang, X.D.[Xiang-Dong],
Li, Q.[Qin],
Yang, M.[Ming],
View-Consistency Learning for Incomplete Multiview Clustering,
IP(31), 2022, pp. 4790-4802.
IEEE DOI
2208
Tensors, Clustering algorithms, Matrix decomposition, Cameras,
Technological innovation, Representation learning, Optimization,
graph learning
BibRef
Jiang, G.Q.[Guang-Qi],
Peng, J.J.[Jin-Jia],
Wang, H.B.[Hui-Bing],
Mi, Z.[Zetian],
Fu, X.P.[Xian-Ping],
Tensorial Multi-View Clustering via Low-Rank Constrained High-Order
Graph Learning,
CirSysVideo(32), No. 8, August 2022, pp. 5307-5318.
IEEE DOI
2208
Tensors, Correlation, Task analysis, Optimization,
Clustering algorithms, Redundancy, Laplace equations, multi-view clustering
BibRef
Wang, H.[Huibing],
Jiang, G.Q.[Guang-Qi],
Peng, J.J.[Jin-Jia],
Deng, R.X.[Ruo-Xi],
Fu, X.P.[Xian-Ping],
Towards Adaptive Consensus Graph: Multi-View Clustering via Graph
Collaboration,
MultMed(25), 2023, pp. 6629-6641.
IEEE DOI
2311
BibRef
Li, X.[Xiang],
Chen, S.C.[Song-Can],
A Concise Yet Effective Model for Non-Aligned Incomplete Multi-View
and Missing Multi-Label Learning,
PAMI(44), No. 10, October 2022, pp. 5918-5932.
IEEE DOI
2209
Learning systems, Fish, Data privacy, Video surveillance, Transforms,
Training, Time complexity, Non-aligned incomplete multi-view,
model selection
BibRef
Yang, B.[Ben],
Zhang, X.T.[Xue-Tao],
Lin, Z.P.[Zhi-Ping],
Nie, F.P.[Fei-Ping],
Chen, B.D.[Ba-Dong],
Wang, F.[Fei],
Efficient and Robust MultiView Clustering With Anchor Graph
Regularization,
CirSysVideo(32), No. 9, September 2022, pp. 6200-6213.
IEEE DOI
2209
Robustness, Clustering methods, Clustering algorithms,
Matrix decomposition, Computational complexity, Standards,
nonnegative matrix factorization
BibRef
Zhong, G.[Guo],
Pun, C.M.[Chi-Man],
Improved Normalized Cut for Multi-View Clustering,
PAMI(44), No. 12, December 2022, pp. 10244-10251.
IEEE DOI
2212
Laplace equations, Clustering algorithms, Optimization,
Clustering methods, Matrix decomposition, Linear programming,
normalized cut
BibRef
Wang, Y.L.[Yu-Long],
Kou, K.I.[Kit Ian],
Chen, H.[Hong],
Tang, Y.Y.[Yuan Yan],
Li, L.Q.[Luo-Qing],
Simultaneous Robust Matching Pursuit for Multi-View Learning,
PR(134), 2023, pp. 109100.
Elsevier DOI
2212
Greedy algorithm, Multi-view learning, M-estimator, Sparse learning
BibRef
Yan, W.Z.[Wen-Zhu],
Li, Y.[Yanmeng],
Yang, M.[Ming],
Towards deeper match for multi-view oriented multiple kernel learning,
PR(134), 2023, pp. 109119.
Elsevier DOI
2212
Multi-view representation, Deep kernel, Feature fusion, Classification
BibRef
Hu, P.[Peng],
Peng, X.[Xi],
Zhu, H.Y.[Hong-Yuan],
Zhen, L.L.[Liang-Li],
Lin, J.[Jie],
Yan, H.[Huaibai],
Peng, D.Z.[De-Zhong],
Deep Semisupervised Multiview Learning With Increasing Views,
Cyber(52), No. 12, December 2022, pp. 12954-12965.
IEEE DOI
2212
Laplace equations, Data models, Training, Semisupervised learning,
Correlation, Deep learning, Cross-view retrieval,
semisupervised multiview learning
BibRef
Hu, P.[Peng],
Zhen, L.L.[Liang-Li],
Peng, X.[Xi],
Zhu, H.Y.[Hong-Yuan],
Lin, J.[Jie],
Wang, X.[Xu],
Peng, D.Z.[De-Zhong],
Deep Supervised Multi-View Learning With Graph Priors,
IP(33), 2024, pp. 123-133.
IEEE DOI
2312
BibRef
Yang, M.X.[Mou-Xing],
Li, Y.F.[Yun-Fan],
Hu, P.[Peng],
Bai, J.F.[Jin-Feng],
Lv, J.C.[Jian-Cheng],
Peng, X.[Xi],
Robust Multi-View Clustering With Incomplete Information,
PAMI(45), No. 1, January 2023, pp. 1055-1069.
IEEE DOI
2212
Noise measurement, Noise robustness, Robustness,
Representation learning, Annotations, Task analysis, Optimization,
false negatives
BibRef
Zeng, P.X.[Peng-Xin],
Yang, M.X.[Mou-Xing],
Lu, Y.D.[Yi-Ding],
Zhang, C.Q.[Chang-Qing],
Hu, P.[Peng],
Peng, X.[Xi],
Semantic Invariant Multi-View Clustering With Fully Incomplete
Information,
PAMI(46), No. 4, April 2024, pp. 2139-2150.
