Kirpatrick, S.,
Gelatt, Jr., C.D., and
Vecchi, M.P.,
Optimization by Simulated Annealing,
Science(220), 13 May 1983, pp. 671-680.
Iterative optimization method that is described in terms used in
cooling metal. Reducing the energy level slowly to go to some reduced energy
state, resetting the state by random events, etc.
BibRef
8305
Geman, S., and
Geman, D.,
Stochastic Relaxation, Gibbs Distributions,
and the Bayesian Restoration of Images,
PAMI(6), No. 6, November 1984, pp. 721-741.
PDF File.
BibRef
8411
Ackley, D.H.,
Hinton, G.E., and
Sejnowski, T.J.,
A Learning Algorithm for Boltzmann Machines,
CogSci(9), 1985, pp. 147-169. Reprinted:
BibRef
8500
RCV87(522-533).
The massively parallel, simple
processing element description of the relaxation process.
BibRef
Hinton, G.E.[Geoffrey E.], and
Sejnowski, T.J.[Terrence J.],
Optimal Perceptual Inference,
CVPR83(448-453).
Different formulation of probabilistic relaxation and how to avoid
non global minima (energy states).
BibRef
8300
Sejnowski, T.J., and
Hinton, G.E.,
Separating Figure from Ground with a Boltzmann Machine,
VBCC1987.
BibRef
8700
Dyan, P.,
Hinton, G.E.,
Neal, R.M., and
Zemel, R.S.,
The Helmholtz Machine,
NeurComp(7), No. 7, 1995, pp. 889-904.
BibRef
9500
Tang, Y.C.[Yi-Chuan],
Salakhutdinov, R.[Ruslan],
Hinton, G.E.[Geoffrey E.],
Robust Boltzmann Machines for recognition and denoising,
CVPR12(2264-2271).
IEEE DOI
1208
BibRef
Carnevali, P.,
Coletti, L.,
Patarnello, S.,
Image Processing by Simulated Annealing,
IBMRD(29), No. 6, November 1985, pp. 569-579.
BibRef
8511
Szu, H.H.,
Hartley, R.L.,
Nonconvex Optimization by Fast Simulated Annealing,
PIEEE(75), 1987, pp. 1538-1540.
BibRef
8700
Klein, R.W.[Raymond W.],
Dubes, R.C.[Richard C.],
Experiments in projection and clustering by simulated annealing,
PR(22), No. 2, 1989, pp. 213-220.
Elsevier DOI
0309
BibRef
Li, X.B.[Xiao-Bo],
Dubes, R.C.[Richard C.],
A probabilistic measure of similarity for binary data in pattern
recognition,
PR(22), No. 4, 1989, pp. 397-409.
Elsevier DOI
0309
BibRef
Atkin, G.K.,
Bowcock, J.E.,
Queen, N.M.,
Solution of a distributed deterministic parallel network using
simulated annealing,
PR(22), No. 4, 1989, pp. 461-466.
Elsevier DOI
0309
BibRef
Selim, S.Z.[Shokri Z.],
Alsultan, K.,
A simulated annealing algorithm for the clustering problem,
PR(24), No. 10, 1991, pp. 1003-1008.
Elsevier DOI
0401
BibRef
Brown, D.E.[Donald E.],
Huntley, C.L.[Christopher L.],
A practical application of simulated annealing to clustering,
PR(25), No. 4, April 1992, pp. 401-412.
Elsevier DOI
0401
BibRef
d'Anjou, A.,
Grana, M.,
Torrealdea, F.J., and
Hernandez, M.C.,
Solving Satisfiability via Boltzmann Machines,
PAMI(15), No. 5, May 1993, pp. 514-521.
IEEE DOI
BibRef
9305
Granville, V.,
Krivanek, M.,
Rasson, J.P.,
Simulated Annealing: A Proof of Convergence,
PAMI(16), No. 6, June 1994, pp. 652-656.
IEEE DOI
BibRef
9406
Storvik, G.,
A Bayesian-Approach to Dynamic Contours Through Stochastic
Sampling and Simulated Annealing,
PAMI(16), No. 10, October 1994, pp. 976-986.
IEEE DOI
BibRef
9410
Bongiovanni, G.,
Crescenzi, P.,
Guerra, C.,
Parallel Simulated Annealing for Shape Detection,
CVIU(61), No. 1, January 1995, pp. 60-69.
