Murakami, H.[Hiroshi],
Nakagawa, K.[Katsuto],
Hasegawa, H.[Hiroyuki],
Shibata, T.[Taku],
Iwanami, E.[Eiji],
Change detection of buildings using an airborne laser scanner,
PandRS(54), No. 2-3, July 1999, pp. 148-152.
Elsevier DOI
Acquire a digital surface model of urban areas. Simple comparison between
DSMs acquired at different times detected building changes.
BibRef
9907
Steinle, E.,
Vögtle, T.,
Automated Extraction and Reconstruction of Buildings in Laser Scanning
Data for Disaster Management,
Ascona01(309-318).
Use LIDAR to quickly model buildings and detect changes. Approximage buildings
by planar faces.
0201
BibRef
Luckman, A.J.,
Grey, W.M.F.,
Urban building height variance from multibaseline ERS coherence,
GeoRS(41), No. 9, September 2003, pp. 2022-2025.
IEEE Abstract.
0310
BibRef
Jung, F.[Franck],
Detecting building changes from multitemporal aerial stereopairs,
PandRS(58), No. 3-4, January 2004, pp. 187-201.
Elsevier DOI
0411
BibRef
Carlotto, M.J.,
Detection and Analysis of Change in Remotely-Sensed Imagery with
Application to Wide Area Surveillance,
IP(6), No. 1, January 1997, pp. 189-202.
IEEE DOI
9703
BibRef
Carlotto, M.J.,
A cluster-based approach for detecting man-made objects and changes in
imagery,
GeoRS(43), No. 2, February 2005, pp. 374-387.
IEEE Abstract.
0501
BibRef
Lee, B.G.,
Tom, V.T., and
Carlotto, M.J.,
A Signal-Symbol Approach to Change Detection,
AAAI-86(1138- ).
The Analytic Sciences Corp.
BibRef
8600
Matikainen, L.,
Hyyppä, J.,
Ahokas, E.,
Markelin, L.,
Kaartinen, H.,
Automatic Detection of Buildings and Changes in Buildings for Updating
of Maps,
RS(2), No. 5, May 2010, pp. 1217-1248.
DOI Link
1203
BibRef
Champion, N.[Nicolas],
Boldo, D.[Didier],
Pierrot-Deseilligny, M.[Marc],
Stamon, G.[Georges],
2D building change detection from high resolution satelliteimagery: A
two-step hierarchical method based on 3D invariant primitives,
PRL(31), No. 10, 15 July 2010, pp. 1138-1147.
Elsevier DOI
1008
BibRef
Earlier:
Automatic estimation of fine terrain models from multiple
high-resolution satellite images,
ICIP09(577-580).
IEEE DOI
0911
Change detection; Building vector database; Digital Surface Models;
Digital Terrain Models; High resolution satellite imagery; Quality
assessment
BibRef
Champion, N.[Nicolas],
Stamon, G.[Georges],
Pierrot-Deseilligny, M.[Marc],
Automatic GIS Updating from High Resolution Satellite Images,
MVA09(374-).
PDF File.
0905
See also Automatic Building Extraction from DEMs Using an Object Approach and Application to the 3D-City Modeling.
BibRef
Debaque, B.,
Stamon, G.,
Pierrot-Deseilligny, M.,
An area-based alignment method for 3d urban models,
ICPR02(I: 61-64).
IEEE DOI
0211
Find a transformation and validate.
BibRef
Chen, L.C.[Liang-Chien],
Lin, L.J.[Li-Jer],
Detection of building changes from aerial images
and light detecting and ranging (LIDAR) data,
AppRS(4), November 2010, pp. 041870.
DOI Link
1105
BibRef
Chen, L.C.[Liang-Chien],
Lin, L.J.[Li-Jer], and
Chang, W.C.[Wen-Chi],
Imaging data detects changes in urban areas over time,
SPIE(Newsroom), May 19, 2011
DOI Link
1105
A scheme for identifying altered features of cityscapes that compares
existing building models with new lidar data points and aerial images
improves the accuracy of 3D spatial information.
BibRef
Nebiker, S.[Stephan],
Lack, N.[Natalie],
Deuber, M.[Marianne],
Building Change Detection from Historical Aerial Photographs Using
Dense Image Matching and Object-Based Image Analysis,
RS(6), No. 9, 2014, pp. 8310-8336.
DOI Link
1410
BibRef
Qin, R.J.[Rong-Jun],
Change detection on LOD 2 building models with very high resolution
spaceborne stereo imagery,
PandRS(96), No. 1, 2014, pp. 179-192.
Elsevier DOI
1410
Stereo imagery
BibRef
Pang, S.Y.[Shi-Yan],
Hu, X.Y.[Xiang-Yun],
Wang, Z.Z.[Zi-Zheng],
Lu, Y.H.[Yi-Hui],
Object-Based Analysis of Airborne LiDAR Data for Building Change
Detection,
RS(6), No. 11, 2014, pp. 10733-10749.
DOI Link
1412
BibRef
Du, S.H.[Shi-Hong],
Zhang, F.L.[Fang-Li],
Zhang, X.Y.[Xiu-Yuan],
Semantic classification of urban buildings combining VHR image and
GIS data: An improved random forest approach,
PandRS(105), No. 1, 2015, pp. 107-119.
Elsevier DOI
1506
Very high resolution (VHR) images
BibRef
Fruehmann, R.[Richard],
Waugh, R.[Rachael],
Dulieu-Barton, J.[Janice],
A fresh look at assessing structural performance using
imaging techniques,
SPIE(Newsroom), June 15, 2015.