IEEE DOI
2403
Semantics, Noise measurement, Kernel, Drones, Data collection,
Complexity theory, Adversarial machine learning,
semantic invariance
BibRef
Zhu, Z.R.[Zhao-Rui],
Gao, Q.X.[Quan-Xue],
Semi-Supervised Clustering via Cannot Link Relationship for Multiview
Data,
CirSysVideo(32), No. 12, December 2022, pp. 8744-8755.
IEEE DOI
2212
Clustering algorithms, Tensors, Unsupervised learning,
Semisupervised learning, Supervised learning, Clustering methods,
cannot link constraint
BibRef
Zheng, Q.H.[Qing-Hai],
Zhu, J.[Jihua],
Li, Z.Y.[Zhong-Yu],
Tang, H.Y.[Hao-Yu],
Graph-Guided Unsupervised Multiview Representation Learning,
CirSysVideo(33), No. 1, January 2023, pp. 146-159.
IEEE DOI
2301
Representation learning, Correlation, Task analysis,
Neural networks, Kernel, Fuses, Uncertainty, Multi-view learning,
multi-view representation learning
BibRef
Wang, Y.M.[Yi-Ming],
Chang, D.X.[Dong-Xia],
Fu, Z.Q.[Zhi-Qiang],
Wen, J.[Jie],
Zhao, Y.[Yao],
Incomplete Multiview Clustering via Cross-View Relation Transfer,
CirSysVideo(33), No. 1, January 2023, pp. 367-378.
IEEE DOI
2301
Graph neural networks, Kernel, Training, Clustering methods,
Learning systems, Deep learning, Visualization,
representation learning
BibRef
Qin, Y.L.[Ya-Lan],
Qin, C.[Chuan],
Zhang, X.P.[Xin-Peng],
Qi, D.L.[Dong-Lian],
Feng, G.R.[Guo-Rui],
NIM-Nets: Noise-Aware Incomplete Multi-View Learning Networks,
IP(32), 2023, pp. 175-189.
IEEE DOI
2301
Data models, Task analysis, Representation learning, Optimization,
Data integrity, Learning systems, Robustness,
unified model
BibRef
Han, Z.[Zongbo],
Zhang, C.Q.[Chang-Qing],
Fu, H.Z.[Hua-Zhu],
Zhou, J.T.Y.[Joey Tian-Yi],
Trusted Multi-View Classification With Dynamic Evidential Fusion,
PAMI(45), No. 2, February 2023, pp. 2551-2566.
IEEE DOI
2301
Uncertainty, Reliability, Bayes methods, Computational modeling,
Estimation, Robustness, Heuristic algorithms,
varitional Dirichlet
BibRef
Houfar, K.[Khamis],
Samai, D.[Djamel],
Dornaika, F.[Fadi],
Benlamoudi, A.[Azeddine],
Bensid, K.[Khaled],
Taleb-Ahmed, A.[Abdelmalik],
Automatically weighted binary multi-view clustering via deep
initialization (AW-BMVC),
PR(137), 2023, pp. 109281.
Elsevier DOI
2302
Multi-view clustering, Large scale, Anchors, Discrete representation and BD-FFT
BibRef
Lin, Y.J.[Yi-Jie],
Gou, Y.B.[Yuan-Biao],
Liu, X.T.[Xiao-Tian],
Bai, J.F.[Jin-Feng],
Lv, J.C.[Jian-Cheng],
Peng, X.[Xi],
Dual Contrastive Prediction for Incomplete Multi-View Representation
Learning,
PAMI(45), No. 4, April 2023, pp. 4447-4461.
IEEE DOI
2303
Task analysis, Representation learning, Mutual information,
Entropy, Linear programming, Optimization, Kernel,
multi-view representation learning
BibRef
Lin, Y.J.[Yi-Jie],
Gou, Y.B.[Yuan-Biao],
Liu, Z.T.[Zi-Tao],
Li, B.Y.[Bo-Yun],
Lv, J.C.[Jian-Cheng],
Peng, X.[Xi],
COMPLETER: Incomplete Multi-view Clustering via Contrastive
Prediction,
CVPR21(11169-11178)
IEEE DOI
2111
Codes, Clustering methods, Entropy, Task analysis, Mutual information
BibRef
Xu, J.[Jie],
Li, C.[Chao],
Peng, L.[Liang],
Ren, Y.Z.[Ya-Zhou],
Shi, X.S.[Xiao-Shuang],
Shen, H.T.[Heng Tao],
Zhu, X.F.[Xiao-Feng],
Adaptive Feature Projection With Distribution Alignment for Deep
Incomplete Multi-View Clustering,
IP(32), 2023, pp. 1354-1366.
IEEE DOI
2303
Kernel, Representation learning, Tensors, Adaptation models,
Optimization, Mutual information, Image reconstruction,
deep feature learning
BibRef
Xu, J.[Jie],
Tang, H.Y.[Hua-Yi],
Ren, Y.Z.[Ya-Zhou],
Peng, L.[Liang],
Zhu, X.F.[Xiao-Feng],
He, L.F.[Li-Fang],
Multi-level Feature Learning for Contrastive Multi-view Clustering,
CVPR22(16030-16039)
IEEE DOI
2210
Representation learning, Computational modeling, Semantics,
Predictive models, Feature extraction, Data models,
Self- semi- meta- unsupervised learning
BibRef
Xu, J.[Jie],
Ren, Y.Z.[Ya-Zhou],
Tang, H.Y.[Hua-Yi],
Pu, X.R.[Xiao-Rong],
Zhu, X.F.[Xiao-Feng],
Zeng, M.[Ming],
He, L.F.[Li-Fang],
Multi-VAE: Learning Disentangled View-common and View-peculiar Visual
Representations for Multi-view Clustering,
ICCV21(9214-9223)
IEEE DOI
2203
Visualization, Fuses, Gaussian distribution, Complexity theory,
Mutual information,
Representation learning
BibRef
Wang, S.[Shiye],
Li, C.S.[Chang-Sheng],
Li, Y.M.[Yan-Ming],
Yuan, Y.[Ye],
Wang, G.R.[Guo-Ren],
Self-Supervised Information Bottleneck for Deep Multi-View Subspace
Clustering,
IP(32), 2023, pp. 1555-1567.
