13.3.3 Scene Graph Construction, Scene Graph Generation

Chapter Contents (Back)
Graph Structure. Graph Generation. Graph Construction. Scene Graph. Object Recognition.

Zheng, Z.X.[Zhen-Xing], Li, Z.D.[Zhen-Dong], An, G.Y.[Gao-Yun], Feng, S.H.[Song-He],
Subgraph and object context-masked network for scene graph generation,
IET-CV(14), No. 7, October 2020, pp. 546-553.
DOI Link 2010
BibRef

Xu, N.[Ning], Liu, A.A.[An-An], Wong, Y.K.[Yong-Kang], Nie, W.Z.[Wei-Zhi], Su, Y.T.[Yu-Ting], Kankanhalli, M.[Mohan],
Scene Graph Inference via Multi-Scale Context Modeling,
CirSysVideo(31), No. 3, March 2021, pp. 1031-1041.
IEEE DOI 2103
Visualization, Context modeling, Proposals, Feature extraction, Semantics, Head, Safety, Scene graph, context-fused inference, multi-scale context BibRef

Hung, Z.S.[Zih-Siou], Mallya, A.[Arun], Lazebnik, S.[Svetlana],
Contextual Translation Embedding for Visual Relationship Detection and Scene Graph Generation,
PAMI(43), No. 11, November 2021, pp. 3820-3832.
IEEE DOI 2110
Visualization, Feature extraction, Task analysis, Training, Semantics, Bicycles, Image edge detection, scene understanding BibRef

Zhou, H.[Hao], Yang, Y.Z.[Ya-Zhou], Luo, T.J.[Ting-Jin], Zhang, J.[Jun], Li, S.H.[Shuo-Hao],
A unified deep sparse graph attention network for scene graph generation,
PR(123), 2022, pp. 108367.
Elsevier DOI 2112
Scene graph generation, Statistical co-occurrence knowledge, Relationship measurement network, Graph attention network, Sparse graph BibRef

Lin, B.Q.[Bing-Qian], Zhu, Y.[Yi], Liang, X.D.[Xiao-Dan],
Atom correlation based graph propagation for scene graph generation,
PR(122), 2022, pp. 108300.
Elsevier DOI 2112
Scene graph generation, Long-tailed distribution, Knowledge graph, Atom correlation, Category space BibRef

Li, P.[Ping], Yu, Z.[Zhou], Zhan, Y.B.[Yi-Bing],
Deep relational self-Attention networks for scene graph generation,
PRL(153), 2022, pp. 200-206.
Elsevier DOI 2201
Scene graph generation, Image understanding, Deep neural networks BibRef

Wald, J.[Johanna], Navab, N.[Nassir], Tombari, F.[Federico],
Learning 3D Semantic Scene Graphs with Instance Embeddings,
IJCV(130), No. 3, March 2022, pp. 630-651.
Springer DOI 2203
BibRef

Garg, S.[Sarthak], Dhamo, H.[Helisa], Farshad, A.[Azade], Musatian, S.[Sabrina], Navab, N.[Nassir], Tombari, F.[Federico],
Unconditional Scene Graph Generation,
ICCV21(16342-16351)
IEEE DOI 2203
Measurement, Image synthesis, Computational modeling, Image edge detection, Semantics, Directed graphs, Neural generative models BibRef

Tao, L.T.[Lei-Tian], Mi, L.[Li], Li, N.N.[Nan-Nan], Cheng, X.H.[Xian-Hang], Hu, Y.[Yaosi], Chen, Z.Z.[Zhen-Zhong],
Predicate Correlation Learning for Scene Graph Generation,
IP(31), 2022, pp. 4173-4185.
IEEE DOI 2206
Correlation, Tail, Semantics, Head, Visualization, Phase change materials, Optimization, Image understanding, semantic overlap BibRef

Luo, J.[Jie], Zhao, J.[Jia], Wen, B.[Bin], Zhang, Y.H.[Yu-Hang],
Explaining the semantics capturing capability of scene graph generation models,
PR(110), 2021, pp. 107427.
Elsevier DOI 2011
Explanation, Metrics, Semantic property, Scene graph generation, Deep neural network BibRef

Guo, Y.Y.[Yu-Yu], Gao, L.L.[Lian-Li], Song, J.K.[Jing-Kuan], Wang, P.[Peng], Sebe, N.[Nicu], Shen, H.T.[Heng Tao], Li, X.L.[Xue-Long],
Relation Regularized Scene Graph Generation,
Cyber(52), No. 7, July 2022, pp. 5961-5972.
IEEE DOI 2207
Visualization, Feature extraction, Task analysis, Semantics, Detectors, Proposals, Convolution, visual relationship BibRef