DOI Link
BibRef
9501
Guerra, C.,
Survey of parallel algorithms for structural pattern matching,
ICPR94(C:275-278).
IEEE DOI
9410
BibRef
Li, S.Z.,
Robustizing Robust M-Estimation Using Deterministic Annealing,
PR(29), No. 1, January 1996, pp. 159-166.
Elsevier DOI
BibRef
9601
Taxt, T.[Torfinn],
Bølviken, E.[Erik],
Relaxation Using Models from Quantum Mechanics,
PR(24), No. 7, 1991, pp. 695-709.
Elsevier DOI
BibRef
9100
Albizuri, F.X.,
d'Anjou, A.,
Grana, M.,
Lozano, J.A.,
Convergence Properties of High-Order Boltzmann Machines,
NeurNet(9), No. 9, December 1996, pp. 1561-1567.
9701
BibRef
Aleksander, I.,
Adaptive Pattern Recognition Systems and Boltzmann Machines:
A Rapprochement,
PRL(6), 1987, pp. 113-120.
BibRef
8700
Barhen, J.[Jacob],
Protopopescu, V.[Vladimir],
Reister, D.B.[David B.],
TRUST: A Deterministic Algorithm for Global Optimization,
Science(276), No. 5315, 16 May 1997, pp. 1094-1097.
Global optimization that is faster and more accurate and
escapes local minima.
BibRef
9705
Noll, D.[Detlev],
von Seelen, W.[Werner],
Object Recognition by Deterministic Annealing,
IVC(15), No. 11, November 1997, pp. 855-860.
Elsevier DOI
9712
BibRef
Noll, D.,
Schwarzinger, M.,
von Seelen, W.,
Contextual feature similarities for model-based object recognition,
ICCV93(286-290).
IEEE DOI
0403
BibRef
Kappen, H.J.,
Rodriguez, F.B.,
Mean-Field Approach to Learning in Boltzmann Machines,
PRL(18), No. 11-13, November 1997, pp. 1317-1322.
9806
BibRef
Rao, A.V.[Ajit V.],
Miller, D.J.[David J.],
Rose, K.[Kenneth],
Gersho, A.[Allen],
A Deterministic Annealing Approach for Parsimonious Design of Piecewise
Regression Models,
PAMI(21), No. 2, February 1999, pp. 159-173.
IEEE DOI
BibRef
9902
Rangarajan, A.[Anand],
Self-annealing and self-annihilation: unifying deterministic annealing
and relaxation labeling,
PR(33), No. 4, April 2000, pp. 635-649.
Elsevier DOI
0002
BibRef
Klock, H.J.[Hans-Jörg],
Buhmann, J.M.[Joachim M.],
Data Visualization by Multidimensional Scaling:
A Deterministic Annealing Approach,
PR(33), No. 4, April 2000, pp. 651-669.
Elsevier DOI
0002
BibRef
Chen, H.,
Murray, A.F.,
Continuous restricted Boltzmann machine with an implementable training
algorithm,
VISP(150), No. 3, June 2003, pp. 153-158.
IEEE Abstract.
0308
BibRef
Thompson, D.R.,
Bilbro, G.L.,
Sample-Sort Simulated Annealing,
SMC-B(35), No. 3, June 2005, pp. 625-632.
IEEE DOI
0508
BibRef
Luo, Q.A.[Qi-Ang],
Yang, W.Q.[Wen-Qiang],
Liu, P.Y.[Pu-Yin],
Promoter recognition based on the Interpolated Markov Chains optimized
via simulated annealing and genetic algorithm,
PRL(27), No. 9, July 2006, pp. 1031-1036.
Elsevier DOI Simulated annealing
0605
BibRef
Yang, X.L.,
Song, Q.,
Zhang, W.B.,
Kernel-based deterministic annealing algorithm for data clustering,
VISP(153), No. 5, October 2006, pp. 557-568.
DOI Link
0702
BibRef
Ma, J.W.[Jin-Wen],
Liu, J.F.[Jian-Feng],
The BYY annealing learning algorithm for Gaussian mixture with
automated model selection,
PR(40), No. 7, July 2007, pp. 2029-2037.