IEEE DOI
2303
Mutual information, Deep learning, Data models, Training, Task analysis,
Representation learning, Feature extraction, subspace clustering
BibRef
Wang, Y.M.[Yi-Ming],
Chang, D.X.[Dong-Xia],
Fu, Z.Q.[Zhi-Qiang],
Zhao, Y.[Yao],
Consistent Multiple Graph Embedding for Multi-View Clustering,
MultMed(25), 2023, pp. 1008-1018.
IEEE DOI
2303
Mutual information, Clustering methods, Clustering algorithms,
Data models, Task analysis, Laplace equations, Fuses,
representation learning
BibRef
Guo, W.[Wei],
Wang, Z.[Zhe],
Du, W.L.[Wen-Li],
Robust semi-supervised multi-view graph learning with sharable and
individual structure,
PR(140), 2023, pp. 109565.
Elsevier DOI
2305
Semi-supervised learning, Multi-view learning, Clean data, Manifold structure
BibRef
Zhang, J.[Jing],
Wei, G.Y.[Gui-Yan],
Sun, F.[Fang],
Synthetic multi-view clustering with missing relationships and
instances,
IVC(134), 2023, pp. 104669.
Elsevier DOI
2305
Synthetic multi-view data, Multi-view clustering, Auto-encoder,
Knowledge distillation
BibRef
Luo, D.[Dixin],
Xu, H.T.[Hong-Teng],
Carin, L.[Lawrence],
Differentiable Hierarchical Optimal Transport for Robust Multi-View
Learning,
PAMI(45), No. 6, June 2023, pp. 7293-7307.
IEEE DOI
2305
Learning systems, Task analysis, Hospitals, Data models,
Optimization, Diseases, Predictive models, Bi-level optimization,
unaligned multi-view data
BibRef
Jia, X.D.[Xiao-Dong],
Jing, X.Y.[Xiao-Yuan],
Sun, Q.X.[Qi-Xing],
Chen, S.C.[Song-Can],
Du, B.[Bo],
Zhang, D.[David],
Human Collective Intelligence Inspired Multi-View Representation
Learning: Enabling View Communication by Simulating Human
Communication Mechanism,
PAMI(45), No. 6, June 2023, pp. 7412-7429.
IEEE DOI
2305
Decision making, Representation learning, Computational modeling,
Information sharing, Collective intelligence, Bioinformatics,
view communication
BibRef
Pintelas, E.[Emmanuel],
Livieris, I.E.[Ioannis E.],
Kotsiantis, S.[Sotiris],
Pintelas, P.[Panagiotis],
A multi-view-CNN framework for deep representation learning in image
classification,
CVIU(232), 2023, pp. 103687.
Elsevier DOI
2305
Transfer learning, Convolutional neural networks, Deep learning,
Feature augmentation, Dimensionality reduction, Image classification
BibRef
Sun, S.[Shiding],
Yu, X.T.[Xiao-Tong],
Tian, Y.J.[Ying-Jie],
Multi-view prototype-based disambiguation for partial label learning,
PR(141), 2023, pp. 109625.
Elsevier DOI
2306
Multi-view learning, Partial label learning, Weakly supervised learning
BibRef
Fan, R.D.[Rui-Dong],
Ouyang, X.[Xiao],
Luo, T.J.[Ting-Jin],
Hu, D.[Dewen],
Hou, C.P.[Chen-Ping],
Incomplete Multi-View Learning Under Label Shift,
IP(32), 2023, pp. 3702-3716.
IEEE DOI
2307
Training, Pulmonary diseases, Kernel, Estimation error,
Biomedical imaging, Multilayer perceptrons, Learning systems,
reweighting strategy
BibRef
Zhang, C.Y.[Chao-Yang],
Lou, Z.Z.[Zheng-Zheng],
Zhou, Q.L.[Qing-Lei],
Hu, S.Z.[Shi-Zhe],
Multi-View Clustering via Triplex Information Maximization,
IP(32), 2023, pp. 4299-4313.
IEEE DOI
2308
Mutual information, Visualization, Data models, Feature extraction,
Dictionaries, Correlation, Indexes, Multi-view clustering, visual clustering
BibRef
Zhu, P.F.[Peng-Fei],
Yao, X.J.[Xin-Jie],
Wang, Y.[Yu],
Cao, M.[Meng],
Hui, B.Y.[Bin-Yuan],
Zhao, S.[Shuai],
Hu, Q.H.[Qing-Hua],
Latent Heterogeneous Graph Network for Incomplete Multi-View Learning,
MultMed(25), 2023, pp. 3033-3045.
