Csurka, G.[Gabriela],
Perronnin, F.[Florent],
An Efficient Approach to Semantic Segmentation,
IJCV(95), No. 2, November 2011, pp. 198-212.
WWW Link.
1109
BibRef
Earlier:
A Simple High Performance Approach to Semantic Segmentation,
BMVC08(xx-yy).
PDF File.
0809
Assign each pixel to a semantic class.
A local appearance model, a local consistency model and a global
consistency model.
See also Universal and Adapted Vocabularies for Generic Visual Categorization.
BibRef
Perronnin, F.[Florent],
Dance, C.R.[Christopher R.],
Fisher Kernels on Visual Vocabularies for Image Categorization,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Earlier:
Csurka, G.[Gabriela],
Bressan, M.[Marco],
Adapted Vocabularies for Generic Visual Categorization,
ECCV06(IV: 464-475).
Springer DOI
0608
BibRef
Csurka, G.[Gabriela],
Dance, C.R.[Christopher R.],
Perronnin, F.[Florent],
Willamowski, J.[Jutta],
Generic Visual Categorization Using Weak Geometry,
CLOR06(207-224).
Springer DOI
0711
BibRef
Earlier: A1, A4, A2, A3:
Incorporating Geometry Information with Weak Classifiers for Improved
Generic Visual Categorization,
CIAP05(612-620).
Springer DOI
0509
BibRef
Kemmler, M.[Michael],
Rodner, E.[Erik],
Wacker, E.S.[Esther-Sabrina],
Denzler, J.[Joachim],
One-Class Classification with Gaussian Processes,
PR(46), No. 12, 2013, pp. 3507-3518.
Elsevier DOI
1307
BibRef
Earlier: A1, A2, A4, Only:
ACCV10(II: 489-500).
Springer DOI
1011
BibRef
Earlier: A1, A2, A4, Only:
Global Context Extraction for Object Recognition Using a Combination of
Range and Visual Features,
Dyn3D09(96-109).
Springer DOI
0909
Combine range and visual, determine general class of scene.
One-class classification
BibRef
Bodesheim, P.[Paul],
Freytag, A.[Alexander],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Approximations of Gaussian Process Uncertainties for Visual Recognition
Problems,
SCIA13(182-194).
Springer DOI
1311
BibRef
Earlier: A1, A3, A2, A4:
Divergence-Based One-Class Classification Using Gaussian Processes,
BMVC12(50).
DOI Link
1301
See also Classification of Microorganisms via Raman Spectroscopy Using Gaussian Processes.
BibRef
Käding, C.[Christoph],
Freytag, A.[Alexander],
Rodner, E.[Erik],
Perino, A.[Andrea],
Denzler, J.[Joachim],
Large-Scale Active Learning with Approximations of Expected Model
Output Changes,
GCPR16(179-191).
Springer DOI
1611
BibRef
Freytag, A.[Alexander],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Selecting Influential Examples: Active Learning with Expected Model
Output Changes,
ECCV14(IV: 562-577).
Springer DOI
1408
BibRef
Rodner, E.[Erik],
Freytag, A.[Alexander],
Bodesheim, P.[Paul],
Fröhlich, B.[Björn],
Denzler, J.[Joachim],
Large-Scale Gaussian Process Inference with Generalized Histogram
Intersection Kernels for Visual Recognition Tasks,
IJCV(121), No. 2, January 2017, pp. 253-280.
Springer DOI
1702
BibRef
Freytag, A.[Alexander],
Rodner, E.[Erik],
Bodesheim, P.[Paul],
Denzler, J.[Joachim],
Labeling Examples That Matter:
Relevance-Based Active Learning with Gaussian Processes,
GCPR13(282-291).
Springer DOI
1311
BibRef
Earlier:
Rapid Uncertainty Computation with Gaussian Processes and Histogram
Intersection Kernels,
ACCV12(II:511-524).