Zhao, B.[Bowen], Mao, Z.D.[Zhen-Dong], Fang, S.C.[Shan-Cheng], Zang, W.Y.[Wen-Yu], Zhang, Y.D.[Yong-Dong],
Semantically Similarity-Wise Dual-Branch Network for Scene Graph Generation,
CirSysVideo(32), No. 7, July 2022, pp. 4573-4583.
IEEE DOI 2207
Visualization, Semantics, Feature extraction, Data mining, Encoding, Message passing, Training, Scene graph generation, message propagating BibRef

Lin, Z.Y.[Zhi-Yuan], Zhu, F.[Feng], Wang, Q.[Qun], Kong, Y.Z.[Yan-Zi], Wang, J.Y.[Jian-Yu], Huang, L.[Liang], Hao, Y.M.[Ying-Ming],
RSSGG_CS: Remote Sensing Image Scene Graph Generation by Fusing Contextual Information and Statistical Knowledge,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Chang, X.J.[Xiao-Jun], Ren, P.Z.[Peng-Zhen], Xu, P.F.[Peng-Fei], Li, Z.H.[Zhi-Hui], Chen, X.J.[Xiao-Jiang], Hauptmann, A.[Alex],
A Comprehensive Survey of Scene Graphs: Generation and Application,
PAMI(45), No. 1, January 2023, pp. 1-26.
IEEE DOI 2212
Survey, Graphs. Visualization, Task analysis, Feature extraction, Image recognition, Cognition, Training, Systematics, Scene graph, visual relationship recognition BibRef

Han, X.J.[Xian-Jing], Dong, X.N.[Xing-Ning], Song, X.M.[Xue-Meng], Gan, T.[Tian], Zhan, Y.B.[Yi-Bing], Yan, Y.[Yan], Nie, L.Q.[Li-Qiang],
Divide-and-Conquer Predictor for Unbiased Scene Graph Generation,
CirSysVideo(32), No. 12, December 2022, pp. 8611-8622.
IEEE DOI 2212
Correlation, Image analysis, Task analysis, Business process re-engineering, Predictive models, Bayesian personalized ranking BibRef

He, T.[Tao], Gao, L.[Lianli], Song, J.[Jingkuan], Li, Y.F.[Yuan-Fang],
State-Aware Compositional Learning Toward Unbiased Training for Scene Graph Generation,
IP(32), 2023, pp. 43-56.
IEEE DOI 2301
Visualization, Training, Task analysis, Predictive models, Dogs, Standards, Genomics, Scene graph generation, feature decomposition, data augmentation BibRef

Wang, Y.[Yu], Hu, L.[Liang], Gao, W.[Wanfu], Cao, X.F.[Xiao-Feng], Chang, Y.[Yi],
AdaNS: Adaptive negative sampling for unsupervised graph representation learning,
PR(136), 2023, pp. 109266.
Elsevier DOI 2301
Graph representation learning, Negative sampling, Noise contrastive estimation BibRef

Zhou, H.[Hao], Zhang, J.[Jun], Luo, T.[Tingjin], Yang, Y.Z.[Ya-Zhou], Lei, J.[Jun],
Debiased Scene Graph Generation for Dual Imbalance Learning,
PAMI(45), No. 4, April 2023, pp. 4274-4288.
IEEE DOI 2303
Tail, Correlation, Training, Resistance, Visualization, Task analysis, Semantics, Scene graph generation, dual imbalance learning, context bias BibRef

Li, X.[Xuewei], Wu, T.[Tao], Zheng, G.[Guangcong], Yu, Y.L.[Yun-Long], Li, X.[Xi],
Uncertainty-Aware Scene Graph Generation,
PRL(167), 2023, pp. 30-37.
Elsevier DOI 2303
Scene graph generation, Uncertainty analysis, Bayesian classifier reparameterization BibRef


Agarwal, R.[Rishi], Chandra, T.S.[Tirupati Saketh], Patil, V.[Vaidehi], Mahapatra, A.[Aniruddha], Kulkarni, K.[Kuldeep], Vinay, V.[Vishwa],
GEMS: Scene Expansion using Generative Models of Graphs,
WACV23(157-166)
IEEE DOI 2302
Measurement, Visualization, Sequential analysis, Computational modeling, Image retrieval, Genomics, Vision + language and/or other modalities BibRef