IEEE DOI
2309
BibRef
Wang, Y.[Yu],
Yao, X.J.[Xin-Jie],
Zhu, P.F.[Peng-Fei],
Li, W.H.[Wei-Hao],
Cao, M.[Meng],
Hu, Q.H.[Qing-Hua],
Integrated Heterogeneous Graph Attention Network for Incomplete
Multi-modal Clustering,
IJCV(132), No. 1, January 2024, pp. 3847-3866.
Springer DOI
2409
BibRef
Zhou, Y.[Yuan],
Guo, Y.R.[Yan-Rong],
Hao, S.J.[Shi-Jie],
Hong, R.C.[Ri-Chang],
Luo, J.B.[Jie-Bo],
Few-Shot Partial Multi-View Learning,
PAMI(45), No. 10, October 2023, pp. 11824-11841.
IEEE DOI
2310
BibRef
Gao, C.[Chiwei],
Xu, Z.W.[Zi-Wei],
Chen, X.H.[Xiu-Hong],
Multi-view clustering with Laplacian rank constraint based on
symmetric and nonnegative low-rank representation,
CVIU(236), 2023, pp. 103829.
Elsevier DOI
2310
Multi-view clustering, Low-rank representation, Symmetry,
Nonnegativeness, Similarity matrix
BibRef
Diallo, B.[Bassoma],
Hu, J.[Jie],
Li, T.R.[Tian-Rui],
Khan, G.A.[Ghufran Ahmad],
Liang, X.Y.[Xin-Yan],
Wang, H.J.[Hong-Jun],
Auto-attention mechanism for multi-view deep embedding clustering,
PR(143), 2023, pp. 109764.
Elsevier DOI
2310
Deep embedding clustering, Deep multi-view clustering,
Multi-view autoencoder, Auto-attention
BibRef
Deng, J.X.[Jiao-Xue],
Lin, Y.F.[You-Fang],
Jin, X.[Xiyuan],
Ning, X.J.[Xiao-Jun],
Wang, J.[Jing],
Multi-View Consistency Contrastive Learning With Hard Positives for
Sleep Signals,
SPLetters(30), 2023, pp. 1102-1106.
IEEE DOI
2310
BibRef
Mi, Y.[Yong],
Chen, H.M.[Hong-Mei],
Yuan, Z.[Zhong],
Luo, C.[Chuan],
Horng, S.J.[Shi-Jinn],
Li, T.R.[Tian-Rui],
Fast Multi-view Subspace Clustering with Balance Anchors Guidance,
PR(145), 2024, pp. 109895.
Elsevier DOI
2311
Multi-view subspace clustering, Anchor-based MVSC methods,
Balance structure, Anchor graph
BibRef
Ping, K.[Ke],
Li, S.[Shuxiao],
Wu, C.H.[Chu-Han],
Ren, Z.W.[Zhen-Wen],
Architecture Alternative Deep Multi-View Clustering,
SPLetters(30), 2023, pp. 1547-1551.
IEEE DOI
2311
BibRef
Wang, Y.M.[Yi-Ming],
Chang, D.X.[Dong-Xia],
Fu, Z.Q.[Zhi-Qiang],
Wen, J.[Jie],
Zhao, Y.[Yao],
Graph Contrastive Partial Multi-View Clustering,
MultMed(25), 2023, pp. 6551-6562.
IEEE DOI
2311
BibRef
Hao, W.Y.[Wen-Yu],
Pang, S.M.[Shan-Min],
Bai, X.X.[Xiu-Xiu],
Xue, J.R.[Jian-Ru],
Tensor-Based Incomplete Multi-View Clustering With Low-Rank Data
Reconstruction and Consistency Guidance,
CirSysVideo(33), No. 12, December 2023, pp. 7156-7169.
IEEE DOI
2312
BibRef
Chen, J.[Jin],
Huang, A.[Aiping],
Gao, W.[Wei],
Niu, Y.Z.[Yu-Zhen],
Zhao, T.S.[Tie-Song],
Joint Shared-and-Specific Information for Deep Multi-View Clustering,
CirSysVideo(33), No. 12, December 2023, pp. 7224-7235.
IEEE DOI
2312
BibRef
Dong, Z.B.[Zhi-Bin],
Wang, S.W.[Si-Wei],
Jin, J.Q.[Jia-Qi],
Liu, X.W.[Xin-Wang],
Zhu, E.[En],
Cross-view Topology Based Consistent and Complementary Information
for Deep Multi-view Clustering,
ICCV23(19383-19394)
IEEE DOI
2401
BibRef
Bi, X.A.[Xia-An],
Huang, Y.J.[Yang-Jun],
Yang, Z.C.[Zi-Cheng],
Chen, K.[Ke],
Xing, Z.X.[Zhao-Xu],
Xu, L.Y.[Lu-Yun],
Li, X.[Xiang],
Liu, Z.L.[Zheng-Liang],
Liu, T.M.[Tian-Ming],
Structure Mapping Generative Adversarial Network for Multi-View
Information Mapping Pattern Mining,
PAMI(46), No. 4, April 2024, pp. 2252-2266.
IEEE DOI
2403
Generative adversarial networks, Deep learning, Data models,
Data mining, Training, Task analysis, Predictive models
BibRef
Zhou, W.X.[Wei-Xun],
Shi, Y.X.[Yong-Xin],
Huang, X.[Xiao],
Multi-View Scene Classification Based on Feature Integration and
Evidence Decision Fusion,
RS(16), No. 5, 2024, pp. 738.