Springer DOI
1304
BibRef
Freytag, A.[Alexander],
Frohlich, B.[Bjorn],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Efficient semantic segmentation with Gaussian processes and histogram
intersection kernels,
ICPR12(3313-3316).
WWW Link.
1302
BibRef
Rodner, E.[Erik],
Freytag, A.[Alexander],
Bodesheim, P.[Paul],
Denzler, J.[Joachim],
Large-Scale Gaussian Process Classification with Flexible Adaptive
Histogram Kernels,
ECCV12(IV: 85-98).
Springer DOI
1210
BibRef
Rodner, E.[Erik],
Hegazy, D.,
Denzler, J.[Joachim],
Multiple kernel Gaussian process classification for generic 3D object
recognition,
IVCNZ10(1-8).
IEEE DOI
1203
BibRef
Pei, D.L.[De-Li],
Li, Z.G.[Zhen-Guo],
Ji, R.R.[Rong-Rong],
Sun, F.C.[Fu-Chun],
Efficient semantic image segmentation with multi-class ranking prior,
CVIU(120), No. 1, 2014, pp. 81-90.
Elsevier DOI
1403
Computer vision
BibRef
Diebold, J.[Julia],
Nieuwenhuis, C.[Claudia],
Cremers, D.[Daniel],
Midrange Geometric Interactions for Semantic Segmentation,
IJCV(117), No. 3, May 2016, pp. 199-225.
Springer DOI
1605
See also Convex Optimization for Scene Understanding.
See also Proximity Priors for Variational Semantic Segmentation and Recognition.
BibRef
Nieuwenhuis, C.[Claudia],
Strekalovskiy, E.[Evgeny],
Cremers, D.[Daniel],
Proportion Priors for Image Sequence Segmentation,
ICCV13(2328-2335)
IEEE DOI
1403
BibRef
Earlier: A2, A1, A3:
Nonmetric Priors for Continuous Multilabel Optimization,
ECCV12(VII: 208-221).
Springer DOI
1210
BibRef
Hazirbas, C.[Caner],
Diebold, J.[Julia],
Cremers, D.[Daniel],
Optimizing the Relevance-Redundancy Tradeoff for Efficient Semantic
Segmentation,
SSVM15(243-255).
Springer DOI
1506
BibRef
Joy, T.[Thomas],
Desmaison, A.[Alban],
Ajanthan, T.[Thalaiyasingam],
Bunel, R.[Rudy],
Salzmann, M.[Mathieu],
Kohli, P.[Pushmeet],
Torr, P.H.S.[Philip H. S.],
Kumar, M.P.[M. Pawan],
Efficient Relaxations for Dense CRFs with Sparse Higher-Order
Potentials,
SIIMS(12), No. 1, 2019, pp. 287-318.
DOI Link
1904
Segmentation and stereo matching.
BibRef
Yang, Z.E.[Zheng-Eng],
Yu, H.S.[Hong-Shan],
Feng, M.T.[Ming-Tao],
Sun, W.[Wei],
Lin, X.F.[Xue-Fei],
Sun, M.G.[Min-Gui],
Mao, Z.H.[Zhi-Hong],
Mian, A.[Ajmal],
Small Object Augmentation of Urban Scenes for Real-Time Semantic
Segmentation,
IP(29), 2020, pp. 5175-5190.
IEEE DOI
2004
For driving application.
Convolution, Image segmentation, Semantics, Real-time systems,
Standards, Training, Computational modeling, Semantic segmentation,
synthetic dataset
BibRef
Choi, H.[Hyunguk],
Ahn, H.[Hoyeon],
Kim, J.[Joonmo],
Jeon, M.[Moongu],
ADFNet:
Accumulated decoder features for real-time semantic segmentation,
IET-CV(14), No. 8, December 2020, pp. 555-563.
DOI Link
2012
BibRef
Valada, A.[Abhinav],
Mohan, R.[Rohit],
Burgard, W.[Wolfram],
Self-Supervised Model Adaptation for Multimodal Semantic Segmentation,
IJCV(128), No. 5, May 2020, pp. 1239-1285.