Feng, S.Y.[Sheng-Yu], Mostafa, H.[Hesham], Nassar, M.[Marcel], Majumdar, S.[Somdeb], Tripathi, S.[Subarna],
Exploiting Long-Term Dependencies for Generating Dynamic Scene Graphs,
WACV23(5119-5128)
IEEE DOI 2302
Fluctuations, Source coding, Genomics, Benchmark testing, Transformers, Bioinformatics, visual reasoning BibRef

Adaimi, G.[George], Mizrahi, D.[David], Alahi, A.[Alexandre],
Composite Relationship Fields with Transformers for Scene Graph Generation,
WACV23(52-64)
IEEE DOI 2302
Visualization, Image recognition, Image synthesis, Semantics, Genomics, Transformers, Real-time systems, Commercial/retail BibRef

Hasegawa, S.[So], Hiromoto, M.[Masayuki], Nakagawa, A.[Akira], Umeda, Y.[Yuhei],
Improving Predicate Representation in Scene Graph Generation by Self-Supervised Learning,
WACV23(2739-2748)
IEEE DOI 2302
Visualization, Genomics, Self-supervised learning, Task analysis, Bioinformatics, and un-supervised learning) BibRef

Trivedy, V.[Vivek], Latecki, L.J.[Longin Jan],
CNN2Graph: Building Graphs for Image Classification,
WACV23(1-11)
IEEE DOI 2302
Training, Representation learning, Costs, Transformers, Inference algorithms, Graph neural networks, Data models, and un-supervised learning) BibRef

Wang, J.J.[Jian-Jia], Zhao, X.[Xin], Wu, C.[Chong], Hancock, E.R.[Edwin R.],
Inferring Edges from Weights in the Debye Model,
ICPR22(3845-3850)
IEEE DOI 2212
Gamma distribution, Solid modeling, Temperature distribution, Thermodynamics, Temperature dependence, Solids, Probability distribution BibRef

Li, J.[Jingci], Lu, G.Q.[Guang-Quan], Wu, Z.T.[Zheng-Tian],
Multi-View Graph Autoencoder for Unsupervised Graph Representation Learning,
ICPR22(2213-2218)
IEEE DOI 2212
Representation learning, Training, Social networking (online), Network topology, Aggregates, Topology BibRef

Seymour, Z.[Zachary], Mithun, N.C.[Niluthpol Chowdhury], Chiu, H.P.[Han-Pang], Samarasekera, S.[Supun], Kumar, R.[Rakesh],
GraphMapper: Efficient Visual Navigation by Scene Graph Generation,
ICPR22(4146-4153)
IEEE DOI 2212
Visualization, Simultaneous localization and mapping, Navigation, Autonomous agents BibRef

Zhang, Y.Z.[Yi-Zhou], Zheng, Z.H.[Zhao-Heng], Nevatia, R.[Ram], Liu, Y.[Yan],
Improving Weakly Supervised Scene Graph Parsing through Object Grounding,
ICPR22(4058-4064)
IEEE DOI 2212
Measurement, Visualization, Grounding, Genomics, Image representation, Graph neural networks BibRef

Yamamoto, T.[Takuma], Obinata, Y.Y.[Yu-Ya], Nakayama, O.[Osafumi],
Transformer-based Scene Graph Generation Network With Relational Attention Module,
ICPR22(2034-2041)
IEEE DOI 2212
Training, Adaptation models, Visualization, Annotations, Genomics, Training data, Predictive models BibRef

Kim, M.S.[Min-Sang], Baek, S.[Seungjun],
ComDensE: Combined Dense Embedding of Relation-aware and Common Features for Knowledge Graph Completion,
ICPR22(1989-1995)
IEEE DOI 2212
Computational modeling, Neural networks, Feature extraction, Encoding, Natural language processing BibRef

Yu, X.[Xiang], Li, J.[Jie], Yuan, S.J.[Shi-Jing], Wang, C.[Chao], Wu, C.T.[Chen-Tao],
Zero-Shot Scene Graph Generation with Relational Graph Neural Networks,
ICPR22(1894-1900)
IEEE DOI 2212
Training, Measurement, Visualization, Correlation, Semantics, Genomics, Feature extraction BibRef

Shit, S.[Suprosanna], Koner, R.[Rajat], Wittmann, B.[Bastian], Paetzold, J.[Johannes], Ezhov, I.[Ivan], Li, H.W.[Hong-Wei], Pan, J.Z.[Jia-Zhen], Sharifzadeh, S.[Sahand], Kaissis, G.[Georgios], Tresp, V.[Volker], Menze, B.[Bjoern],
Relationformer: A Unified Framework for Image-to-Graph Generation,
ECCV22(XXXVII:422-439).
Springer DOI 2211
BibRef