Elsevier DOI
0704
Bayesian Ying-Yang (BYY) learning; Gaussian mixture;
Automated model selection; Simulated annealing; Unsupervised image segmentation
BibRef
Ma, J.W.[Jin-Wen],
Liu, J.F.[Jian-Feng],
Ren, Z.J.[Zhi-Jie],
Parameter estimation of Poisson mixture with automated model selection
through BYY harmony learning,
PR(42), No. 11, November 2009, pp. 2659-2670.
Elsevier DOI
0907
Bayesian Ying-Yang (BYY) harmony learning; Poisson mixture; Gradient
learning algorithm; Automated model selection; Texture classification
BibRef
Ma, J.W.[Jin-Wen],
He, X.F.[Xue-Feng],
A fast fixed-point BYY harmony learning algorithm on Gaussian mixture
with automated model selection,
PRL(29), No. 6, 15 April 2008, pp. 701-711.
Elsevier DOI
0803
Bayesian Ying-Yang (BYY) system; Harmony learning; Gaussian mixture;
Automated model selection; Fixed-point
BibRef
Gall, J.[Jürgen],
Potthoff, J.[Jürgen],
Schnörr, C.[Christoph],
Rosenhahn, B.[Bodo],
Seidel, H.P.[Hans-Peter],
Interacting and Annealing Particle Filters:
Mathematics and a Recipe for Applications,
JMIV(28), No. 1, May 2007, pp. 1-18.
Springer DOI
0710
BibRef
Gall, J.[Juergen],
Rosenhahn, B.[Bodo],
Seidel, H.P.[Hans-Peter],
Drift-free tracking of rigid and articulated objects,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Earlier:
Clustered Stochastic Optimization for Object Recognition and Pose
Estimation,
DAGM07(32-41).
Springer DOI
0709
Award, GCPR.
BibRef
Earlier:
Robust Pose Estimation with 3D Textured Models,
PSIVT06(84-95).
Springer DOI
0612
BibRef
Gedeon, T.[Tomas],
Parker, A.E.[Albert E.],
Campion, C.[Collette],
Aldworth, Z.[Zane],
Annealing and the normalized N-cut,
PR(41), No. 2, February 2008, pp. 592-606.
Elsevier DOI
0711
Clustering; Annealing; Normalized N-cut
BibRef
Saha, S.[Sriparna],
Bandyopadhyay, S.[Sanghamitra],
A symmetry based multiobjective clustering technique for automatic
evolution of clusters,
PR(43), No. 3, March 2010, pp. 738-751.
Elsevier DOI
1001
BibRef
Earlier:
A new multiobjective simulated annealing based clustering technique
using stability and symmetry,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And:
A multiobjective simulated annealing based fuzzy-clustering technique
with symmetry for pixel classification in remote sensing imagery,
ICPR08(1-4).
IEEE DOI
0812
Clustering; Multiobjective optimization (MOO); Symmetry; Point
symmetry based distance; Cluster validity index; Simulated annealing
(SA)
See also GAPS: A clustering method using a new point symmetry-based distance measure.
BibRef
Xavier-de-Souza, S.,
Suykens, J.A.K.,
Vandewalle, J.,
Bolle, D.,
Coupled Simulated Annealing,
SMC-B(40), No. 2, April 2010, pp. 320-335.
IEEE DOI
1003
BibRef
Zhang, Z.H.[Zhi-Hua],
Wang, G.[Gang],
Yeung, D.Y.[Dit-Yan],
Dai, G.[Guang],
Lochovsky, F.[Frederick],
A regularization framework for multiclass classification:
A deterministic annealing approach,
PR(43), No. 7, July 2010, pp. 2466-2475.
Elsevier DOI
1003
Multiclass classification; Deterministic annealing; Maximum entropy;
Fisher discriminant analysis; Logistic regression
BibRef
Park, B.G.[Bo Gun],
Lee, K.M.[Kyoung Mu],
Lee, S.U.[Sang Uk],
Lee, J.H.[Jin Hak],
Recognition of partially occluded objects using probabilistic
ARG-based matching,
CVIU(90), No. 3, June 2003, pp. 217-241.
Elsevier DOI
0307
Attributed Relational Graph
BibRef
Park, B.G.[Bo Gun],
Lee, K.M.[Kyoung Mu],
Lee, S.U.[Sang Uk],
A Novel Stochastic Attributed Relational Graph Matching Based on
Relation Vector Space Analysis,
ACIVS06(978-989).