DOI Link
1507
A lock-in algorithm is used to combine digital image correlation with
thermoelastic stress analyses to offer greater data richness, paving
the way to strain-based nondestructive evaluation.
BibRef
Hullo, J.F.[Jean-François],
Thibault, G.[Guillaume],
Boucheny, C.[Christian],
Dory, F.[Fabien],
Mas, A.[Arnaud],
Multi-Sensor As-Built Models of Complex Industrial Architectures,
RS(7), No. 12, 2015, pp. 15827.
DOI Link
1601
BibRef
Wang, C.M.[Chun-Mei],
Yang, Q.[Qinke],
Jupp, D.L.B.[David Laurence Barry],
Pang, G.[Guowei],
Modeling Change of Topographic Spatial Structures with DEM Resolution
Using Semi-Variogram Analysis and Filter Bank,
IJGI(5), No. 7, 2016, pp. 107.
DOI Link
1608
BibRef
Qin, R.J.[Rong-Jun],
Tian, J.J.[Jiao-Jiao],
Reinartz, P.[Peter],
3D change detection-Approaches and applications,
PandRS(122), No. 1, 2016, pp. 41-56.
Elsevier DOI
1612
3D change detection
BibRef
Du, S.J.[Shou-Ji],
Zhang, Y.S.[Yun-Sheng],
Qin, R.J.[Rong-Jun],
Yang, Z.H.[Zhi-Hua],
Zou, Z.R.[Zheng-Rong],
Tang, Y.Q.[Yu-Qi],
Fan, C.[Chong],
Building Change Detection Using Old Aerial Images and New LiDAR Data,
RS(8), No. 12, 2016, pp. 1030.
DOI Link
1612
BibRef
Xiao, P.F.[Peng-Feng],
Yuan, M.[Min],
Zhang, X.L.[Xue-Liang],
Feng, X.Z.[Xue-Zhi],
Guo, Y.W.[Yan-Wen],
Cosegmentation for Object-Based Building Change Detection From
High-Resolution Remotely Sensed Images,
GeoRS(55), No. 3, March 2017, pp. 1587-1603.
IEEE DOI
1703
Buildings
BibRef
Li, W.Z.[Wen-Zhuo],
Sun, K.[Kaimin],
Li, D.R.[De-Ren],
Bai, T.[Ting],
Sui, H.G.[Hai-Gang],
A New Approach to Performing Bundle Adjustment for Time Series UAV
Images 3D Building Change Detection,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Wang, L.[Lin],
Guo, Q.S.[Qing-Sheng],
Liu, Y.[Yuangang],
Sun, Y.[Yageng],
Wei, Z.W.[Zhi-Wei],
Contextual Building Selection Based on a Genetic Algorithm in Map
Generalization,
IJGI(6), No. 9, 2017, pp. xx-yy.
DOI Link
1710
BibRef
Lee, J.[Jaeeun],
Jang, H.[Hanme],
Yang, J.H.[Jong-Hyeon],
Yu, K.[Kiyun],
Machine Learning Classification of Buildings for Map Generalization,
IJGI(6), No. 10, 2017, pp. xx-yy.
DOI Link
1710
BibRef
Moya, L.[Luis],
Perez, L.R.M.[Luis R. Marval],
Mas, E.[Erick],
Adriano, B.[Bruno],
Koshimura, S.[Shunichi],
Yamazaki, F.[Fumio],
Novel Unsupervised Classification of Collapsed Buildings Using
Satellite Imagery, Hazard Scenarios and Fragility Functions,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Natsuaki, R.[Ryo],
Nagai, H.[Hiroto],
Tomii, N.[Naoya],
Tadono, T.[Takeo],
Sensitivity and Limitation in Damage Detection for Individual
Buildings Using InSAR Coherence: A Case Study in 2016 Kumamoto
Earthquakes,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Vetrivel, A.[Anand],
Gerke, M.[Markus],
Kerle, N.[Norman],
Nex, F.[Francesco],
Vosselman, G.[George],
Disaster damage detection through synergistic use of deep learning
and 3D point cloud features derived from very high resolution oblique
aerial images, and multiple-kernel-learning,
PandRS(140), 2018, pp. 45-59.
Elsevier DOI
1805
Oblique images, UAV, 3D point cloud features, CNN features,
Multiple-kernel-learning, Transfer learning,
Structural damage detections
BibRef
Zhou, X.D.[Xiao-Dong],
Chen, Z.[Zhe],
Zhang, X.[Xiang],
Ai, T.[Tinghua],
Change Detection for Building Footprints with Different Levels of
Detail Using Combined Shape and Pattern Analysis,
IJGI(7), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Zhai, W.[Wei],
Huang, C.L.[Chun-Lin],
Pei, W.[Wansheng],
Two New Polarimetric Feature Parameters for the Recognition of the
Different Kinds of Buildings in Earthquake-Stricken Areas Based on
Entropy and Eigenvalues of PolSAR Decomposition,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Feurer, D.,
Vinatier, F.,
Joining multi-epoch archival aerial images in a single SfM block
allows 3-D change detection with almost exclusively image information,
PandRS(146), 2018, pp. 495-506.
