Rüther, H.[Heinz],
Martine, H.M.[Hagai M.],
Mtalo, E.G.,
Application of snakes and dynamic programming optimisation technique in
modeling of buildings in informal settlement areas,
PandRS(56), No. 4, July 2002, pp. 269-282.
HTML Version.
0207
BibRef
Song, W.B.[Wen-Bo],
Haithcoat, T.L.,
Development of comprehensive accuracy assessment indexes for building
footprint extraction,
GeoRS(43), No. 2, February 2005, pp. 402-404.
IEEE Abstract.
0501
BibRef
Zhang, K.,
Yan, J.,
Chen, S.C.,
Automatic Construction of Building Footprints From Airborne LIDAR Data,
GeoRS(44), No. 9, September 2006, pp. 2523-2533.
IEEE DOI
0609
BibRef
Yan, J.H.[Jian-Hua],
Zhang, K.Q.[Ke-Qi],
Zhang, C.C.[Cheng-Cui],
Chen, S.C.[Shu-Ching],
Narasimhan, G.,
Automatic Construction of 3-D Building Model From Airborne LIDAR Data
Through 2-D Snake Algorithm,
GeoRS(53), No. 1, January 2015, pp. 3-14.
IEEE DOI
1410
airborne radar
BibRef
Gamba, P.[Paolo],
Dell'Acqua, F.[Fabio],
Lisini, G.[Gianni],
Cisotta, F.[Francesco],
Improving Building Footprints in InSAR Data by Comparison with a Lidar
DSM,
PhEngRS(72), No. 1, January 2006, pp. 63-70.
WWW Link. The combination of three-dimensional laser and radar data for improved
building extraction.
0602
BibRef
Vallet, B.[Bruno],
Pierrot-Deseilligny, M.[Marc],
Boldo, D.[Didier],
Brédif, M.[Mathieu],
Building footprint database improvement for 3D reconstruction:
A split and merge approach and its evaluation,
PandRS(66), No. 5, September 2011, pp. 732-742.
Elsevier DOI
1110
BibRef
Earlier: A1, A2, A3, Only:
Building Footprint Database Improvement for 3D Reconstruction:
A Direction Aware Split and Merge Approach,
CMRT09(139-144).
PDF File.
0909
Photogrammetry; Segmentation; Reconstruction; Urban scene; Building
BibRef
Bredif, M.,
Boldo, D.,
Pierrot-Deseilligny, M.,
Maitre, H.,
3D Building Reconstruction with Parametric Roof Superstructures,
ICIP07(II: 537-540).
IEEE DOI
0709
BibRef
Tournaire, O.[Olivier],
Bredif, M.,
Boldo, D.,
Durupt, M.,
An efficient stochastic approach for building footprint extraction from
digital elevation models,
PandRS(65), No. 4, July 2010, pp. 317-327.
Elsevier DOI
1003
Digital Elevation Model; Building footprint; Energetic modeling;
Marked point processes; RJMCMC
BibRef
Brédif, M.[Mathieu],
Tournaire, O.[Olivier],
Vallet, B.[Bruno],
Champion, N.[Nicolas],
Extracting polygonal building footprints from digital surface models:
A fully-automatic global optimization framework,
PandRS(77), No. 1, March 2013, pp. 57-65.
Elsevier DOI
1303
Urban; Building; Modeling; Geometry; Analysis; DEM/DTM
BibRef
Ferro, A.,
Brunner, D.,
Bruzzone, L.,
Automatic Detection and Reconstruction of Building Radar Footprints
From Single VHR SAR Images,
GeoRS(51), No. 2, February 2013, pp. 935-952.
IEEE DOI
1302
Cited by 1
BibRef
Gilani, S.A.N.[Syed Ali Naqi],
Awrangjeb, M.[Mohammad],
Lu, G.J.[Guo-Jun],
An Automatic Building Extraction and Regularisation Technique Using
LiDAR Point Cloud Data and Orthoimage,
RS(8), No. 3, 2016, pp. 258.
DOI Link
1604
BibRef
And:
Robust building roof segmentation using airborne point cloud data,
ICIP16(859-863)
IEEE DOI
1610
BibRef
And:
Fusion of LIDAR Data and Multispectral Imagery for Effective Building
Detection Based on Graph and Connected Component Analysis,
PIA15(65-72).