Zhang, A.[Ao], Yao, Y.[Yuan], Chen, Q.Y.[Qian-Yu], Ji, W.[Wei], Liu, Z.Y.[Zhi-Yuan], Sun, M.[Maosong], Chua, T.S.[Tat-Seng],
Fine-Grained Scene Graph Generation with Data Transfer,
ECCV22(XXVII:409-424).
Springer DOI 2211
BibRef

Deng, Y.M.[You-Ming], Li, Y.S.[Yan-Sheng], Zhang, Y.J.[Yong-Jun], Xiang, X.[Xiang], Wang, J.[Jian], Chen, J.D.[Jing-Dong], Ma, J.Y.[Jia-Yi],
Hierarchical Memory Learning for Fine-Grained Scene Graph Generation,
ECCV22(XXVII:266-283).
Springer DOI 2211
BibRef

Yang, J.K.[Jing-Kang], Ang, Y.Z.[Yi Zhe], Guo, Z.[Zujin], Zhou, K.Y.[Kai-Yang], Zhang, W.[Wayne], Liu, Z.[Ziwei],
Panoptic Scene Graph Generation,
ECCV22(XXVII:178-196).
Springer DOI 2211
BibRef

He, T.[Tao], Gao, L.[Lianli], Song, J.[Jingkuan], Li, Y.F.[Yuan-Fang],
Towards Open-Vocabulary Scene Graph Generation with Prompt-Based Finetuning,
ECCV22(XXVIII:56-73).
Springer DOI 2211
BibRef

Xu, L.[Li], Qu, H.X.[Hao-Xuan], Kuen, J.[Jason], Gu, J.X.[Jiu-Xiang], Liu, J.[Jun],
Meta Spatio-Temporal Debiasing for Video Scene Graph Generation,
ECCV22(XXVII:374-390).
Springer DOI 2211
BibRef

Dong, W.[Wei], Wu, J.S.[Jun-Sheng], Luo, Y.[Yi], Ge, Z.Y.[Zong-Yuan], Wang, P.[Peng],
Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximization,
CVPR22(16599-16608)
IEEE DOI 2210

WWW Link. Representation learning, Smoothing methods, Codes, Computational modeling, Pattern recognition, Mutual information, Self- semi- meta- unsupervised learning BibRef

Li, W.[Wei], Zhang, H.W.[Hai-Wei], Bai, Q.J.[Qi-Jie], Zhao, G.Q.[Guo-Qing], Jiang, N.[Ning], Yuan, X.J.[Xiao-Jie],
PPDL: Predicate Probability Distribution based Loss for Unbiased Scene Graph Generation,
CVPR22(19425-19434)
IEEE DOI 2210
Training, Visualization, Analytical models, Computational modeling, Semantics, Optimization methods, Tail, retrieval, Recognition: detection BibRef

Teng, Y.[Yao], Wang, L.M.[Li-Min],
Structured Sparse R-CNN for Direct Scene Graph Generation,
CVPR22(19415-19424)
IEEE DOI 2210
Training, Visualization, Head, Pipelines, Genomics, Detectors, Object detection, Scene analysis and understanding, retrieval BibRef

Dong, X.N.[Xing-Ning], Gan, T.[Tian], Song, X.M.[Xue-Meng], Wu, J.L.[Jian-Long], Cheng, Y.[Yuan], Nie, L.Q.[Li-Qiang],
Stacked Hybrid-Attention and Group Collaborative Learning for Unbiased Scene Graph Generation,
CVPR22(19405-19414)
IEEE DOI 2210
Measurement, Visualization, Image analysis, Codes, Computational modeling, Pipelines, Vision + X BibRef

Li, Y.M.[Yi-Ming], Yang, X.S.[Xiao-Shan], Xu, C.S.[Chang-Sheng],
Dynamic Scene Graph Generation via Anticipatory Pre-training,
CVPR22(13864-13873)
IEEE DOI 2210
Visualization, Correlation, Triples (Data structure), Semantics, Predictive models, Transformers, Data mining, Visual reasoning BibRef

Li, R.J.[Rong-Jie], Zhang, S.[Songyang], He, X.M.[Xu-Ming],
SGTR: End-to-end Scene Graph Generation with Transformer,
CVPR22(19464-19474)
IEEE DOI 2210
Visualization, Image analysis, Transformers, Pattern recognition, Decoding, Bipartite graph, Proposals, Visual reasoning BibRef