Springer DOI
2005
BibRef
Mohan, R.[Rohit],
Valada, A.[Abhinav],
EfficientPS: Efficient Panoptic Segmentation,
IJCV(129), No. 5, May 2021, pp. 1551-1579.
Springer DOI
2105
BibRef
El Houfi, S.[Safae],
Majda, A.[Aicha],
Efficient use of recent progresses for Real-time Semantic segmentation,
MVA(31), No. 6, August 2020, pp. Article45.
WWW Link.
2008
BibRef
Oršic, M.[Marin],
Šegvic, S.[Siniša],
Efficient semantic segmentation with pyramidal fusion,
PR(110), 2021, pp. 107611.
Elsevier DOI
2011
Semantic segmentation, Real-time inference,
Shared resolution pyramid, Deep learning
BibRef
Liu, M.Y.[Meng-Yu],
Yin, H.J.[Hu-Jun],
Efficient pyramid context encoding and feature embedding for semantic
segmentation,
IVC(111), 2021, pp. 104195.
Elsevier DOI
2106
Semantic segmentation, Convolutional neural networks,
Pyramid context encoding, Real-time processing
BibRef
Li, X.T.[Xiang-Tai],
Li, X.[Xia],
You, A.S.[An-Sheng],
Zhang, L.[Li],
Cheng, G.L.[Guang-Liang],
Yang, K.Y.[Kui-Yuan],
Tong, Y.H.[Yun-Hai],
Lin, Z.C.[Zhou-Chen],
Towards Efficient Scene Understanding via Squeeze Reasoning,
IP(30), 2021, pp. 7050-7063.
IEEE DOI
2108
Semantics, Cognition, Image segmentation, Task analysis,
Computational modeling, Convolution, Context modeling,
scene understanding
BibRef
Li, X.T.[Xiang-Tai],
Li, X.[Xia],
Zhang, L.[Li],
Cheng, G.L.[Guang-Liang],
Shi, J.P.[Jian-Ping],
Lin, Z.C.[Zhou-Chen],
Tan, S.H.[Shao-Hua],
Tong, Y.H.[Yun-Hai],
Improving Semantic Segmentation via Decoupled Body and Edge Supervision,
ECCV20(XVII:435-452).
Springer DOI
2011
BibRef
Hao, X.C.[Xiao-Chen],
Hao, X.J.[Xing-Jun],
Zhang, Y.[Yaru],
Li, Y.Y.[Yuan-Yuan],
Wu, C.[Chao],
Real-time semantic segmentation with weighted factorized-depthwise
convolution,
IVC(114), 2021, pp. 104269.
Elsevier DOI
2109
Semantic segmentation, Real-time, Pyramid fusion, Continuous separation
BibRef
Xiao, C.J.[Cun-Jun],
Hao, X.J.[Xing-Jun],
Li, H.B.[Hai-Bin],
Li, Y.Q.[Ya-Qian],
Zhang, W.M.[Wen-Ming],
Real-time semantic segmentation with local spatial pixel adjustment,
IVC(123), 2022, pp. 104470.
Elsevier DOI
2206
Semantic segmentation, Real-time, Local spatial adjustment, Dual-branch decoding
BibRef
Tan, Z.T.[Zhen-Tao],
Chen, D.D.[Dong-Dong],
Chu, Q.[Qi],
Chai, M.L.[Meng-Lei],
Liao, J.[Jing],
He, M.M.[Ming-Ming],
Yuan, L.[Lu],
Hua, G.[Gang],
Yu, N.H.[Neng-Hai],
Efficient Semantic Image Synthesis via Class-Adaptive Normalization,
PAMI(44), No. 9, September 2022, pp. 4852-4866.