DOI Link
1504
BibRef
And: A2, A3, Only:
A triangulation-based technique for building boundary identification
from point cloud data,
ICVNZ15(1-6)
IEEE DOI
1701
BibRef
And: A2, A3, Only:
Automatic Building Footprint Extraction and Regularisation from LIDAR
Point Cloud Data,
DICTA14(1-8)
IEEE DOI
1502
buildings (structures).
Buildings
digital elevation models
See also Automatic Extraction of Building Roofs Using LIDAR Data and Multispectral Imagery.
BibRef
Dey, E.K.[Emon Kumar],
Awrangjeb, M.[Mohammad],
Kurdi, F.T.[Fayez Tarsha],
Stantic, B.[Bela],
Building Boundary Extraction from LiDAR Point Cloud Data,
DICTA21(1-6)
IEEE DOI
2201
Point cloud compression, Measurement, Image segmentation,
Laser radar, Shape, Digital images, boundary extraction,
Performance metric
BibRef
Awrangjeb, M.,
Lu, G.J.[Guo-Jun],
Fraser, C.S.,
Automatic Building Extraction From LIDAR Data Covering Complex Urban
Scenes,
PCV14(25-32).
DOI Link
1404
BibRef
Earlier: A1, A2, Only:
Building Roof Plane Extraction from LIDAR Data,
DICTA13(1-8)
IEEE DOI
1402
geophysical image processing
BibRef
Awrangjeb, M.[Mohammad],
Ravanbakhsh, M.[Mehdi],
Fraser, C.S.[Clive S.],
Automatic Detection of Residential Buildings Using LIDAR Data and
Multispectral Imagery,
PandRS(65), No. 5, September 2010, pp. 457-467.
Elsevier DOI
1003
BibRef
And:
Building Detection from Multispectral Imagery and LIDAR Data Employing
A Threshold-Free Evaluation System,
PCVIA10(A:49).
PDF File.
1009
BibRef
And:
Automatic Building Detection Using LIDAR Data and Multispectral Imagery,
DICTA10(45-51).
IEEE DOI
1012
Building detection; LIDAR; Point cloud; Multispectral imagery; Fusion
BibRef
Li, J.Z.[Jing-Zhong],
Li, X.G.[Xin-Gong],
Xie, T.[Tian],
Morphing of Building Footprints Using a Turning Angle Function,
IJGI(6), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Zhuo, X.Y.[Xiang-Yu],
Fraundorfer, F.[Friedrich],
Kurz, F.[Franz],
Reinartz, P.[Peter],
Optimization of OpenStreetMap Building Footprints Based on Semantic
Information of Oblique UAV Images,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Li, W.J.[Wei-Jia],
He, C.H.[Cong-Hui],
Fang, J.R.[Jia-Rui],
Zheng, J.P.[Jue-Peng],
Fu, H.H.[Hao-Huan],
Yu, L.[Le],
Semantic Segmentation-Based Building Footprint Extraction Using Very
High-Resolution Satellite Images and Multi-Source GIS Data,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Earlier: A1, A2, A3, A5, Only:
Semantic Segmentation Based Building Extraction Method Using
Multi-source GIS Map Datasets and Satellite Imagery,
DeepGlobe18(233-2333)
IEEE DOI
1812
Buildings, Satellites, Urban areas, Semantics, Image segmentation,
Training, Data mining
BibRef
Bagheri, H.[Hossein],
Schmitt, M.[Michael],
Zhu, X.X.[Xiao-Xiang],
Fusion of Multi-Sensor-Derived Heights and OSM-Derived Building
Footprints for Urban 3D Reconstruction,
IJGI(8), No. 4, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Schuegraf, P.[Philipp],
Bittner, K.[Ksenia],
Automatic Building Footprint Extraction from Multi-Resolution Remote
Sensing Images Using a Hybrid FCN,
IJGI(8), No. 4, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Bittner, K.,
Cui, S.,
Reinartz, P.,
Building Extraction From Remote Sensing Data Using Fully Convolutional
Networks,
Hannover17(481-486).