Elsevier DOI
1812
Automation, Multitemporal DEMs, SfM photogrammetry,
Analog imagery, 3-D change detection, Cost-effective/frugal
BibRef
Ji, M.[Min],
Liu, L.[Lanfa],
Buchroithner, M.[Manfred],
Identifying Collapsed Buildings Using Post-Earthquake Satellite
Imagery and Convolutional Neural Networks: A Case Study of the 2010
Haiti Earthquake,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Ji, M.[Min],
Liu, L.[Lanfa],
Du, R.[Runlin],
Buchroithner, M.F.[Manfred F.],
A Comparative Study of Texture and Convolutional Neural Network
Features for Detecting Collapsed Buildings After Earthquakes Using
Pre- and Post-Event Satellite Imagery,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Zhang, Y.F.[Yun-Fei],
Huang, J.C.[Jin-Cai],
Deng, M.[Min],
Chen, C.[Chi],
Zhou, F.B.[Fang-Bin],
Xie, S.C.[Shu-Chun],
Fang, X.L.[Xiao-Liang],
Automated Matching of Multi-Scale Building Data Based on Relaxation
Labelling and Pattern Combinations,
IJGI(8), No. 1, 2019, pp. xx-yy.
DOI Link
1901
BibRef
Pang, S.Y.[Shi-Yan],
Hu, X.Y.[Xiang-Yun],
Zhang, M.[Mi],
Cai, Z.L.[Zhong-Liang],
Liu, F.Z.[Feng-Zhu],
Co-Segmentation and Superpixel-Based Graph Cuts for Building Change
Detection from Bi-Temporal Digital Surface Models and Aerial Images,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Wen, D.W.[Da-Wei],
Huang, X.[Xin],
Zhang, A.[Anlu],
Ke, X.[Xinli],
Monitoring 3D Building Change and Urban Redevelopment Patterns in
Inner City Areas of Chinese Megacities Using Multi-View Satellite
Imagery,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Li, L.[Lu],
Wang, C.[Chao],
Zhang, H.[Hong],
Zhang, B.[Bo],
Wu, F.[Fan],
Urban Building Change Detection in SAR Images Using Combined
Differential Image and Residual U-Net Network,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Ji, S.P.[Shun-Ping],
Shen, Y.Y.[Yan-Yun],
Lu, M.[Meng],
Zhang, Y.J.[Yong-Jun],
Building Instance Change Detection from Large-Scale Aerial Images
using Convolutional Neural Networks and Simulated Samples,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Kushiyama, Y.[Yuzuru],
Matsuoka, M.[Masashi],
Time Series GIS Map Dataset of Demolished Buildings in Mashiki Town
after the 2016 Kumamoto, Japan Earthquake,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Ghaffarian, S.[Saman],
Kerle, N.[Norman],
Pasolli, E.[Edoardo],
Arsanjani, J.J.[Jamal Jokar],
Post-Disaster Building Database Updating Using Automated Deep
Learning: An Integration of Pre-Disaster OpenStreetMap and
Multi-Temporal Satellite Data,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Zhang, Z.C.[Zhen-Chao],
Vosselman, G.[George],
Gerke, M.[Markus],
Persello, C.[Claudio],
Tuia, D.[Devis],
Yang, M.Y.[Michael Ying],
Detecting Building Changes between Airborne Laser Scanning and
Photogrammetric Data,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Ma, H.J.[Hao-Jie],
Liu, Y.L.[Ya-Lan],
Ren, Y.H.[Yu-Huan],
Yu, J.X.[Jing-Xian],
Detection of Collapsed Buildings in Post-Earthquake Remote Sensing
Images Based on the Improved YOLOv3,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Jiang, H.[Huiwei],
Hu, X.Y.[Xiang-Yun],
Li, K.[Kun],
Zhang, J.M.[Jin-Ming],
Gong, J.Q.[Jin-Qi],
Zhang, M.[Mi],
PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network
for Remote Sensing Orthoimagery Building Change Detection,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Zhou, K.,
Lindenbergh, R.,
Gorte, B.,
Zlatanova, S.,
LiDAR-guided dense matching for detecting changes and updating of
buildings in Airborne LiDAR data,
PandRS(162), 2020, pp. 200-213.
Elsevier DOI
2004
Change detection, 3D city model, Building, LiDAR data,
VHR images, Dense matching
BibRef
Javadi, S.[Saleh],
Dahl, M.[Mattias],
Pettersson, M.I.[Mats I.],
Change Detection in Aerial Images Using Three-Dimensional Feature
Maps,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Dai, C.G.[Chen-Guang],
Zhang, Z.C.[Zhen-Chao],
Lin, D.[Dong],
An Object-Based Bidirectional Method for Integrated Building
Extraction and Change Detection between Multimodal Point Clouds,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Suchocki, C.[Czeslaw],
Damiecka-Suchocka, M.[Marzena],
Katzer, J.[Jacek],
Janicka, J.[Joanna],
Rapinski, J.[Jacek],
Stalowska, P.[Paulina],
Remote Detection of Moisture and Bio-Deterioration of Building Walls
by Time-Of-Flight and Phase-Shift Terrestrial Laser Scanners,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Suchocki, C.[Czeslaw],
Blaszczak-Bak, W.[Wioleta],
Damiecka-Suchocka, M.[Marzena],
Jagoda, M.[Marcin],
Masiero, A.[Andrea],
On the Use of the OptD Method for Building Diagnostics,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Miura, H.[Hiroyuki],
Aridome, T.[Tomohiro],
Matsuoka, M.[Masashi],
Deep Learning-Based Identification of Collapsed, Non-Collapsed and
Blue Tarp-Covered Buildings from Post-Disaster Aerial Images,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Tan, Y.[Yi],
Li, S.[Silin],
Wang, Q.[Qian],
Automated Geometric Quality Inspection of Prefabricated Housing Units
Using BIM and LiDAR,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Cao, S.S.[Shi-Song],
Du, M.Y.[Ming-Yi],
Zhao, W.J.[Wen-Ji],
Hu, Y.G.[Yun-Gang],
Mo, Y.[You],
Chen, S.S.[Shan-Shan],
Cai, Y.[Yile],
Peng, Z.Q.[Zi-Qiang],
Zhang, C.Y.[Chao-Yi],
Multi-level monitoring of three-dimensional building changes for
megacities: Trajectory, morphology, and landscape,
PandRS(167), 2020, pp. 54-70.