IEEE DOI
2208
Semantics, Image synthesis, Modulation, Image segmentation,
Task analysis, Generators, Visualization, Semantic image synthesis,
Positional encoding
BibRef
Weng, X.[Xi],
Yan, Y.[Yan],
Chen, S.[Si],
Xue, J.H.[Jing-Hao],
Wang, H.Z.[Han-Zi],
Stage-Aware Feature Alignment Network for Real-Time Semantic
Segmentation of Street Scenes,
CirSysVideo(32), No. 7, July 2022, pp. 4444-4459.
IEEE DOI
2207
Semantics, Decoding, Real-time systems, Image segmentation, Training,
Aggregates, Predictive models, Real-time semantic segmentation,
feature alignment and aggregation
BibRef
Dong, G.S.[Gen-Shun],
Yan, Y.[Yan],
Shen, C.H.[Chun-Hua],
Wang, H.Z.[Han-Zi],
Real-Time High-Performance Semantic Image Segmentation of Urban
Street Scenes,
ITS(22), No. 6, June 2021, pp. 3258-3274.
IEEE DOI
2106
Semantics, Real-time systems, Image segmentation, Convolution,
Intelligent transportation systems, Task analysis,
light-weight convolutional neural networks
BibRef
Weng, X.[Xi],
Yan, Y.[Yan],
Dong, G.S.[Gen-Shun],
Shu, C.[Chang],
Wang, B.[Biao],
Wang, H.Z.[Han-Zi],
Zhang, J.[Ji],
Deep Multi-Branch Aggregation Network for Real-Time Semantic
Segmentation in Street Scenes,
ITS(23), No. 10, October 2022, pp. 17224-17240.
IEEE DOI
2210
Semantics, Real-time systems, Image segmentation, Lattices, Decoding,
Task analysis, Feature extraction, Deep learning,
multi-branch aggregation
BibRef
Rosas-Arias, L.[Leonel],
Benitez-Garcia, G.[Gibran],
Portillo-Portillo, J.[José],
Olivares-Mercado, J.[Jesus],
Sánchez-Pérez, G.[Gabriel],
Yanai, K.[Keiji],
FASSD-Net: Fast and Accurate Real-Time Semantic Segmentation for
Embedded Systems,
ITS(23), No. 9, September 2022, pp. 14349-14360.
IEEE DOI
2209
BibRef
Earlier: A1, A2, A3, A5, A6, Only:
Fast and Accurate Real-Time Semantic Segmentation with Dilated
Asymmetric Convolutions,
ICPR21(2264-2271)
IEEE DOI
2105
Real-time systems, Semantics, Convolutional codes,
Embedded systems, Decoding, Task analysis, Image segmentation.
Convolutional codes, Image resolution, Quantization (signal),
Real-time systems
BibRef
Verelst, T.[Thomas],
Tuytelaars, T.[Tinne],
SegBlocks: Block-Based Dynamic Resolution Networks for Real-Time
Segmentation,
PAMI(45), No. 2, February 2023, pp. 2400-2411.
IEEE DOI
2301
Image segmentation, Complexity theory, Task analysis,
Computational efficiency, Semantics, Computational modeling, Costs,
semantic segmentation
BibRef
Seifi, S.[Soroush],
Tuytelaars, T.[Tinne],
Attend and Segment: Attention Guided Active Semantic Segmentation,
ECCV20(XXV:305-321).
Springer DOI
2011
BibRef
Qin, Z.P.[Zi-Peng],
Liu, J.B.[Jian-Bo],
Zhang, X.L.[Xiao-Lin],
Tian, M.Q.[Mao-Qing],
Zhou, A.[Aojun],
Yi, S.[Shuai],
Li, H.S.[Hong-Sheng],
Pyramid Fusion Transformer for Semantic Segmentation,
MultMed(26), 2024, pp. 9630-9643.
IEEE DOI
2410
Transformers, Task analysis, Decoding, Semantics, Semantic segmentation,
Spatial resolution, Feature extraction, transformer
BibRef
Liu, J.B.[Jian-Bo],
He, J.J.[Jun-Jun],
Zhang, J.W.[Jia-Wei],
Ren, J.S.[Jimmy S.],
Li, H.S.[Hong-Sheng],
Efficientfcn: Holistically-guided Decoding for Semantic Segmentation,
ECCV20(XXVI:1-17).