DOI Link
1805
BibRef
Pasquali, G.[Giorgio],
Iannelli, G.C.[Gianni Cristian],
Dell'Acqua, F.[Fabio],
Building Footprint Extraction from Multispectral, Spaceborne Earth
Observation Datasets Using a Structurally Optimized U-Net
Convolutional Neural Network,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Liu, P.H.[Peng-Hua],
Liu, X.P.[Xiao-Ping],
Liu, M.X.[Meng-Xi],
Shi, Q.[Qian],
Yang, J.X.[Jin-Xing],
Xu, X.C.[Xiao-Cong],
Zhang, Y.Y.[Yuan-Ying],
Building Footprint Extraction from High-Resolution Images via Spatial
Residual Inception Convolutional Neural Network,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Wei, S.,
Ji, S.,
Lu, M.,
Toward Automatic Building Footprint Delineation From Aerial Images
Using CNN and Regularization,
GeoRS(58), No. 3, March 2020, pp. 2178-2189.
IEEE DOI
2003
Building extraction, fully convolutional network (FCN),
polygon regularization, segmentation
BibRef
Li, Q.,
Shi, Y.,
Huang, X.,
Zhu, X.X.,
Building Footprint Generation by Integrating Convolution Neural
Network With Feature Pairwise Conditional Random Field (FPCRF),
GeoRS(58), No. 11, November 2020, pp. 7502-7519.
IEEE DOI
2011
Buildings, Semantics, Feature extraction, Image segmentation,
Task analysis, Remote sensing,
semantic segmentation
BibRef
Sun, Y.[Yao],
Montazeri, S.[Sina],
Wang, Y.Y.[Yuan-Yuan],
Zhu, X.X.[Xiao Xiang],
Automatic registration of a single SAR image and GIS building
footprints in a large-scale urban area,
PandRS(170), 2020, pp. 1-14.
Elsevier DOI
2011
GIS building footprints, Large-scale, Registration, SAR image, Urban area
BibRef
Milosavljevic, A.[Aleksandar],
Automated Processing of Remote Sensing Imagery Using Deep Semantic
Segmentation: A Building Footprint Extraction Case,
IJGI(9), No. 8, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Gautam, D.,
Lucieer, A.,
Bendig, J.,
Malenovský, Z.,
Footprint Determination of a Spectroradiometer Mounted on an Unmanned
Aircraft System,
GeoRS(58), No. 5, May 2020, pp. 3085-3096.
IEEE DOI
2005
Spectroradiometers, Global navigation satellite system, Antennas,
Geology, Vegetation mapping, Cameras, Synchronization,
unmanned aircraft system (UAS)
BibRef
Liao, C.[Cheng],
Hu, H.[Han],
Li, H.F.[Hai-Feng],
Ge, X.M.[Xu-Ming],
Chen, M.[Min],
Li, C.N.[Chuang-Nong],
Zhu, Q.[Qing],
Joint Learning of Contour and Structure for Boundary-Preserved
Building Extraction,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Zhu, Q.[Qing],
Liao, C.[Cheng],
Hu, H.[Han],
Mei, X.M.[Xiao-Ming],
Li, H.F.[Hai-Feng],
MAP-Net: Multiple Attending Path Neural Network for Building
Footprint Extraction From Remote Sensed Imagery,
GeoRS(59), No. 7, July 2021, pp. 6169-6181.