Elsevier DOI
2008
Airborne laser scanner, Megacity,
Object-Grid-City block building change detection,
3D morphological parameters
BibRef
Janicka, J.[Joanna],
Rapinski, J.[Jacek],
Blaszczak-Bak, W.[Wioleta],
Suchocki, C.[Czeslaw],
Application of the Msplit Estimation Method in the Detection and
Dimensioning of the Displacement of Adjacent Planes,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
TLS for building and other structure monitoring, evaluation of changes.
BibRef
Mohamadi, B.[Bahaa],
Balz, T.[Timo],
Younes, A.[Ali],
Towards a PS-InSAR Based Prediction Model for Building Collapse:
Spatiotemporal Patterns of Vertical Surface Motion in Collapsed
Building Areas: Case Study of Alexandria, Egypt,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Li, Q.Y.[Qing-Yu],
Shi, Y.L.[Yi-Lei],
Auer, S.[Stefan],
Roschlaub, R.[Robert],
Möst, K.[Karin],
Schmitt, M.[Michael],
Glock, C.[Clemens],
Zhu, X.X.[Xiao-Xiang],
Detection of Undocumented Building Constructions from Official
Geodata Using a Convolutional Neural Network,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Tian, Y.[Yi],
Hao, M.[Ming],
Zhang, H.[Hua],
Unsupervised Change Detection Using Spectrum-Trend and Shape
Similarity Measure,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Lyu, X.Z.[Xu-Zhe],
Hao, M.[Ming],
Shi, W.Z.[Wen-Zhong],
Building Change Detection Using a Shape Context Similarity Model for
LiDAR Data,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Zhang, H.M.[Hai-Ming],
Wang, M.C.[Ming-Chang],
Wang, F.Y.[Feng-Yan],
Yang, G.D.[Guo-Dong],
Zhang, Y.[Ying],
Jia, J.Q.[Jun-Qian],
Wang, S.Q.[Si-Qi],
A Novel Squeeze-and-Excitation W-Net for 2D and 3D Building Change
Detection with Multi-Source and Multi-Feature Remote Sensing Data,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Zhang, K.Y.[Kai-Yu],
Fu, X.[Xikai],
Lv, X.L.[Xiao-Lei],
Yuan, J.[Jili],
Unsupervised Multitemporal Building Change Detection Framework Based
on Cosegmentation Using Time-Series SAR,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Liu, D.[Dan],
Li, D.J.[Da-Jun],
Wang, M.Z.[Mei-Zhen],
Wang, Z.M.[Zhi-Ming],
3D Change Detection Using Adaptive Thresholds Based on Local Point
Cloud Density,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Wang, H.B.[Hai-Bo],
Qi, J.C.[Jian-Chao],
Lei, Y.F.[Yu-Fei],
Wu, J.[Jun],
Li, B.[Bo],
Jia, Y.L.[Yi-Lin],
A Refined Method of High-Resolution Remote Sensing Change Detection
Based on Machine Learning for Newly Constructed Building Areas,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Takagi, M.[Motohiro],
Hayase, K.[Kazuya],
Kitahara, M.[Masaki],
Shimamura, J.[Jun],
Building Change Detection by Using Past Map Information and Optical
Aerial Images,
IEICE(E104-D), No. 6, June 2021, pp. 897-900.
WWW Link.
2106
BibRef
Peng, D.F.[Dai-Feng],
Bruzzone, L.[Lorenzo],
Zhang, Y.J.[Yong-Jun],
Guan, H.Y.[Hai-Yan],
Ding, H.Y.[Hai-Yong],
Huang, X.[Xu],
SemiCDNet: A Semisupervised Convolutional Neural Network for Change
Detection in High Resolution Remote-Sensing Images,
GeoRS(59), No. 7, July 2021, pp. 5891-5906.