DOI Link
2403
BibRef
Zeng, X.H.[Xian-Hua],
Guo, J.[Jueqiu],
Wei, Y.F.[Yi-Fan],
Zhuo, Y.[Yang],
Deep hybrid manifold for image set classification,
IVC(143), 2024, pp. 104935.
Elsevier DOI
2403
The image set data is modeled through SPD manifold and Grassmann
manifold. The modeled data is input into the backbone network composed
of SPDNet and GrNet for initial feature extraction, and the output
manifold data are input into HMAEs.
SPD manifold, Grassmann manifold, Visual classification,
Hybrid manifold, Neural network
BibRef
Cai, H.M.[Hong-Min],
Huang, W.T.[Wei-Tian],
Yang, S.[Sirui],
Ding, S.Q.[Si-Qi],
Zhang, Y.[Yue],
Hu, B.[Bin],
Zhang, F.[Fa],
Cheung, Y.M.[Yiu-Ming],
Realize Generative Yet Complete Latent Representation for Incomplete
Multi-View Learning,
PAMI(46), No. 5, May 2024, pp. 3637-3652.
IEEE DOI
2404
Representation learning, Correlation, Task analysis, Data models,
Computational modeling, Gaussian distribution, Computer science,
representation learning
BibRef
Zhao, X.J.[Xiao-Jia],
Shen, Q.Q.[Qiang-Qiang],
Chen, Y.Y.[Yong-Yong],
Liang, Y.S.[Yong-Sheng],
Chen, J.X.[Jun-Xin],
Zhou, Y.C.[Yi-Cong],
Self-Completed Bipartite Graph Learning for Fast Incomplete
Multi-View Clustering,
CirSysVideo(34), No. 4, April 2024, pp. 2166-2178.
IEEE DOI
2404
Bipartite graph, Kernel, Correlation, Task analysis, Optimization,
Excavation, Time complexity, Incomplete multi-view clustering,
graph self-completion
BibRef
Hu, Y.[Yutao],
Wang, Y.L.[Yu-Long],
Li, H.[Han],
Chen, H.[Hong],
Robust multi-view learning via M-estimator joint sparse
representation,
PR(151), 2024, pp. 110355.
Elsevier DOI Code:
WWW Link.
2404
Robust multi-view learning, Joint sparse representation, M-estimator
BibRef
Cai, R.G.[Rong-Gang],
Chen, H.M.[Hong-Mei],
Mi, Y.[Yong],
Luo, C.[Chuan],
Horng, S.J.[Shi-Jinn],
Li, T.R.[Tian-Rui],
Multi-view clustering via pseudo-label guide learning and latent
graph structure recovery,
PR(151), 2024, pp. 110420.
Elsevier DOI
2404
Multi-view clustering, Latent space, Pseudo-label,
Latent graph structure recovery, Enhanced label fusion
BibRef
Ke, G.Z.[Guan-Zhou],
Chao, G.Q.[Guo-Qing],
Wang, X.L.[Xiao-Li],
Xu, C.Y.[Chen-Yang],
Zhu, Y.Q.[Yong-Qi],
Yu, Y.[Yang],
A Clustering-Guided Contrastive Fusion for Multi-View Representation
Learning,
CirSysVideo(34), No. 4, April 2024, pp. 2056-2069.
IEEE DOI Code:
WWW Link.
2404
Task analysis, Semantics, Robustness, Representation learning,
Image reconstruction, Data models, Learning systems, incomplete view
BibRef
Xiao, Y.S.[Yan-Shan],
Zhang, J.W.[Jian-Wei],
Liu, B.[Bo],
Zhao, L.[Liang],
Kong, X.J.[Xiang-Jun],
Hao, Z.F.[Zhi-Feng],
Multi-View Maximum Margin Clustering With Privileged Information
Learning,
CirSysVideo(34), No. 4, April 2024, pp. 2719-2733.
IEEE DOI
2404
Clustering methods, Training, Feature extraction, Kernel,
Deep learning, Task analysis, Integrated circuit modeling, cutting plane
BibRef
Liu, B.[Bo],
Sun, P.[Peng],
Xiao, Y.[Yanshan],
Zhao, S.L.[Shi-Lei],
Li, X.K.[Xiao-Kai],
Peng, T.T.[Tian-Tian],
Zheng, Z.[Zhiyu],
Huang, Y.S.[Yong-Sheng],
Dictionary-Based Multi-View Learning With Privileged Information,
CirSysVideo(34), No. 5, May 2024, pp. 3523-3537.
IEEE DOI
2405
Dictionaries, Machine learning, Sparse matrices, Redundancy,
Clustering methods, Feature extraction, Multi-view learning,
sparse representation
BibRef
Cai, B.[Bing],
Lu, G.F.[Gui-Fu],
Li, H.[Hua],
Song, W.H.[Wei-Hong],
Tensorized Scaled Simplex Representation for Multi-View Clustering,
MultMed(26), 2024, pp. 6621-6631.
IEEE DOI
2404
Tensors, Task analysis, Information technology, Fuses, Correlation,
Adaptation models, Transforms, Scaled simplex representation,
multi-view clustering
BibRef
Yu, S.J.[Sheng-Ju],
Wang, S.W.[Si-Wei],
Wen, Y.[Yi],
Wang, Z.M.[Zi-Ming],
Luo, Z.G.[Zhi-Gang],
Zhu, E.[En],
Liu, X.W.[Xin-Wang],
How to Construct Corresponding Anchors for Incomplete Multiview
Clustering,
CirSysVideo(34), No. 4, April 2024, pp. 2845-2860.