IEEE DOI
2106
Feature extraction, Buildings, Semantics, Data mining,
Spatial resolution, Remote sensing, Convolution,
semantic segmentation
BibRef
Touzani, S.[Samir],
Granderson, J.[Jessica],
Open Data and Deep Semantic Segmentation for Automated Extraction of
Building Footprints,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Ayala, C.[Christian],
Sesma, R.[Rubén],
Aranda, C.[Carlos],
Galar, M.[Mikel],
A Deep Learning Approach to an Enhanced Building Footprint and Road
Detection in High-Resolution Satellite Imagery,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Wei, X.C.[Xin-Chun],
Li, X.[Xing],
Liu, W.[Wei],
Zhang, L.P.[Lian-Peng],
Cheng, D.[Dayu],
Ji, H.Y.[Han-Yu],
Zhang, W.Z.[Wen-Zheng],
Yuan, K.[Kai],
Building Outline Extraction Directly Using the U2-Net Semantic
Segmentation Model from High-Resolution Aerial Images and a
Comparison Study,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Li, Z.M.[Zi-Ming],
Xin, Q.C.[Qin-Chuan],
Sun, Y.[Ying],
Cao, M.Y.[Meng-Ying],
A Deep Learning-Based Framework for Automated Extraction of Building
Footprint Polygons from Very High-Resolution Aerial Imagery,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Daranagama, S.[Samitha],
Witayangkurn, A.[Apichon],
Automatic Building Detection with Polygonizing and Attribute
Extraction from High-Resolution Images,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Liu, C.[Chun],
Hu, Y.[Yaohui],
Li, Z.[Zheng],
Xu, J.[Junkui],
Han, Z.G.[Zhi-Gang],
Guo, J.Z.[Jian-Zhong],
TriangleConv: A Deep Point Convolutional Network for Recognizing
Building Shapes in Map Space,
IJGI(10), No. 10, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Yan, X.F.[Xiong-Feng],
Chen, H.[Huan],
Huang, H.R.[Hao-Ran],
Liu, Q.[Qian],
Yang, M.[Min],
Building Typification in Map Generalization Using Affinity
Propagation Clustering,
IJGI(10), No. 11, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Wei, S.Q.[Shi-Qing],
Ji, S.P.[Shun-Ping],
Graph Convolutional Networks for the Automated Production of Building
Vector Maps From Aerial Images,
GeoRS(60), 2022, pp. 1-11.
IEEE DOI
2112
Buildings, Feature extraction, Remote sensing, Image segmentation,
Detectors, Data mining, Production, Building extraction,
polygon regularization
BibRef
Guo, H.[Haonan],
Du, B.[Bo],
Zhang, L.P.[Liang-Pei],
Su, X.[Xin],
A coarse-to-fine boundary refinement network for building footprint
extraction from remote sensing imagery,
PandRS(183), 2022, pp. 240-252.
Elsevier DOI
2201
Building footprint extraction, Boundary refinement, Coarse-to-fine
BibRef
Yang, H.P.[Hai-Ping],
Xu, M.[Meixia],
Chen, Y.Y.[Yuan-Yuan],
Wu, W.[Wei],
Dong, W.[Wen],
A Postprocessing Method Based on Regions and Boundaries Using
Convolutional Neural Networks and a New Dataset for Building
Extraction,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Li, Q.Y.[Qing-Yu],
Zorzi, S.[Stefano],
Shi, Y.L.[Yi-Lei],
Fraundorfer, F.[Friedrich],
Zhu, X.X.[Xiao Xiang],
RegGAN: An End-to-End Network for Building Footprint Generation with
Boundary Regularization,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Wangiyana, S.[Sandhi],
Samczynski, P.[Piotr],
Gromek, A.[Artur],
Data Augmentation for Building Footprint Segmentation in SAR Images:
An Empirical Study,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Hu, Y.[Yaohui],
Liu, C.[Chun],
Li, Z.[Zheng],
Xu, J.[Junkui],
Han, Z.G.[Zhi-Gang],
Guo, J.Z.[Jian-Zhong],
Few-Shot Building Footprint Shape Classification with Relation
Network,
IJGI(11), No. 5, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Li, Z.C.[Zhi-Chao],
Zhang, S.[Shuai],
Dong, J.[Jinwei],
Suggestive Data Annotation for CNN-Based Building Footprint Mapping
Based on Deep Active Learning and Landscape Metrics,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Huang, Y.H.[Yu-Han],
Jin, Y.F.[Yu-Fang],
Aerial Imagery-Based Building Footprint Detection with an Integrated
Deep Learning Framework: Applications for Fine Scale Wildland-Urban
Interface Mapping,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, Z.C.[Zhi-Chao],
Dong, J.[Jinwei],
A Framework Integrating DeeplabV3+, Transfer Learning, Active
Learning, and Incremental Learning for Mapping Building Footprints,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Li, X.[Xiao],
Qiu, F.[Fang],
Shi, F.[Fan],
Tang, Y.W.[Yun-Wei],
A Recursive Hull and Signal-Based Building Footprint Generation from
Airborne LiDAR Data,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, Z.H.[Ze-Hui],
Meng, Y.[Yu],
Chen, J.B.[Jing-Bo],
Ma, J.X.[Jun-Xian],
Yue, A.Z.[An-Zhi],
Chen, J.S.[Jian-Sheng],
Learning Color Distributions from Bitemporal Remote Sensing Images to
Update Existing Building Footprints,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, J.W.[Jin-Wang],
Meng, L.X.[Ling-Xuan],
Li, W.J.[Wei-Jia],
Yang, W.[Wen],
Yu, L.[Lei],
Xia, G.S.[Gui-Song],
Learning to Extract Building Footprints From Off-Nadir Aerial Images,
PAMI(45), No. 1, January 2023, pp. 1294-1301.