Springer DOI
0609
BibRef
Jung, H.Y.[Ho Yub],
Lee, K.M.[Kyoung Mu],
Lee, S.U.[Sang Uk],
Window annealing for pixel-labeling problems,
CVIU(117), No. 3, March 2013, pp. 289-303.
Elsevier DOI
1302
BibRef
Earlier:
Window Annealing over Square Lattice Markov Random Field,
ECCV08(II: 307-320).
Springer DOI
0810
BibRef
And:
Toward Global Minimum through Combined Local Minima,
ECCV08(IV: 298-311).
Springer DOI
0810
Energy minimization; Simulated annealing; Markov chain
Monte Carlo; Markov random fields; Sequential Monte Carlo; Heuristic
optimization; Pixel labeling problems
BibRef
Campaigne, W.R.,
Fieguth, P.W.,
Frozen-State Hierarchical Annealing,
IP(22), No. 4, April 2013, pp. 1486-1497.
IEEE DOI
1303
BibRef
Campaigne, W.R.[Wesley R.],
Fieguth, P.W.[Paul W.],
Alexander, S.K.[Simon K.],
Frozen-State Hierarchical Annealing,
ICIAR06(I: 41-52).
Springer DOI
0610
BibRef
Alexander, S.K.,
Fieguth, P.W.,
Vrscay, E.R.,
Image sampling by hierarchical annealing,
ICIP03(I: 249-252).
IEEE DOI
0312
BibRef
Jamieson, M.,
Fieguth, P.W.,
Lee, L.J.,
Parametric contour estimation by simulated annealing,
ICIP03(III: 449-452).
IEEE DOI
0312
BibRef
Fischer, A.[Asja],
Igel, C.[Christian],
Training restricted Boltzmann machines: An introduction,
PR(47), No. 1, 2014, pp. 25-39.
Elsevier DOI
1310
Award, Pattern Recognition. Restricted Boltzmann machines
BibRef
Nie, S.Q.[Si-Qi],
Wang, Z.H.[Zi-Heng],
Ji, Q.A.[Qi-Ang],
A generative restricted Boltzmann machine based method for
high-dimensional motion data modeling,
CVIU(136), No. 1, 2015, pp. 14-22.
Elsevier DOI
1506
Restricted Boltzmann machine
BibRef
Lee, H.J.[Hui-Jin],
Hong, K.S.[Ki-Sang],
Class-specific mid-level feature learning with the Discriminative
Group-wise Beta-Bernoulli process restricted Boltzmann machines,
PRL(80), No. 1, 2016, pp. 8-14.
Elsevier DOI
1609
Mid-level feature
BibRef
Sankaran, A.[Anush],
Goswami, G.[Gaurav],
Vatsa, M.[Mayank],
Singh, R.[Richa],
Majumdar, A.[Angshul],
Class sparsity signature based Restricted Boltzmann Machine,
PR(61), No. 1, 2017, pp. 674-685.
Elsevier DOI
1705
Deep learning
BibRef
Yan, J.,
Li, C.,
Li, Y.,
Cao, G.,
Adaptive Discrete Hypergraph Matching,
Cyber(48), No. 2, February 2018, pp. 765-779.
IEEE DOI
1801
Annealing, Complexity theory, Convergence, Cybernetics,
Iterative methods, Optimization, Tensile stress,
pattern recognition
BibRef
Krause, O.[Oswin],
Fischer, A.[Asja],
Igel, C.[Christian],
Population-Contrastive-Divergence:
Does consistency help with RBM training?,
PRL(102), 2018, pp. 1-7.
Elsevier DOI
1802
Restricted Boltzmann machine, Markov chain Monte Carlo,
Contrastive divergence, Population Monte Carlo
BibRef
Nakashika, T.[Toru],
Deep Relational Model: A Joint Probabilistic Model with a Hierarchical
Structure for Bidirectional Estimation of Image and Labels,
IEICE(E101-D), No. 2, February 2018, pp. 428-436.
WWW Link.
1802
BibRef
Giuffrida, M.V.,
Tsaftaris, S.A.,
Unsupervised Rotation Factorization in Restricted Boltzmann Machines,
IP(29), 2020, pp. 2166-2175.
IEEE DOI
2001
Training, Neural networks, Image reconstruction,
Feature extraction, Mathematical model, Image representation,
restricted Boltzmann machines
BibRef
Lee, J.[Julian],
Perkins, D.[David],
A simulated annealing algorithm with a dual perturbation method for
clustering,
PR(112), 2021, pp. 107713.