IEEE DOI
2106
Image segmentation, Remote sensing, Data models, Machine learning,
Buildings, Feature extraction, Task analysis,
semisupervised convolutional network
BibRef
Jovanovic, D.[Dušan],
Gavrilovic, M.[Milan],
Sladic, D.[Dubravka],
Radulovic, A.[Aleksandra],
Govedarica, M.[Miro],
Building Change Detection Method to Support Register of Identified
Changes on Buildings,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Jung, S.[Sejung],
Lee, W.H.[Won Hee],
Han, Y.[Youkyung],
Change Detection of Building Objects in High-Resolution Single-Sensor
and Multi-Sensor Imagery Considering the Sun and Sensor's Elevation
and Azimuth Angles,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Diakogiannis, F.I.[Foivos I.],
Waldner, F.[François],
Caccetta, P.[Peter],
Looking for Change? Roll the Dice and Demand Attention,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
building change
BibRef
Xue, J.K.[Jun-Kang],
Xu, H.[Hao],
Yang, H.[Hui],
Wang, B.[Biao],
Wu, P.[Penghai],
Choi, J.[Jaewan],
Cai, L.X.[Li-Xiao],
Wu, Y.[Yanlan],
Multi-Feature Enhanced Building Change Detection Based on Semantic
Information Guidance,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Shen, L.[Li],
Lu, Y.[Yao],
Chen, H.[Hao],
Wei, H.[Hao],
Xie, D.H.[Dong-Hai],
Yue, J.[Jiabao],
Chen, R.[Rui],
Lv, S.[Shouye],
Jiang, B.[Bitao],
S2Looking: A Satellite Side-Looking Dataset for Building Change
Detection,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Wang, H.[Hao],
Lv, X.L.[Xiao-Lei],
Zhang, K.Y.[Kai-Yu],
Guo, B.[Bin],
Building Change Detection Based on 3D Co-Segmentation Using Satellite
Stereo Imagery,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Ye, Y.X.[Yuan-Xin],
Zhou, L.[Liang],
Zhu, B.[Bai],
Yang, C.[Chao],
Sun, M.M.[Miao-Miao],
Fan, J.W.[Jian-Wei],
Fu, Z.T.[Zhi-Tao],
Feature Decomposition-Optimization-Reorganization Network for
Building Change Detection in Remote Sensing Images,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Schorcht, M.[Martin],
Hecht, R.[Robert],
Meinel, G.[Gotthard],
Comparative Study on Matching Methods for the Distinction of Building
Modifications and Replacements Based on Multi-Temporal Building
Footprint Data,
IJGI(11), No. 2, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Pan, J.P.[Jian-Ping],
Li, X.[Xin],
Cai, Z.Y.[Zhuo-Yan],
Sun, B.[Bowen],
Cui, W.[Wei],
A Self-Attentive Hybrid Coding Network for 3D Change Detection in
High-Resolution Optical Stereo Images,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Zheng, H.H.[Han-Hong],
Gong, M.[Maoguo],
Liu, T.F.[Tong-Fei],
Jiang, F.L.[Fen-Long],
Zhan, T.[Tao],
Lu, D.[Di],
Zhang, M.Y.[Ming-Yang],
HFA-Net: High frequency attention siamese network for building change
detection in VHR remote sensing images,
PR(129), 2022, pp. 108717.
Elsevier DOI
2206
Building change detection, High frequency enhancement,
Spatial-wise attention, Convolutional neural network
BibRef
Shen, Q.[Qian],
Huang, J.[Jiru],
Wang, M.[Min],
Tao, S.[Shikang],
Yang, R.[Rui],
Zhang, X.[Xin],
Semantic feature-constrained multitask siamese network for building
change detection in high-spatial-resolution remote sensing imagery,
PandRS(189), 2022, pp. 78-94.
Elsevier DOI
2206
Multitask learning, Height displacement,
High-spatial-resolution remote sensing, Siamese network
BibRef
Aliabad, F.A.[Fahime Arabi],
Malamiri, H.R.G.[Hamid Reza Ghafarian],
Shojaei, S.[Saeed],
Sarsangi, A.[Alireza],
Ferreira, C.S.S.[Carla Sofia Santos],
Kalantari, Z.[Zahra],
Investigating the Ability to Identify New Constructions in Urban
Areas Using Images from Unmanned Aerial Vehicles, Google Earth, and
Sentinel-2,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zheng, J.X.[Jia-Xiang],
Tian, Y.C.[Yi-Chen],
Yuan, C.[Chao],
Yin, K.[Kai],
Zhang, F.F.[Fei-Fei],
Chen, F.M.[Fang-Miao],
Chen, Q.[Qiang],
MDESNet: Multitask Difference-Enhanced Siamese Network for Building
Change Detection in High-Resolution Remote Sensing Images,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Chen, Z.L.[Zhan-Long],
Zhou, Y.[Yuan],
Wang, B.[Bin],
Xu, X.W.[Xu-Wei],
He, N.[Nan],
Jin, S.[Shuai],
Jin, S.[Shenrui],
EGDE-Net: A building change detection method for high-resolution
remote sensing imagery based on edge guidance and differential
enhancement,
PandRS(191), 2022, pp. 203-222.
Elsevier DOI
2208
Building change detection, Transformer, Edge guidance, Feature fusion
BibRef
Xu, X.[Xuwei],
Zhou, Y.[Yuan],
Lu, X.[Xiechun],
Chen, Z.L.[Zhan-Long],
FERA-Net: A Building Change Detection Method for High-Resolution
Remote Sensing Imagery Based on Residual Attention and High-Frequency
Features,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Zhang, J.[Jian],
Pan, B.[Bin],
Zhang, Y.[Yu],
Liu, Z.L.[Zhang-Le],
Zheng, X.[Xin],
Building Change Detection in Remote Sensing Images Based on Dual
Multi-Scale Attention,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Xu, C.[Chuan],
Ye, Z.Y.[Zhao-Yi],
Mei, L.[Liye],
Shen, S.[Sen],
Zhang, Q.[Qi],
Sui, H.G.[Hai-Gang],
Yang, W.[Wei],
Sun, S.H.[Shao-Hua],
SCAD: A Siamese Cross-Attention Discrimination Network for Bitemporal
Building Change Detection,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Hu, X.B.[Xian-Bin],
Wu, W.[Wei],
Li, Z.[Zhu],
Luo, X.L.[Xue-Liang],
Chen, Z.F.[Zheng-Feng],
Two-Stage Tripletnet: Light Weight Remote Sensing Scene
Classification,
ICIP24(2341-2346)
IEEE DOI
2411
Visualization, Scene classification, Adaptation models, Accuracy,
Semantics, Network architecture, Sampling methods, Triplet Loss
BibRef
Yang, H.P.[Hai-Ping],
Chen, Y.Y.[Yuan-Yuan],
Wu, W.[Wei],
Pu, S.L.[Shi-Liang],
Wu, X.Y.[Xiao-Yang],
Wan, Q.M.[Qi-Ming],
Dong, W.[Wen],
A Lightweight Siamese Neural Network for Building Change Detection
Using Remote Sensing Images,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Xu, C.[Chuan],
Ye, Z.Y.[Zhao-Yi],
Mei, L.[Liye],
Yang, W.[Wei],
Hou, Y.Y.[Ying-Ying],
Shen, S.[Sen],
Ouyang, W.[Wei],
Ye, Z.W.[Zhi-Wei],
Progressive Context-Aware Aggregation Network Combining Multi-Scale
and Multi-Level Dense Reconstruction for Building Change Detection,
RS(15), No. 8, 2023, pp. 1958.