IEEE DOI
2212
Buildings, Head, Training, Annotations, Task analysis, Imaging,
Image segmentation, Building footprint extraction, off-nadir aerial image
BibRef
Razzak, M.T.[Muhammed T.],
Mateo-García, G.[Gonzalo],
Lecuyer, G.[Gurvan],
Gómez-Chova, L.[Luis],
Gal, Y.[Yarin],
Kalaitzis, F.[Freddie],
Multi-spectral multi-image super-resolution of Sentinel-2 with
radiometric consistency losses and its effect on building delineation,
PandRS(195), 2023, pp. 1-13.
Elsevier DOI
2301
Super-resolution, Multi-image super-resolution, Sentinel 2,
Segmentation, Building detection
BibRef
Aryal, J.[Jagannath],
Neupane, B.[Bipul],
Multi-Scale Feature Map Aggregation and Supervised Domain Adaptation
of Fully Convolutional Networks for Urban Building Footprint
Extraction,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Wei, S.Q.[Shi-Qing],
Zhang, T.[Tao],
Ji, S.[Shunping],
Luo, M.[Muying],
Gong, J.Y.[Jian-Ya],
BuildMapper: A fully learnable framework for vectorized building
contour extraction,
PandRS(197), 2023, pp. 87-104.
Elsevier DOI
2303
Building contour delineation, Instance segmentation,
Contour-based method, Deep learning, Remote sensing images
BibRef
Chen, J.[Jing],
Xia, M.[Min],
Wang, D.[Dehao],
Lin, H.F.[Hai-Feng],
Double Branch Parallel Network for Segmentation of Buildings and
Waters in Remote Sensing Images,
RS(15), No. 6, 2023, pp. 1536.
DOI Link
2304
BibRef
Liu, Z.P.[Ze-Ping],
Tang, H.[Hong],
Learning Sparse Geometric Features for Building Segmentation from
Low-Resolution Remote-Sensing Images,
RS(15), No. 7, 2023, pp. 1741.
DOI Link
2304
BibRef
Ullah, T.[Tahira],
Lautenbach, S.[Sven],
Herfort, B.[Benjamin],
Reinmuth, M.[Marcel],
Schorlemmer, D.[Danijel],
Assessing Completeness of OpenStreetMap Building Footprints Using
MapSwipe,
IJGI(12), No. 4, 2023, pp. 143.
DOI Link
2305
BibRef
Sakeena, M.[Muntaha],
Stumpe, E.[Eric],
Despotovic, M.[Miroslav],
Koch, D.[David],
Zeppelzauer, M.[Matthias],
On the Robustness and Generalization Ability of Building Footprint
Extraction on the Example of SegNet and Mask R-CNN,
RS(15), No. 8, 2023, pp. 2135.
DOI Link
2305
BibRef
Hu, Y.[Yuan],
Wang, Z.B.[Zhi-Bin],
Huang, Z.[Zhou],
Liu, Y.[Yu],
PolyBuilding: Polygon transformer for building extraction,
PandRS(199), 2023, pp. 15-27.
Elsevier DOI
2305
Building extraction, Polygon transformer,
Polygon refinement scheme, Two-phase training strategy
BibRef
Liao, C.[Cheng],
Hu, H.[Han],
Yuan, X.[Xuekun],
Li, H.F.[Hai-Feng],
Liu, C.[Chao],
Liu, C.Y.[Chun-Yang],
Fu, G.[Gui],
Ding, Y.L.[Yu-Lin],
Zhu, Q.[Qing],
BCE-Net: Reliable building footprints change extraction based on
historical map and up-to-date images using contrastive learning,
PandRS(201), 2023, pp. 138-152.