Elsevier DOI
2102
Partitional clustering, Simulated annealing,
Sum of squared error criterion, -means
BibRef
Li, W.[Wanyi],
Zeng, Y.Q.[Yu-Qi],
Wu, Y.[Yilin],
Zhang, Q.[Qian],
Chen, G.M.[Guo-Ming],
Chen, Y.C.[Yong-Chang],
Dynamic manifold Boltzmann optimization based on self-supervised
learning for human motion estimation,
IET-IPR(16), No. 4, 2022, pp. 1162-1180.
DOI Link
2203
BibRef
Zhang, N.[Nan],
Sun, S.L.[Shi-Liang],
Multiview Graph Restricted Boltzmann Machines,
Cyber(52), No. 11, November 2022, pp. 12414-12428.
IEEE DOI
2211
Data models, Manifolds, Training, Adaptation models,
Computational modeling, Bayes methods, Sun, Graph learning,
restricted Boltzmann machines (RBM)
BibRef
Kanno, Y.[Yuri],
Yasuda, M.[Muneki],
Multi-layered Discriminative Restricted Boltzmann Machine with
Untrained Probabilistic Layer,
ICPR21(7655-7660)
IEEE DOI
2105
Training, Extreme learning machines, Neural networks, Stacking,
Benchmark testing, Probabilistic logic
BibRef
Holzschuh, B.,
Lähner, Z.,
Cremers, D.,
Simulated Annealing for 3D Shape Correspondence,
3DV20(252-260)
IEEE DOI
2102
Shape, Simulated annealing,
Optimization, Generators, Impedance matching, Probabilistic logic,
Locality Sensitive Hashing
BibRef
Oussidi, A.,
Elhassouny, A.,
Deep generative models: Survey,
ISCV18(1-8)
IEEE DOI
1807
Boltzmann machines, belief networks,
learning (artificial intelligence), recurrent neural nets, DRAW,
Training
BibRef
Júnior, L.A.P.[Leandro A. Passos],
Costa, K.A.P.[Kelton A. P.],
Papa, J.P.[João P.],
Deep Boltzmann Machines Using Adaptive Temperatures,
CAIP17(I: 172-183).
Springer DOI
1708
BibRef
Dasgupta, S.,
Yoshizumi, T.,
Osogami, T.,
Regularized dynamic Boltzmann machine with Delay Pruning for
unsupervised learning of temporal sequences,
ICPR16(1201-1206)
IEEE DOI
1705
Artificial neural networks, Biological neural networks, Delays,
History, Neurons, Training, Unsupervised, learning
BibRef
Wang, J.J.[Jian-Jia],
Wilson, R.C.[Richard C.],
Hancock, E.R.[Edwin R.],
Network Edge Entropy from Maxwell-Boltzmann Statistics,
CIAP17(I:254-264).
Springer DOI
1711
BibRef
Earlier:
Network entropy analysis using the Maxwell-Boltzmann partition
function,
ICPR16(1321-1326)
IEEE DOI
1705
BibRef
And:
Thermodynamic Network Analysis with Quantum Spin Statistics,
SSSPR16(153-162).
Springer DOI
1611
Data models, Energy states, Entropy, Heating systems,
Laplace equations, Numerical models, Thermodynamics
See also Minimising Entropy Changes in Dynamic Network Evolution.
See also Quantum Edge Entropy for Alzheimer's Disease Analysis.
BibRef
Gu, L.Y.[Lin-Yan],
Yang, L.H.[Li-Hua],
On the magnitude of parameters of RBMs being universal approximators,
ICPR16(2470-2474)
IEEE DOI
1705
Approximation algorithms, Computational modeling, Geometry,
Markov processes, Mathematical model, Probability distribution,
Visualization, bound of parameters, representation power,
restricted, Boltzmann, machine
BibRef
Yogeswaran, A.[Arjun],
Payeur, P.[Pierre],
Improving Visual Feature Representations by Biasing Restricted
Boltzmann Machines with Gaussian Filters,
ISVC16(I: 825-835).