DOI Link
2305
BibRef
Li, Y.[Yute],
Chen, H.[He],
Dong, S.[Shan],
Zhuang, Y.[Yin],
Li, L.L.[Lian-Lin],
Multi-Temporal SamplePair Generation for Building Change Detection
Promotion in Optical Remote Sensing Domain Based on Generative
Adversarial Network,
RS(15), No. 9, 2023, pp. xx-yy.
DOI Link
2305
BibRef
Huang, L.[Liang],
Tian, Q.Y.[Qiu-Yuan],
Tang, B.H.[Bo-Hui],
Le, W.P.[Wei-Peng],
Wang, M.[Min],
Ma, X.[Xianguang],
Siam-EMNet: A Siamese EfficientNet-MANet Network for Building Change
Detection in Very High Resolution Images,
RS(15), No. 16, 2023, pp. 3972.
DOI Link
2309
BibRef
Zhang, H.C.[Huang-Chuang],
Li, G.[Ge],
A Digital Grid Model for Complex Time-Varying Environments in Civil
Engineering Buildings,
RS(15), No. 16, 2023, pp. 4037.
DOI Link
2309
BibRef
Chen, Y.[Yao],
Zhang, J.[Jindou],
Shao, Z.F.[Zhen-Feng],
Huang, X.[Xiao],
Ding, Q.[Qing],
Li, X.[Xianyi],
Huang, Y.[Youju],
A Siamese Multiscale Attention Decoding Network for Building Change
Detection on High-Resolution Remote Sensing Images,
RS(15), No. 21, 2023, pp. 5127.
DOI Link
2311
BibRef
He, R.J.[Ren-Jie],
Li, W.[Wenyao],
Mei, S.H.[Shao-Hui],
Dai, Y.C.[Yu-Chao],
He, M.Y.[Ming-Yi],
EFP-Net: A Novel Building Change Detection Method Based on Efficient
Feature Fusion and Foreground Perception,
RS(15), No. 22, 2023, pp. 5268.
DOI Link
2311
BibRef
Zhu, Y.P.[Yang-Peng],
Fan, L.J.[Li-Juan],
Li, Q.Y.[Qian-Yu],
Chang, J.[Jing],
Multi-Scale Discrete Cosine Transform Network for Building Change
Detection in Very-High-Resolution Remote Sensing Images,
RS(15), No. 21, 2023, pp. 5243.
DOI Link
2311
BibRef
Fuentes-Reyes, M.[Mario],
Xie, Y.X.[Yu-Xing],
Yuan, X.T.[Xiang-Tian],
d'Angelo, P.[Pablo],
Kurz, F.[Franz],
Cerra, D.[Daniele],
Tian, J.J.[Jiao-Jiao],
A 2D/3D multimodal data simulation approach with applications on
urban semantic segmentation, building extraction and change detection,
PandRS(205), 2023, pp. 74-97.
Elsevier DOI Code:
WWW Link.
2311
3D change detection, Building extraction,
Urban semantic segmentation, Synthetic datasets
BibRef
Feng, W.Q.[Wen-Qing],
Guan, F.[Fangli],
Tu, J.H.[Ji-Hui],
Sun, C.H.[Chen-Hao],
Xu, W.[Wei],
Detection of Changes in Buildings in Remote Sensing Images via
Self-Supervised Contrastive Pre-Training and Historical Geographic
Information System Vector Maps,
RS(15), No. 24, 2023, pp. 5670.
DOI Link
2401
BibRef
Chen, P.[Peng],
Lin, J.X.[Jin-Xin],
Zhao, Q.[Qing],
Zhou, L.[Lei],
Yang, T.L.[Tian-Liang],
Huang, X.L.[Xin-Lei],
Wu, J.Z.[Jian-Zhong],
ADF-Net: An Attention-Guided Dual-Branch Fusion Network for Building
Change Detection near the Shanghai Metro Line Using Sequences of
TerraSAR-X Images,
RS(16), No. 6, 2024, pp. 1070.
DOI Link
2403
BibRef
Li, Y.L.[Yuan-Ling],
Zou, S.Y.[Sheng-Yuan],
Zhao, T.Z.[Tian-Zhong],
Su, X.H.[Xiao-Hui],
MDFA-Net: Multi-Scale Differential Feature Self-Attention Network for
Building Change Detection in Remote Sensing Images,
RS(16), No. 18, 2024, pp. 3466.
DOI Link
2410
BibRef
Chen, Z.L.[Zhan-Long],
Wang, R.[Rui],
Xu, Y.Y.[Yong-Yang],
Semi-Supervised Remote Sensing Building Change Detection with Joint
Perturbation and Feature Complementation,
RS(16), No. 18, 2024, pp. 3424.