Elsevier DOI
2307
Building update, Change detection, Semantic segmentation, Contrastive learning
BibRef
Zhou, Z.Y.[Zhi-Yong],
Fu, C.[Cheng],
Weibel, R.[Robert],
Move and remove: Multi-task learning for building simplification in
vector maps with a graph convolutional neural network,
PandRS(202), 2023, pp. 205-218.
Elsevier DOI
2308
Map generalization, Building simplification, Vector maps,
Multi-task learning, Graph convolutional neural networks
BibRef
Duraciová, R.[Renata],
An Aggregated Shape Similarity Index: A Case Study of Comparing the
Footprints of OpenStreetMap and INSPIRE Buildings,
IJGI(12), No. 12, 2023, pp. 495.
DOI Link
2312
BibRef
Kong, L.H.[Ling-Hui],
Qian, H.Z.[Hai-Zhong],
Wu, Y.Q.[Yu-Qing],
Niu, X.Y.[Xin-Yu],
Wang, D.[Di],
Huang, Z.K.[Zhe-Kun],
Simplification and Regularization Algorithm for Right-Angled Polygon
Building Outlines with Jagged Edges,
IJGI(12), No. 12, 2023, pp. 469.
DOI Link
2312
BibRef
Liu, J.L.[Jun-Lin],
Xia, Y.[Ying],
Feng, J.F.[Jiang-Fan],
Bai, P.[Peng],
A Novel Building Extraction Network via Multi-Scale Foreground
Modeling and Gated Boundary Refinement,
RS(15), No. 24, 2023, pp. 5638.
DOI Link
2401
BibRef
Kim, J.Y.[Ji-Yong],
Kim, Y.[Yongil],
Integrated Framework for Unsupervised Building Segmentation with
Segment Anything Model-Based Pseudo-Labeling and Weakly Supervised
Learning,
RS(16), No. 3, 2024, pp. 526.
DOI Link
2402
BibRef
Liu, M.[Mengkun],
Jiao, L.C.[Li-Cheng],
Liu, X.[Xu],
Li, L.L.[Ling-Ling],
Liu, F.[Fang],
Yang, S.Y.[Shu-Yuan],
Wang, S.[Shuang],
Hou, B.[Biao],
Multi-Scale Contourlet Knowledge Guide Learning Segmentation,
MultMed(26), 2024, pp. 4831-4845.
IEEE DOI
2403
Semantic segmentation, Shape, Image color analysis, Spectral analysis,
Buildings, Knowledge engineering, Training, building extraction
BibRef
He, J.X.[Jia-Xin],
Cheng, Y.[Yong],
Wang, W.[Wei],
Ren, Z.P.[Zhou-Peng],
Zhang, C.[Ce],
Zhang, W.J.[Wen-Jie],
A Lightweight Building Extraction Approach for Contour Recovery in
Complex Urban Environments,
RS(16), No. 5, 2024, pp. 740.
DOI Link
2403
BibRef
Li, J.Z.[Jing-Zhong],
Mao, K.[Kainan],
Shape Pattern Recognition of Building Footprints Using t-SNE
Dimensionality Reduction Visualization,
IJGI(13), No. 6, 2024, pp. 213.
DOI Link
2406
BibRef
Ji, Y.J.[Ying-Jie],
Wu, W.G.[Wei-Guo],
Wan, G.[Guangtong],
Zhao, Y.[Yindi],
Wang, W.L.[Wei-Lin],
Yin, H.[Hui],
Tian, Z.[Zhuang],
Liu, S.[Song],
Segment Anything Model-Based Building Footprint Extraction for
Residential Complex Spatial Assessment Using LiDAR Data and Very
High-Resolution Imagery,
RS(16), No. 14, 2024, pp. 2661.
DOI Link
2408
BibRef
Guo, N.B.[Ning-Bo],
Jiang, M.Y.[Ming-Yong],
Hu, X.Y.[Xiao-Yu],
Su, Z.J.[Zhi-Juan],
Zhang, W.B.[Wei-Bin],
Li, R.B.[Rui-Bo],
Luo, J.C.[Jian-Cheng],
NPSFF-Net: Enhanced Building Segmentation in Remote Sensing Images
via Novel Pseudo-Siamese Feature Fusion,
RS(16), No. 17, 2024, pp. 3266.