IEEE DOI
2404
Bipartite graph, Clustering algorithms, Transforms, Task analysis,
Kernel, Complexity theory, Neural networks,
multiview learning
BibRef
Wan, X.H.[Xin-Hang],
Xiao, B.[Bin],
Liu, X.W.[Xin-Wang],
Liu, J.Y.[Ji-Yuan],
Liang, W.X.[Wei-Xuan],
Zhu, E.[En],
Fast Continual Multi-View Clustering With Incomplete Views,
IP(33), 2024, pp. 2995-3008.
IEEE DOI Code:
WWW Link.
2405
Complexity theory, Kernel, Task analysis, Clustering algorithms,
Real-time systems, Privacy, Fuses, Multi-view learning, clustering,
continual learning
BibRef
Jin, J.Q.[Jia-Qi],
Wang, S.W.[Si-Wei],
Dong, Z.B.[Zhi-Bin],
Liu, X.W.[Xin-Wang],
Zhu, E.[En],
Deep Incomplete Multi-View Clustering with Cross-View Partial Sample
and Prototype Alignment,
CVPR23(11600-11609)
IEEE DOI
2309
BibRef
Wen, J.[Jie],
Xu, G.[Gehui],
Tang, Z.[Zhanyan],
Wang, W.[Wei],
Fei, L.[Lunke],
Xu, Y.[Yong],
Graph Regularized and Feature Aware Matrix Factorization for Robust
Incomplete Multi-View Clustering,
CirSysVideo(34), No. 5, May 2024, pp. 3728-3741.
IEEE DOI
2405
Task analysis, Data models, Representation learning,
Adaptation models, Kernel, Optimization, Noise measurement,
multi-view learning
BibRef
Du, S.[Shide],
Cai, Z.L.[Zhi-Ling],
Wu, Z.H.[Zhi-Hao],
Pi, Y.Y.[Yue-Yang],
Wang, S.P.[Shi-Ping],
UMCGL: Universal Multi-View Consensus Graph Learning With Consistency
and Diversity,
IP(33), 2024, pp. 3399-3412.
IEEE DOI
2406
Semantics, Noise, Representation learning, Generators, Training,
Task analysis, Noise measurement, Multi-view learning,
consistency and diversity
BibRef
Fang, Z.[Zihan],
Du, S.[Shide],
Cai, Z.L.[Zhi-Ling],
Lan, S.Y.[Shi-Yang],
Wu, C.M.[Chun-Ming],
Tan, Y.C.[Yan-Chao],
Wang, S.P.[Shi-Ping],
Representation Learning Meets Optimization-Derived Networks:
From Single-View to Multi-View,
MultMed(26), 2024, pp. 8889-8901.
IEEE DOI
2408
To learn extensible models.
Representation learning, Optimization, Task analysis, Training,
Feature extraction, Linear programming, Guidelines,
representation learning
BibRef
Cui, J.R.[Jin-Rong],
Li, Y.T.[Yu-Ting],
Huang, H.[Han],
Wen, J.[Jie],
Dual Contrast-Driven Deep Multi-View Clustering,
IP(33), 2024, pp. 4753-4764.
IEEE DOI Code:
WWW Link.
2409
Feature extraction, Contrastive learning, Reliability,
Clustering methods, Task analysis, Data mining, contrastive learning
BibRef
Du, Y.F.[Yang-Fan],
Lu, G.F.[Gui-Fu],
Joint local smoothness and low-rank tensor representation for robust
multi-view clustering,
PR(157), 2025, pp. 110944.
Elsevier DOI
2409
Subspace clustering, Tensor, Tensor nuclear norm, Total variation
BibRef
Zhan, S.[Senwen],
Jiang, H.[Hao],
Shen, D.[Dong],
Co-regularized optimal high-order graph embedding for multi-view
clustering,
PR(157), 2025, pp. 110892.
Elsevier DOI
2409
Multi-view, Graph embedding, Second-order Laplacian matrix, Co-regularization
BibRef
Lin, F.F.[Fang-Fei],
Bai, B.[Bing],
Guo, Y.W.[Yi-Wen],
Chen, H.[Hao],
Ren, Y.Z.[Ya-Zhou],
Xu, Z.L.[Zeng-Lin],
MHCN: A Hyperbolic Neural Network Model for Multi-view Hierarchical
Clustering,
ICCV23(16479-16489)
IEEE DOI
2401
BibRef
Tan, Y.Z.[Yu-Ze],
Liu, Y.X.[Yi-Xi],
Huang, S.D.[Shu-Dong],
Feng, W.T.[Wen-Tao],
Lv, J.C.[Jian-Cheng],
Sample-level Multi-view Graph Clustering,
CVPR23(23966-23975)
IEEE DOI
2309
BibRef
Yan, W.Q.[Wei-Qing],
Zhang, Y.Y.[Yuan-Yang],
Lv, C.[Chenlei],
Tang, C.[Chang],
Yue, G.H.[Guang-Hui],
Liao, L.[Liang],
Lin, W.S.[Wei-Si],
GCFAgg: Global and Cross-View Feature Aggregation for Multi-View
Clustering,
CVPR23(19863-19872)
IEEE DOI
2309
BibRef
Xie, M.Y.[Meng-Yao],
Han, Z.[Zongbo],
Zhang, C.Q.[Chang-Qing],
Bai, Y.C.[Yi-Chen],
Hu, Q.H.[Qing-Hua],
Exploring and Exploiting Uncertainty for Incomplete Multi-View
Classification,
CVPR23(19873-19882)
IEEE DOI
2309
BibRef
Trosten, D.J.[Daniel J.],
Løkse, S.[Sigurd],
Jenssen, R.[Robert],
Kampffmeyer, M.C.[Michael C.],
On the Effects of Self-supervision and Contrastive Alignment in Deep
Multi-view Clustering,
CVPR23(23976-23985)
IEEE DOI
2309
BibRef
Xu, H.Q.[Hao-Qi],
Hou, J.[Jian],
Yuan, H.Q.[Hua-Qiang],
Weighted Multi-view Clustering Based on Internal Evaluation,
MMMod23(II: 215-227).