Springer DOI
1701
BibRef
Baqué, P.[Pierre],
Bagautdinov, T.[Timur],
Fleuret, F.[François],
Fua, P.[Pascal],
Principled Parallel Mean-Field Inference for Discrete Random Fields,
CVPR16(5848-5857)
IEEE DOI
1612
BibRef
Wang, J.Z.[Jin-Zhuo],
Wang, W.M.[Wen-Min],
Wang, R.G.[Rong-Gang],
Gao, W.[Wen],
Image classification using RBM to encode local descriptors with group
sparse learning,
ICIP15(912-916)
IEEE DOI
1512
Feature Coding
Restricted Boltzmann Machines.
BibRef
Sawada, Y.[Yoshihide],
Kozuka, K.[Kazuki],
Transfer learning method using multi-prediction deep Boltzmann
machines for a small scale dataset,
MVA15(110-113)
IEEE DOI
1507
Biomedical imaging
BibRef
Barshan, E.[Elnaz],
Fieguth, P.W.[Paul W.],
Scalable learning for restricted Boltzmann machines,
ICIP14(2754-2758)
IEEE DOI
1502
Computational modeling
BibRef
Zhang, C.[Chao],
Li, X.[Xiong],
Yan, J.C.[Jun-Chi],
Qui, S.[Stephen],
Wang, Y.[Yu],
Tian, C.H.[Chun-Hua],
Zhao, Y.M.[Yu-Ming],
Sufficient Statistics Feature Mapping over Deep Boltzmann Machine for
Detection,
ICPR14(827-832)
IEEE DOI
1412
Business
BibRef
Yamashita, T.[Takayoshi],
Tanaka, M.[Masayuki],
Yoshida, E.[Eiji],
Yamauchi, Y.[Yuji],
Fujiyoshii, H.[Hironobu],
To Be Bernoulli or to Be Gaussian, for a Restricted Boltzmann Machine,
ICPR14(1520-1525)
IEEE DOI
1412
Data models
BibRef
Tanaka, M.[Masayuki],
Okutomi, M.[Masatoshi],
A Novel Inference of a Restricted Boltzmann Machine,
ICPR14(1526-1531)
IEEE DOI
1412
Approximation methods
BibRef
Moreno, R.[Rodrigo],
Smedby, O.[Orjan],
Volume-Based Fabric Tensors through Lattice-Boltzmann Simulations,
ICPR14(3179-3184)
IEEE DOI
1412
Anisotropic magnetoresistance
BibRef
Yasuda, M.[Muneki],
Effective Mean-Field Inference Method for Nonnegative Boltzmann
Machines,
ICPR14(3600-3605)
IEEE DOI
1412
Approximation methods
BibRef
Mittelman, R.[Roni],
Lee, H.L.[Hong-Lak],
Kuipers, B.[Benjamin],
Savarese, S.[Silvio],
Weakly Supervised Learning of Mid-Level Features with Beta-Bernoulli
Process Restricted Boltzmann Machines,
CVPR13(476-483)
IEEE DOI
1309
Beta-Bernoulli process
BibRef
Yasuda, M.[Muneki],
Kataoka, S.[Shun],
Waizumi, Y.[Yuji],
Tanaka, K.[Kazuyuki],
Composite likelihood estimation for restricted Boltzmann machines,
ICPR12(2234-2237).
WWW Link.
1302
BibRef
Lopes, N.[Noel],
Ribeiro, B.[Bernardete],
Improving Convergence of Restricted Boltzmann Machines via a Learning
Adaptive Step Size,
CIARP12(511-518).
Springer DOI
1209
BibRef
Fischer, A.[Asja],
Igel, C.[Christian],
An Introduction to Restricted Boltzmann Machines,
CIARP12(14-36).
Springer DOI
1209
BibRef
Papandreou, G.[George],
Chen, L.C.[Liang-Chieh],
Yuille, A.L.[Alan L.],
Modeling Image Patches with a Generic Dictionary of Mini-epitomes,
CVPR14(2059-2066)
IEEE DOI
1409
BibRef
Earlier: A2, A1, A3:
Learning a Dictionary of Shape Epitomes with Applications to Image
Labeling,
ICCV13(337-344)
IEEE DOI
1403
Image classification; epitomes; image patches.
Local edge structure, shifts, rotations.
BibRef
Papandreou, G.[George],
Yuille, A.L.[Alan L.],
Perturb-and-MAP random fields:
Using discrete optimization to learn and sample from energy models,
ICCV11(193-200).