DOI Link
2409
BibRef
Zhao, W.Y.[Wen-Yu],
Xia, M.[Min],
Weng, L.G.[Li-Guo],
Hu, K.[Kai],
Lin, H.F.[Hai-Feng],
Zhang, Y.[Youke],
Liu, Z.H.[Zi-Heng],
SPNet: Dual-Branch Network with Spatial Supplementary Information for
Building and Water Segmentation of Remote Sensing Images,
RS(16), No. 17, 2024, pp. 3161.
DOI Link
2409
BibRef
Jiao, W.Q.[Wei-Qin],
Persello, C.[Claudio],
Vosselman, G.[George],
PolyR-CNN: R-CNN for end-to-end polygonal building outline extraction,
PandRS(218), 2024, pp. 33-43.
Elsevier DOI Code:
WWW Link.
2412
Polygonal building outline extraction, Polygon R-CNN,
Fully end-to-end, Vertex proposal feature, Buildings with holes
BibRef
Sheng, H.[Hui],
Zhang, Y.[Yaoteng],
Zhang, W.[Wei],
Wei, S.Q.[Shi-Qing],
Xu, M.M.[Ming-Ming],
Muhammad, Y.[Yasir],
ME-FCN: A Multi-Scale Feature-Enhanced Fully Convolutional Network
for Building Footprint Extraction,
RS(16), No. 22, 2024, pp. 4305.
DOI Link
2412
BibRef
Wang, C.H.[Chen-Hao],
Chen, J.B.[Jing-Bo],
Meng, Y.[Yu],
Deng, Y.P.[Yu-Peng],
Li, K.[Kai],
Kong, Y.L.[Yun-Long],
SAMPolyBuild: Adapting the Segment Anything Model for polygonal
building extraction,
PandRS(218), 2024, pp. 707-720.
Elsevier DOI Code:
WWW Link.
2412
Building extraction, Building vectorization, Foundation model,
Instance segmentation, High-resolution remote sensing images
BibRef
Zou, X.Y.[Xin-Yan],
Yang, M.[Min],
Li, S.[Siyu],
Hu, H.[Hai],
Classifying the Shapes of Buildings by Combining Distance Field
Enhancement and a Convolution Neural Network,
IJGI(13), No. 11, 2024, pp. 411.
DOI Link
2412
BibRef
Ren, Y.Y.[Yao-Yao],
Li, X.[Xing],
Jin, F.[Fangyuqing],
Li, C.M.[Chun-Mei],
Liu, W.[Wei],
Li, E.[Erzhu],
Zhang, L.P.[Lian-Peng],
Extracting Regular Building Footprints Using Projection Histogram
Method from UAV-Based 3D Models,
IJGI(14), No. 1, 2025, pp. 6.
DOI Link
2501
BibRef
Zhang, M.M.[Ming-Ming],
Liu, Q.J.[Qing-Jie],
Wang, W.[Wei],
Wang, Y.H.[Yun-Hong],
Transbuilding: An End-to-End Polygonal Building Extraction with
Transformers,
ICIP23(460-464)
IEEE DOI
2312
BibRef
Zhao, Y.[Yao],
Wang, G.X.[Guang-Xia],
Yang, J.[Jian],
Zhang, L.[Lantian],
Qi, X.F.[Xiao-Fei],
Building Block Extraction from Historical Maps Using Deep Object
Attention Networks,
IJGI(11), No. 11, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zorzi, S.[Stefano],
Bazrafkan, S.[Shabab],
Habenschuss, S.[Stefan],
Fraundorfer, F.[Friedrich],
PolyWorld: Polygonal Building Extraction with Graph Neural Networks
in Satellite Images,
CVPR22(1838-1847)
IEEE DOI
2210
Image segmentation, Satellites, Codes,
Computer network reliability, Buildings, Predictive models,
grouping and shape analysis
BibRef
Xu, Z.Q.[Zi-Qiang],
Xu, C.Y.[Chun-Yan],
Cui, Z.[Zhen],
Zheng, X.W.[Xiang-Wei],
Yang, J.[Jian],
CVNet: Contour Vibration Network for Building Extraction,
CVPR22(1373-1381)
IEEE DOI
2210
Vibrations, Shape, Computational modeling, Buildings, Transforms,
Feature extraction, Mathematical models, Segmentation,
grouping and shape analysis
BibRef
Chen, J.[Jun],
Jiang, Y.X.[Yu-Xuan],