Springer DOI
2304
BibRef
Liu, X.B.[Xiao-Bo],
Long, Y.[Yin],
Nomikos, Y.F.[Yi-Fannis],
Spectral Embedding and Novel Low-rank Approximation Based Multi-view
Clustering,
ICPR22(840-846)
IEEE DOI
2212
Periodic structures
BibRef
Ebrahimi, A.[Abdolghani],
Stec, A.[Alexander],
Klabjan, D.[Diego],
Utke, J.[Jean],
Nested Multi-view Image Classification,
ICPR22(5125-5131)
IEEE DOI
2212
Training, Training data, Distance measurement,
Convolutional neural networks, Task analysis, Standards, neural network
BibRef
Yuan, Y.H.[Yun-Hao],
Lil, J.[Jin],
Lil, Y.[Yun],
Qiang, J.P.[Ji-Peng],
Zhu, Y.[Yi],
Shen, X.B.[Xiao-Bo],
Gou, J.P.[Jian-Ping],
Learning Canonical F-Correlation Projection for Compact Multiview
Representation,
CVPR22(19238-19247)
IEEE DOI
2210
Representation learning, Correlation, Linearity, Benchmark testing,
Pattern recognition, Iterative methods, Representation learning,
Self- semi- meta- Statistical methods
BibRef
Liu, J.J.[Jun-Jie],
Liu, J.L.[Jun-Long],
Yan, S.T.[Shao-Tian],
Jiang, R.X.[Rong-Xin],
Tian, X.[Xiang],
Gu, B.X.[Bo-Xuan],
Chen, Y.W.[Yao-Wu],
Shen, C.[Chen],
Huang, J.Q.[Jian-Qiang],
MPC: Multi-view Probabilistic Clustering,
CVPR22(9499-9508)
IEEE DOI
2210
Transforms, Benchmark testing, Probabilistic logic, Robustness,
Pattern recognition, Recognition: detection, categorization, retrieval
BibRef
Tang, H.Y.[Hua-Yi],
Liu, Y.[Yong],
Deep Safe Multi-view Clustering: Reducing the Risk of Clustering
Performance Degradation Caused by View Increase,
CVPR22(202-211)
IEEE DOI
2210
Degradation, Deep learning, Computational modeling,
Feature extraction, Robustness, Data models, Machine learning,
Self- semi- meta- unsupervised learning
BibRef
Do, K.[Kien],
Tran, T.[Truyen],
Venkatesh, S.[Svetha],
Clustering by Maximizing Mutual Information Across Views,
ICCV21(9908-9918)
IEEE DOI
2203
Representation learning, Head, Clustering methods,
Object detection, Semisupervised learning, Data mining,
Machine learning architectures and formulations
BibRef
Xiong, B.[Bo],
Fan, H.Q.[Hao-Qi],
Grauman, K.[Kristen],
Feichtenhofer, C.[Christoph],
Multiview Pseudo-Labeling for Semi-supervised Learning from Video,
ICCV21(7189-7199)
IEEE DOI
2203
Representation learning, Computational modeling,
Semisupervised learning, Benchmark testing, Reliability, Standards,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Wang, S.W.[Si-Wei],
Liu, X.W.[Xin-Wang],
Liu, L.[Li],
Tu, W.X.[Wen-Xuan],
Zhu, X.Z.[Xin-Zhong],
Liu, J.Y.[Ji-Yuan],
Zhou, S.[Sihang],
Zhu, E.[En],
Highly-efficient Incomplete Largescale Multiview Clustering with
Consensus Bipartite Graph,
CVPR22(9766-9775)
IEEE DOI
2210
Codes, Clustering algorithms, Manuals, Machine learning,
Benchmark testing, Bipartite graph, Self- semi- meta- Machine learning
BibRef
Liu, J.Y.[Ji-Yuan],
Liu, X.W.[Xin-Wang],
Yang, Y.X.[Yue-Xiang],
Liu, L.[Li],
Wang, S.Q.[Si-Qi],
Liang, W.X.[Wei-Xuan],
Shi, J.Y.[Jiang-Yong],
One-pass Multi-view Clustering for Large-scale Data,
ICCV21(12324-12333)
IEEE DOI
2203
Clustering algorithms, Benchmark testing,
Partitioning algorithms, Complexity theory, Matrix decomposition,
Vision + other modalities
BibRef
Jarraya, M.[Mahmoud],
Marwani, M.[Maher],
Aversano, G.[Gianmarco],
Lahouli, I.[Ichraf],
Skhiri, S.[Sabri],
AMI-Class: Towards a Fully Automated Multi-View Image Classifier,
CAIP21(II:36-45).