Springer DOI
2011
BibRef
Xu, G.P.[Guo-Ping],
Liao, W.T.[Wen-Tao],
Zhang, X.[Xuan],
Li, C.[Chang],
He, X.W.[Xin-Wei],
Wu, X.L.[Xing-Long],
Haar wavelet downsampling: A simple but effective downsampling module
for semantic segmentation,
PR(143), 2023, pp. 109819.
Elsevier DOI
2310
Semantic segmentation, Downsampling, Haar wavelet, Information entropy
BibRef
Guo, Z.[Zibo],
Liu, K.[Kai],
Liu, W.[Wei],
Sun, X.Y.[Xiao-Yao],
Ding, C.Y.[Chong-Yang],
Li, S.R.[Shang-Rong],
An Overlay Accelerator of DeepLab CNN for Spacecraft Image
Segmentation on FPGA,
RS(16), No. 5, 2024, pp. 894.
DOI Link
2403
BibRef
Chatar, K.[Keenan],
Kitamura, K.[Kentaro],
Cho, M.[Mengu],
Onboard Data Prioritization Using Multi-Class Image Segmentation for
Nanosatellites,
RS(16), No. 10, 2024, pp. 1729.
DOI Link
2405
BibRef
Chen, J.[Jiakun],
Wei, Y.[Yan],
Xie, Y.[Yu],
Combining attention mechanism and Feature Selection Module for
Real-time semantic segmentation,
CVIDL23(334-337)
IEEE DOI
2403
Training, Solid modeling, Semantic segmentation,
Computational modeling, Neural networks, Feature extraction,
activation function
BibRef
Liu, B.[Bing],
Chen, C.[Chen],
Bao, X.L.[Xue-Liang],
Zhong, Z.H.[Zhao-Hao],
PSDFormer: A Pyramid Simple Detail Injection Transformer for Real
Time Semantic Segmentation,
CVIDL23(296-299)
IEEE DOI
2403
Deep learning, Head, Fuses, Semantic segmentation, Semantics,
Computer architecture, real-time, semantic segmentation, autonomous driving
BibRef
Yang, C.[Changdi],
Zhao, P.[Pu],
Li, Y.[Yanyu],
Niu, W.[Wei],
Guan, J.X.[Jie-Xiong],
Tang, H.[Hao],
Qin, M.H.[Ming-Hai],
Ren, B.[Bin],
Lin, X.[Xue],
Wang, Y.Z.[Yan-Zhi],
Pruning Parameterization with Bi-level Optimization for Efficient
Semantic Segmentation on the Edge,
CVPR23(15402-15412)
IEEE DOI
2309
BibRef
Hu, Y.[Yubin],
He, Y.Z.[Yu-Ze],
Li, Y.H.[Yang-Hao],
Li, J.S.[Ji-Sheng],
Han, Y.X.[Yu-Xing],
Wen, J.T.[Jiang-Tao],
Liu, Y.J.[Yong-Jin],
Efficient Semantic Segmentation by Altering Resolutions for
Compressed Videos,
CVPR23(22627-22637)
IEEE DOI
2309
BibRef
Norouzi, N.[Narges],
Orlova, S.[Svetlana],
de Geus, D.[Daan],
Dubbelman, G.[Gijs],
ALGM: Adaptive Local-then-Global Token Merging for Efficient Semantic
Segmentation with Plain Vision Transformers,
CVPR24(15773-15782)
IEEE DOI Code:
WWW Link.