DOI Link
2410
BibRef
Song, J.[Jian],
Chen, H.[Hongruixuan],
Yokoya, N.[Naoto],
SyntheWorld: A Large-Scale Synthetic Dataset for Land Cover Mapping
and Building Change Detection,
WACV24(8272-8281)
IEEE DOI Code:
WWW Link.
2404
Solid modeling, Costs, Annotations, Buildings, Land surface
BibRef
Srivastava, K.[Kushagra],
Patel, D.[Dhruv],
Jha, A.K.[Aditya Kumar],
Jha, M.K.[Mohhit Kumar],
Singh, J.[Jaskirat],
Sarvadevabhatla, R.K.[Ravi Kiran],
Ramancharla, P.K.[Pradeep Kumar],
Kandath, H.[Harikumar],
Krishna, K.M.[K. Madhava],
UAV-based Visual Remote Sensing for Automated Building Inspection,
CVCivil22(299-316).
Springer DOI
2304
BibRef
Yuan, X.,
Azimi, S.M.,
Henry, C.,
Gstaiger, V.,
Codastefano, M.,
Manalili, M.,
Cairo, S.,
Modugno, S.,
Wieland, M.,
Schneibel, A.,
Merkle, N.,
Automated Building Segmentation and Damage Assessment From Satellite
Images for Disaster Relief,
ISPRS21(B3-2021: 741-748).
DOI Link
2201
BibRef
Yuan, W.,
Yuan, X.,
Fan, Z.,
Guo, Z.,
Shi, X.,
Gong, J.,
Shibasaki, R.,
Graph Neural Network Based Multi-feature Fusion for Building Change
Detection,
ISPRS21(B3-2021: 377-382).
DOI Link
2201
BibRef
Lian, X.,
Yuan, W.,
Guo, Z.,
Cai, Z.,
Song, X.,
Shibasaki, R.,
End-to-end Building Change Detection Model In Aerial Imagery And
Digital Surface Model Based on Neural Networks,
ISPRS20(B2:1239-1246).
DOI Link
2012
BibRef
Tran, H.,
Khoshelham, K.,
Building Change Detection Through Comparison of a Lidar Scan With A
Building Information Model,
Indoor3D19(889-893).
DOI Link
1912
BibRef
Fangi, G.,
Aleppo - Before and After,
3DARCH19(333-338).
DOI Link
1904
BibRef
Azzola, P.,
Cardaci, A.,
Versaci, A.,
Integrated 3D Survey and Diagnostic Analysis for the Building
Engineering: the Former Kindergarten San Filippo Neri in Dalmine,
3DARCH19(51-56).
DOI Link
1904
BibRef
Ferguson, M.,
Law, K.,
A 2D-3D Object Detection System for Updating Building Information
Models with Mobile Robots,
WACV19(1357-1365)
IEEE DOI
1904
image colour analysis, image sensors, Kalman filters,
mobile robots, object detection, robot vision,
Cameras
BibRef
Gonçalves, J.[Joana],
Mateus, R.[Ricardo],
Silvestre, J.D.[José Dinis],
Comparative Analysis of Inspection and Diagnosis Tools for Ancient
Buildings,
EuroMed18(II:289-298).
Springer DOI
1811
Inspection of the state of conservation of buildings.
BibRef
Gálai, B.[Bence],
Benedek, C.[Csaba],
Change Detection in Urban Streets by a Real Time Lidar Scanner and MLS
Reference Data,
ICIAR17(210-220).
Springer DOI
1706
BibRef
Sabuncu, A.,
Avci, Z.D.U.[Z. D. Uca],
Sunar, F.,
Preliminary Results Of Earthquake-induced Building Damage Detection
With Object-based Image Classification,
ISPRS16(B7: 347-350).
DOI Link
1610
BibRef
Hron, V.,
Halounova, L.,
Nationwide Hybrid Change Detection Of Buildings,
ISPRS16(B7: 497-504).
DOI Link
1610
BibRef
Vacca, G.,
Mistretta, F.,
Stochino, F.,
Dessi, A.,
Terrestrial Laser Scanner For Monitoring The Deformations And The
Damages Of Buildings,
ISPRS16(B5: 453-460).
DOI Link
1610
BibRef
Peng, D.F.[Dai-Feng],
Zhang, Y.J.[Yong-Jun],
Building Change Detection By Combining Lidar Data And Ortho Image,
ISPRS16(B3: 669-676).
DOI Link
1610
BibRef
Chen, J.,
Hou, J.L.,
Deng, M.,
An Approach To Alleviate The False Alarm In Building Change Detection
From Urban VHR Image,
ISPRS16(B7: 459-465).
DOI Link
1610
BibRef
Cheriguene, R.S.,
Mahi, H.,
Buildings Change Detection on Quickbird Imagery,
CGiV16(368-371)
IEEE DOI
1608
buildings (structures)
BibRef
Pontecorvo, C.,
Sherrah, J.[Jamie],
Anomaly Detection of Man-Made Objects in Large Aerial Images,
DICTA15(1-8)
IEEE DOI
1603
image classification
BibRef
Nakagawa, M.,
Yamamoto, T.,
Tanaka, S.,
Noda, Y.,
Hashimoto, K.,
Ito, M.,
Miyo, M.,
Location-Based Infrastructure Inspection for Sabo Facilities,
Gi4DM15(257-262).