Springer DOI
2112
BibRef
Trosten, D.J.[Daniel J.],
Løkse, S.[Sigurd],
Jenssen, R.[Robert],
Kampffmeyer, M.[Michael],
Reconsidering Representation Alignment for Multi-view Clustering,
CVPR21(1255-1265)
IEEE DOI
2111
Computational modeling,
Adversarial machine learning, Pattern recognition
BibRef
Wang, Z.[Zhan],
Wang, L.Z.[Li-Zhi],
Zhang, L.[Lei],
Huang, H.[Hua],
Embedding shared low-rank and feature correlation for multi-view data
analysis,
ICPR21(1686-1693)
IEEE DOI
2105
Learning systems, Analytical models, Correlation, Data analysis,
Redundancy, Data models
BibRef
Cao, H.[Hongliu],
Bernard, S.[Simon],
Sabourin, R.[Robert],
Heutte, L.[Laurent],
A Novel Random Forest Dissimilarity Measure for Multi-View Learning,
ICPR21(1344-1351)
IEEE DOI
2105
Radio frequency, Training, Learning systems, Vegetation,
Size measurement, Proposals,
High Dimension Low Sample Size
BibRef
Jenni, S.[Simon],
Favaro, P.[Paolo],
Self-supervised Multi-view Synchronization Learning for 3d Pose
Estimation,
ACCV20(V:170-187).
Springer DOI
2103
BibRef
Ho, C.H.[Chih-Hui],
Liu, B.[Bo],
Wu, T.Y.[Tz-Ying],
Vasconcelos, N.M.[Nuno M.],
Exploit Clues From Views: Self-Supervised and Regularized Learning
for Multiview Object Recognition,
CVPR20(9087-9097)
IEEE DOI
2008
Task analysis, Training, Prototypes, Object recognition, Robots,
Image color analysis
BibRef
Wu, S.,
Lu, Z.,
Tang, H.,
Yan, Y.,
Zhu, S.,
Jing, X.,
Li, Z.,
Joint Learning of Self-Representation and Indicator for Multi-View
Image Clustering,
ICIP19(4095-4099)
IEEE DOI
1910
Multi-view Clustering, Subspace Clustering, Self-representation Learning
BibRef
Hu, H.T.[Heng-Tong],
Hong, R.C.[Ri-Chang],
Fu, W.J.[Wei-Jie],
Wang, M.[Meng],
Efficient Graph Based Multi-view Learning,
MMMod19(I:691-703).
Springer DOI
1901
BibRef
Zou, P.,
Li, F.,
Zhang, L.,
Nonnegative and Adaptive Multi-view Clustering,
ICPR18(1247-1252)
IEEE DOI
1812
Optimization, Linear programming, Adaptation models,
Clustering algorithms, Laplace equations, Clustering methods,
adaptive neighborhood
BibRef
Fang, Z.[Zheng],
Zhou, S.[Sen],
Li, J.[Jing],
Multi-View Autoencoder for Image Feature Learning with Structured
Nonnegative Low Rank,
ICIP18(4033-4037)
IEEE DOI
1809
Linear programming, Optimization, Measurement, Learning systems,
Task analysis, Decoding, Robustness, multi-view, feature learning,
consensus representation
BibRef
Liu, Y.,
Li, Y.,
Yuan, Y.,
A Complete Canonical Correlation Analysis for Multiview Learning,
ICIP18(3254-3258)
IEEE DOI
1809
Correlation, Machine learning, Kernel, Optimization,
Eigenvalues and eigenfunctions, Learning systems,
feature representations
BibRef
Lemsara, A.,
Ouadfel, S.,
Batouche, M.,
Multi-view clustering with local refinement for cancer patient
stratification,
ISCV17(1-5)
IEEE DOI
1710
Cancer, DNA, Genomics, Kernel,
BibRef
Ye, T.Q.[Teng-Qi],
Wang, T.C.[Tian-Chun],
McGuinness, K.[Kevin],
Guo, Y.[Yu],
Gurrin, C.[Cathal],
Learning Multiple Views with Orthogonal Denoising Autoencoders,
MMMod16(I: 313-324).
Springer DOI
1601
BibRef
Feng, Y.[Yinfu],
Xiao, J.[Jun],
Zhuang, Y.T.[Yue-Ting],
Liu, X.M.[Xiao-Ming],
Adaptive Unsupervised Multi-view Feature Selection for Visual Concept
Recognition,
ACCV12(I:343-357).
Springer DOI
1304
BibRef
Danielsson, O.[Oscar],
Carlsson, S.[Stefan],
Projectable classifiers for multi-view object class recognition,
3DRR11(577-584).
IEEE DOI
1201
BibRef
Danielsson, O.[Oscar],
Rasolzadeh, B.[Babak],
Carlsson, S.[Stefan],
Gated classifiers: Boosting under high intra-class variation,
CVPR11(2673-2680).
IEEE DOI
1106
BibRef
Mirzaei, H.[Hamidreza],
A Novel Multi-view Agglomerative Clustering Algorithm Based on Ensemble
of Partitions on Different Views,
ICPR10(1007-1010).
IEEE DOI
1008
BibRef
Fan, Z.G.[Zhi-Gang],
Lu, B.L.[Bao-Liang],
Fast Recognition of Multi-View Faces with Feature Selection,
ICCV05(I: 76-81).
IEEE DOI
0510
SVM based face recognition.
BibRef
Thirion, E.,
Quan, L.,
Geometrical Learning from Multiple Stereo Views Through
Monocular Based Feature Grouping,
ICCV90(481-484).
IEEE DOI
BibRef
9000
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Multi-View Learning, Co-Clustering .