2410
Adaptation models, Codes, Adaptive systems, Semantic segmentation,
Computational modeling, Merging, Token Merging, Semantic Segmentation
BibRef
Lu, C.Y.[Chen-Yang],
de Geus, D.[Daan],
Dubbelman, G.[Gijs],
Content-aware Token Sharing for Efficient Semantic Segmentation with
Vision Transformers,
CVPR23(23631-23640)
IEEE DOI
2309
BibRef
Aakerberg, A.[Andreas],
Johansen, A.S.[Anders S.],
Nasrollahi, K.[Kamal],
Moeslund, T.B.[Thomas B.],
Semantic Segmentation Guided Real-World Super-Resolution,
RWSurvil22(449-458)
IEEE DOI
2202
Degradation, Training, Image segmentation, Adaptation models,
Visualization, Image color analysis, Superresolution
BibRef
Dong, J.[Jianan],
Guo, J.[Jichang],
Yue, H.H.[Hui-Hui],
Gao, H.[Huan],
EANET: Efficient Attention-Augmented Network for Real-Time Semantic
Segmentation,
ICIP22(3968-3972)
IEEE DOI
2211
Strips, Costs, Semantics, Graphics processing units,
Real-time systems, Mobile handsets, Task analysis,
Multi-level Features
BibRef
Mehta, D.[Dushyant],
Skliar, A.[Andrii],
Ben Yahia, H.[Haitam],
Borse, S.[Shubhankar],
Porikli, F.M.[Fatih M.],
Habibian, A.[Amirhossein],
Blankevoort, T.[Tijmen],
Simple and Efficient Architectures for Semantic Segmentation,
ECV22(2627-2635)
IEEE DOI
2210
Image segmentation, Head, Semantics, Graphics processing units,
Computer architecture, Hardware, Distance measurement
BibRef
Zhu, F.R.[Fang-Rui],
Zhu, Y.[Yi],
Zhang, L.[Li],
Wu, C.R.[Chong-Ruo],
Fu, Y.W.[Yan-Wei],
Li, M.[Mu],
A Unified Efficient Pyramid Transformer for Semantic Segmentation,
VSPW21(2667-2677)
IEEE DOI
2112
Adaptation models, Image segmentation,
Computational modeling, Semantics, Benchmark testing
BibRef
Holder, C.J.[Christopher J.],
Shafique, M.[Muhammad],
Efficient Uncertainty Estimation in Semantic Segmentation via
Distillation,
AVVision21(3080-3087)
IEEE DOI
2112
Training, Image segmentation, Uncertainty, Computational modeling,
Semantics, Predictive models, Data models
BibRef
Lou, A.[Ange],
Loew, M.[Murray],
CFPNET: Channel-Wise Feature Pyramid for Real-Time Semantic
Segmentation,
ICIP21(1894-1898)
IEEE DOI
2201
Performance evaluation, Image segmentation, Convolution, Semantics,
Graphics processing units, Real-time semantic segmentation,
CFPNet
BibRef
Arani, E.[Elahe],
Marzban, S.[Shabbir],
Pata, A.[Andrei],
Zonooz, B.[Bahram],
RGPNet: A Real-Time General Purpose Semantic Segmentation,
WACV21(3008-3017)
IEEE DOI
2106
Training, Performance evaluation, Adaptation models,
Computational modeling, Semantics, Green products
BibRef
Lin, P.,
Sun, P.,
Cheng, G.,
Xie, S.,
Li, X.,
Shi, J.,
Graph-Guided Architecture Search for Real-Time Semantic Segmentation,
CVPR20(4202-4211)
IEEE DOI
2008
Computer architecture, Microprocessors, Semantics, Convolution,
Image segmentation, Real-time systems, Random variables
BibRef
Huang, H.[Hang],
Zhi, P.[Peng],
Zhou, H.R.[Hao-Ran],
Zhang, Y.J.[Yu-Jin],
Wu, Q.[Qiang],
Yong, B.B.[Bin-Bin],
Tan, W.J.[Wei-Jun],
Zhou, Q.G.[Qing-Guo],
An Efficient Tiny Feature Map Network for Real-time Semantic
Segmentation,
ISVC20(II:332-343).