DOI Link
1602
BibRef
Chen, B.H.[Bao-Hua],
Deng, L.[Lei],
Duan, Y.Q.[Yue-Qi],
Huang, S.Y.[Si-Yuan],
Zhou, J.[Jie],
Building change detection based on 3D reconstruction,
ICIP15(4126-4130)
IEEE DOI
1512
2D-3D registration
BibRef
Hron, V.,
Halounova, L.,
Use of Aerial Images for Regular Updates of Buildings in the
Fundamental Base of Geographic Data of the Czech Republic,
PIA15(73-79).
DOI Link
1504
BibRef
Huang, J.[Jing],
You, S.[Suya],
Change Detection in Laser-Scanned Data of Industrial Sites,
WACV15(733-740)
IEEE DOI
1503
Data models.
BibRef
Tetsuka, D.[Daiki],
Okatani, T.[Takayuki],
Detecting Building-Level Changes of a City Using Street Images and a
2D City Map,
WACV15(349-356)
IEEE DOI
1503
Buildings
BibRef
Zong, K.B.[Kai-Bin],
Sowmya, A.[Arcot],
Trinder, J.,
Building Change Detection Based on Markov Random Field: Exploiting
Both Pixel and Corner Features,
DICTA15(1-7)
IEEE DOI
1603
BibRef
Earlier:
Kernel Partial Least Squares Based Hierarchical Building Change
Detection Using High Resolution Aerial Images and Lidar Data,
DICTA13(1-7)
IEEE DOI
1402
Markov processes.
airborne radar
BibRef
Tian, J.,
Reinartz, P.,
Comparison of Two Fusion Based Building Change Detection Methods Using
Satellite Stereo Imagery and DSMS,
IWIDF13(103-108).
DOI Link
1311
See also Region Based Forest Change Detection from CARTOSAT-1 Stereo Imagery.
BibRef
Saldana, M.,
Johanson, C.,
Procedural Modeling for Rapid-Prototyping of Multiple Building Phases,
3DARCH13(205-210).
DOI Link
1308
BibRef
Beumier, C.[Charles],
Idrissa, M.[Mahamadou],
Building Change Detection from Uniform Regions,
CIARP12(648-655).
Springer DOI
1209
BibRef
Dini, G.R.,
Jacobsen, K.,
Rottensteiner, F.,
Al Rajhi, M.,
Heipke, C.,
3D Building Change Detection Using High Resolution Stereo Images and a
GIS Database,
ISPRS12(XXXIX-B7:299-304).
DOI Link
1209
BibRef
du Plessis, S.,
Identifying Building Change Using High Resolution Point Clouds:
An Object-based Approach,
ISPRS12(XXXIX-B7:305-309).
DOI Link
1209
BibRef
Ishimaru, N.,
Iwamura, K.,
Kagawa, Y.,
Hino, T.,
Housediff: A Map-based Building Change Detection From High Resolution
Satellite Imagery Using Geometric Optimization Method,
ISPRS12(XXXIX-B4:73-78).
DOI Link
1209
BibRef
Tanauchi, Y.,
Chikatsu, H.,
Efficient Extraction Method of the Change of Buildings for Fixed
Property Investigation,
ISPRS12(XXXIX-B5:57-62).
DOI Link
1209
BibRef
Champion, N.,
Rottensteiner, F.,
Matikainen, L.[Leena],
Liang, X.,
Hyyppä, J.[Juha],
Olsen, B.P.,
A Test of Automatic Building Change Detection Approaches,
CMRT09(145-150).
PDF File.
0909
BibRef
Champion, N.,
2D Building Change Detection from High Resolution Aerial Images and
Correlation Digital Surface Models,
PIA07(197).
PDF File.
0711
BibRef
Nakagawa, M.[Masafumi],
Shibasaki, R.[Ryosuke],
Building Change Detection Using 3-D Texture Model,
ISPRS08(B3a: 173 ff).
PDF File.
0807
BibRef
Rottensteiner, F.[Franz],
Automated Updating of Building Data Bases from Digital Surface Models
and Multi-Spectral Images: Potential and Limitations,
ISPRS08(B3a: 265 ff).
PDF File.
0807
BibRef
Earlier:
Building Change Detection from Digital Surface Models and
Multi-Spectral Images,
PIA07(145).
PDF File.
0711
BibRef
Li, W.M.[Wei-Ming],
Li, X.M.[Xiao-Ming],
Wu, Y.H.[Yi-Hong],
Hu, Z.Y.[Zhan-Yi],
A Novel Framework for Urban Change Detection Using VHR Satellite Images,
ICPR06(II: 312-315).
IEEE DOI
0609
BibRef
Watanabe, S.,
Miyajima, K.,
Detecting Building Changes Using Epipolar Constraint from Aerial Images
Taken at Different Positions,
ICIP01(II: 201-204).
IEEE DOI
0108
BibRef
Jamet, O.,
Maitre, H.,
Le Men, H.,
Applying the Theory of Evidence to Vector-D.E.M. Comparison for the
Building Planimetric Change Detection,
ISPRSGIS99(29-34).
BibRef
9900
Lu, W.,
Doihara, T.,
Matsumoto, Y.,
Detection of Building Changes from Aerial Images
Through Information Fusion,
MVA98(xx-yy).
BibRef
9800
Mukawa, N.[Naoki],
Miyajima, K.[Koji],
Watanabe, S.[Shintaro],
Detecting Changes of Buildings from Aerial Images Using
Shadow and Shading Model,
ICPR98(Vol II: 1408-1412).
IEEE DOI
9808
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Change Detection for Damage Assessment .