Luo, L.[Linbo],
Gu, Y.[Yue],
Wu, K.[Kangle],
Building Footprint Generation by Integrating U-Net with Deepened
Space Module,
ICIP21(3847-3851)
IEEE DOI
2201
Training, Image segmentation, Image resolution, Splicing,
Image edge detection, Buildings, Robustness, deep learning,
high resolution image
BibRef
Girard, N.[Nicolas],
Smirnov, D.[Dmitriy],
Solomon, J.[Justin],
Tarabalka, Y.[Yuliya],
Polygonal Building Extraction by Frame Field Learning,
CVPR21(5887-5896)
IEEE DOI
2111
Training, Image segmentation, Shape, Buildings,
Prediction algorithms, Skeleton, Task analysis
BibRef
Ashiotis, G.[Giannis],
Oldfield, J.[James],
Chrysostomou, C.[Charalambos],
Christoudias, T.[Theodoros],
Nicolaou, M.A.[Mihalis A.],
Shared-space Autoencoders with Randomized Skip Connections for Building
Footprint Detection with Missing Views,
PRRS20 (536-549).
Springer DOI
2103
BibRef
Bischke, B.,
Helber, P.,
Folz, J.,
Borth, D.,
Dengel, A.,
Multi-Task Learning for Segmentation of Building Footprints with Deep
Neural Networks,
ICIP19(1480-1484)
IEEE DOI
1910
Deep Learning, Semantic Segmentation, Satellite Imagery,
Multi Task Learning, Building Extraction
BibRef
Khoshboresh Masouleh, M.,
Saradjian, M.R.,
Robust Building Footprint Extraction From Big Multi-sensor Data Using
Deep Competition Network,
SMPR19(615-621).
DOI Link
1912
BibRef
Dickenson, M.,
Gueguen, L.,
Rotated Rectangles for Symbolized Building Footprint Extraction,
DeepGlobe18(215-2153)
IEEE DOI
1812
Buildings, Microprocessors, Architecture,
Urban areas, Satellites
BibRef
Linh, T.H.[Truong-Hong],
Laefer, D.F.[Debra F.],
Yang, B.S.[Bi-Sheng],
Huang, R.G.[Rong-Gang],
Li, J.P.[Jian-Ping],
IQPC 2015 Track: Evaluation of Automatically Generated 2D Footprints
from Urban Lidar Data,
GeoBigData15(527-534).
DOI Link
1602
BibRef
Li, Y.,
Zhu, L.,
Shimamura, H.,
Tachibana, K.,
A Refining Method For Building Object Aggregation And Footprint
Modelling Using Multi-source Data,
ISPRS12(XXXIX-B3:41-46).
DOI Link
1209
BibRef
Dini, G.R.,
Jacobsen, K.,
Heipke, C.,
Delineation of Building Footprints from High Resolution Satellite
Stereo Imagery Using Image Matching and a GIS Database,
Hannover13(81-85).
DOI Link
1308
See also 3D Building Change Detection Using High Resolution Stereo Images and a GIS Database.
See also procedure for semi-Automatic Orthophoto Generation from High Resolution Satellite Imagery, A.
BibRef
Michelin, J.C.,
Mallet, C.,
David, N.,
Building Edge Detection Using Small-footprint Airborne Full-waveform
Lidar Data,
AnnalsPRS(I-3), No. 2012, pp. 147-152.
DOI Link
1209
BibRef
Yan, L.[Lili],
Zhang, J.X.[Ji-Xian],
Huang, G.[Guoman],
Zhao, Z.[Zheng],
Building Footprints Extraction from PolSAR Image Using Multi-Features
and Edge Information,
ISIDF11(1-5).
IEEE DOI
1111
BibRef
Wang, O.[Oliver],
Lodha, S.K.[Suresh K.],
Helmbold, D.P.[David P.],
A Bayesian Approach to Building Footprint Extraction from Aerial LIDAR
Data,
3DPVT06(192-199).
IEEE DOI
0606
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Roof Structure, 3-D .