Springer DOI
2103
BibRef
He, J.,
Deng, Z.,
Qiao, Y.,
Dynamic Multi-Scale Filters for Semantic Segmentation,
ICCV19(3561-3571)
IEEE DOI
2004
convolutional neural nets, image filtering, image representation,
image segmentation, Dynamic multiscale filters, Computational efficiency
BibRef
He, T.[Tong],
Shen, C.H.[Chun-Hua],
Tian, Z.[Zhi],
Gong, D.[Dong],
Sun, C.M.[Chang-Ming],
Yan, Y.[Youliang],
Knowledge Adaptation for Efficient Semantic Segmentation,
CVPR19(578-587).
IEEE DOI
2002
BibRef
Leonardi, M.[Marco],
Mazzini, D.[Davide],
Schettini, R.[Raimondo],
Training Efficient Semantic Segmentation CNNs on Multiple Datasets,
CIAP19(II:303-314).
Springer DOI
1909
BibRef
Vallurupalli, N.,
Annamaneni, S.,
Varma, G.,
Jawahar, C.,
Mathew, M.,
Nagori, S.,
Efficient Semantic Segmentation Using Gradual Grouping,
ECVW18(711-7118)
IEEE DOI
1812
Training, Semantics, Computer architecture, Computational modeling,
Sparse matrices, Predictive models, Decoding
BibRef
Mehta, S.[Sachin],
Rastegari, M.[Mohammad],
Caspi, A.[Anat],
Shapiro, L.[Linda],
Hajishirzi, H.[Hannaneh],
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic
Segmentation,
ECCV18(X: 561-580).
Springer DOI
1810
BibRef
Zhao, H.S.[Heng-Shuang],
Qi, X.J.[Xiao-Juan],
Shen, X.Y.[Xiao-Yong],
Shi, J.P.[Jian-Ping],
Jia, J.Y.[Jia-Ya],
ICNet for Real-Time Semantic Segmentation on High-Resolution Images,
ECCV18(III: 418-434).
Springer DOI
1810
BibRef
Chaurasia, A.,
Culurciello, E.,
LinkNet: Exploiting encoder representations for efficient semantic
segmentation,
VCIP17(1-4)
IEEE DOI
1804
image resolution, image segmentation,
learning (artificial intelligence), neural nets, LinkNet,
Training
BibRef
Li, W.H.[Wei-Hao],
Yang, M.Y.[Michael Ying],
Efficient Semantic Segmentation Of Man-made Scenes Using
Fully-connected Conditional Random Field,
ISPRS16(B3: 633-640).
DOI Link
1610
BibRef
Najafi, M.[Mohammad],
Namin, S.T.[Sarah Taghavi],
Salzmann, M.[Mathieu],
Petersson, L.[Lars],
Sample and Filter: Nonparametric Scene Parsing via Efficient
Filtering,
CVPR16(607-615)
IEEE DOI
1612
BibRef
Earlier: A2, A1, A3, A4:
Cutting Edge: Soft Correspondences in Multimodal Scene Parsing,
ICCV15(1188-1196)
IEEE DOI
1602
Feature extraction. combine modalities.
BibRef
Pieck, M.A.R.[Martin A.R.],
van der Sommen, F.[Fons],
Zinger, S.[Svitlana],
de With, P.H.N.[Peter H.N.],
Real-time semantic context labeling for image understanding,
ICIP15(3180-3184)
IEEE DOI
1512
Context classification; Gabor filtering; SVM; Segmentation
BibRef
Roig, G.[Gemma],
Boix, X.[Xavier],
de Nijs, R.[Roderick],
Ramos, S.[Sebastian],
Kuhnlenz, K.[Koljia],
Van Gool, L.J.[Luc J.],
Active MAP Inference in CRFs for Efficient Semantic Segmentation,
ICCV13(2312-2319)
IEEE DOI
1403
using expensive features.
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Fua and Leclerc Guided Segmentation Papers .