IEEE DOI
1201
Add noise, then find glabal minimum of pertrubed field.
BibRef
Goh, H.L.[Han-Lin],
Thome, N.[Nicolas],
Cord, M.[Matthieu],
Lim, J.H.[Joo-Hwee],
Unsupervised and Supervised Visual Codes with Restricted Boltzmann
Machines,
ECCV12(V: 298-311).
Springer DOI
1210
BibRef
Goh, H.L.[Han-Lin],
Kusmierz, L.[Lukasz],
Lim, J.H.[Joo-Hwee],
Thome, N.[Nicolas],
Cord, M.[Matthieu],
Learning invariant color features with sparse topographic restricted
Boltzmann machines,
ICIP11(1241-1244).
IEEE DOI
1201
BibRef
Norouzi, M.[Mohammad],
Ranjbar, M.[Mani],
Mori, G.[Greg],
Stacks of convolutional Restricted Boltzmann Machines for
shift-invariant feature learning,
CVPR09(2735-2742).
IEEE DOI
0906
BibRef
Portilla, J.[Javier],
Image restoration through L0 analysis-based sparse optimization in
tight frames,
ICIP09(3909-3912).
IEEE DOI
0911
BibRef
Mancera, L.[Luis],
Portilla, J.[Javier],
Non-convex sparse optimization through deterministic annealing and
applications,
ICIP08(917-920).
IEEE DOI
0810
BibRef
Mohebi, A.[Azadeh],
Liu, Y.[Ying],
Fieguth, P.W.[Paul W.],
Hierarchical Sampling with Constraints,
ICIAR09(23-32).
Springer DOI
0907
BibRef
Earlier: A1, A3, Only:
Constrained Sampling Using Simulated Annealing,
ICIAR07(198-209).
Springer DOI
0708
BibRef
Mohebi, A.[Azadeh],
Fieguth, P.W.[Paul W.],
Posterior Sampling of Scientific Images,
ICIAR06(I: 339-350).
Springer DOI
0610
in MRI, infer structures as scales not imaged by the MRI.
BibRef
Sun, L.Y.[Ling-Yu],
Leng, M.[Ming],
An Effective Multi-level Algorithm Based on Simulated Annealing for
Bisecting Graph,
EMMCVPR07(1-12).
Springer DOI
0708
BibRef
Yang, X.L.[Xu-Lei],
Song, Q.[Qing],
Zhang, W.B.[Wen-Bo],
Wang, Z.M.[Zhi-Min],
Clustering Spherical Shells by a Mini-Max Information Algorithm,
ACCV06(II:224-233).
Springer DOI
0601
BibRef
Perrin, G.[Guillaume],
Descombes, X.[Xavier],
Zerubia, J.B.[Josiane B.],
Adaptive Simulated Annealing for Energy Minimization Problem in a
Marked Point Process Application,
EMMCVPR05(3-17).
Springer DOI
0601
BibRef
Ortner, M.[Mathias],
Descombes, X.[Xavier],
Zerubia, J.B.[Josiane B.],
Improved RJMCMC point process sampler for object detection on
images by simulated annealing,
INRIARR-4900, 2003.
HTML Version.
BibRef
0300
Alexander, S.K.[Simon K.],
Fieguth, P.W.[Paul W.],
Vrscay, E.R.[Edward R.],
Parameterized Hierarchical Annealing for Scientific Models,
ICIAR04(I: 236-243).
Springer DOI
0409
BibRef
Hirano, T.,
Okada, Y.,
Yoda, F.,
Structural Character Recognition Using Simulated Annealing,
ICDAR97(507-510).
IEEE DOI
9708
BibRef
Younes, L.,
Learning algorithms for extended models of Boltzmann machines,
ICPR94(B:602-604).
IEEE DOI
9410
BibRef
Matsunaga, T.,
Kida, H.,
A method for designing dictionary using simulated annealing,
ICPR92(II:154-187).
IEEE DOI
9208
BibRef
Herault, L.,
Horaud, R.,
Veillon, F.,
Niez, J.J.,
Symbolic Image Matching by Simulated Annealing,
BMVC90(319-324).
PDF File.
BibRef
9000
Xu, L.[Lei],
Some applications of simulated annealing to pattern recognition,
ICPR88(II: 1040-1042).
IEEE DOI
8811
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Hummel and Zucker Relaxation Papers .