Lyu, X.Y.[Xin-Yu], Gao, L.L.[Lian-Li], Guo, Y.Y.[Yu-Yu], Zhao, Z.[Zhou], Huang, H.[Hao], Shen, H.T.[Heng Tao], Song, J.[Jingkuan],
Fine-Grained Predicates Learning for Scene Graph Generation,
CVPR22(19445-19453)
IEEE DOI 2210
Visualization, Head, Lattices, Tail, Benchmark testing, Predictive models, Transformers, Visual reasoning BibRef

Nguyen, E.[Eric], Bui, T.[Tu], Swaminathan, V.[Viswanathan], Collomosse, J.[John],
OSCAR-Net: Object-centric Scene Graph Attention for Image Attribution,
ICCV21(14479-14488)
IEEE DOI 2203
Visualization, Shape, Scalability, Fingerprint recognition, Transformers, Search problems, Scene analysis and understanding BibRef

Yao, Y.[Yuan], Zhang, A.[Ao], Han, X.[Xu], Li, M.D.[Meng-Di], Weber, C.[Cornelius], Liu, Z.Y.[Zhi-Yuan], Wermter, S.[Stefan], Sun, M.S.[Mao-Song],
Visual Distant Supervision for Scene Graph Generation,
ICCV21(15796-15806)
IEEE DOI 2203
Visualization, Computational modeling, Noise reduction, Supervised learning, Image representation, Probabilistic logic, Vision + language BibRef

Knyazev, B.[Boris], de Vries, H.[Harm], Cangea, C.[Catalina], Taylor, G.W.[Graham W.], Courville, A.[Aaron], Belilovsky, E.[Eugene],
Generative Compositional Augmentations for Scene Graph Prediction,
ICCV21(15807-15817)
IEEE DOI 2203
Measurement, Training, Visualization, Training data, Genomics, Generative adversarial networks, Visual reasoning and logical representation BibRef

Cong, Y.[Yuren], Liao, W.T.[Wen-Tong], Ackermann, H.[Hanno], Rosenhahn, B.[Bodo], Yang, M.Y.[Michael Ying],
Spatial-Temporal Transformer for Dynamic Scene Graph Generation,
ICCV21(16352-16362)
IEEE DOI 2203
Visualization, Semantics, Neural networks, Genomics, Transformer cores, Transformers, Video analysis and understanding BibRef

Guo, Y.Y.[Yu-Yu], Gao, L.L.[Lian-Li], Wang, X.H.[Xuan-Han], Hu, Y.X.[Yu-Xuan], Xu, X.[Xing], Lu, X.[Xu], Shen, H.T.[Heng Tao], Song, J.K.[Jing-Kuan],
From General to Specific: Informative Scene Graph Generation via Balance Adjustment,
ICCV21(16363-16372)
IEEE DOI 2203
Training, Visualization, Triples (Data structure), Roads, Semantics, Power line communications, Layout, Visual reasoning and logical representation BibRef

Lu, Y.C.[Yi-Chao], Rai, H.[Himanshu], Chang, J.[Jason], Knyazev, B.[Boris], Yu, G.[Guangwei], Shekhar, S.[Shashank], Taylor, G.W.[Graham W.], Volkovs, M.[Maksims],
Context-aware Scene Graph Generation with Seq2Seq Transformers,
ICCV21(15911-15921)
IEEE DOI 2203
Training, Measurement, Visualization, Computational modeling, Training data, Predictive models, Visual reasoning and logical representation BibRef

Zhong, Y.[Yiwu], Shi, J.[Jing], Yang, J.W.[Jian-Wei], Xu, C.L.[Chen-Liang], Li, Y.[Yin],
Learning to Generate Scene Graph from Natural Language Supervision,
ICCV21(1803-1814)
IEEE DOI 2203
Training, Visualization, Image recognition, Natural languages, Detectors, Predictive models, Transformers, Vision + language, Scene analysis and understanding BibRef

Lee, W.[Wonhee], Kim, S.[Sungeun], Kim, G.[Gunhee],
Contextual Label Transformation for Scene Graph Generation,
ICIP21(2533-2537)
IEEE DOI 2201
Visualization, Head, Annotations, Scalability, Image processing, Object detection, Scene graph generation, label transformation BibRef

Zhang, Z.C.[Zhi-Chao], Dong, J.Y.[Jun-Yu], Zhao, Q.[Qilu], Qi, L.[Lin], Zhang, S.[Shu],
Attention LSTM for Scene Graph Generation,
ICIVC21(264-268)
IEEE DOI 2112
Degradation, Deep learning, Visualization, Fuses, Message passing, Semantics, Feature extraction, scene graph generation, message passing BibRef

Chen, H.[Hao], Chen, L.[Lin], Kuang, X.Y.[Xiao-Yun], Xu, A.D.[Ai-Dong], Yang, Y.[Yiwei],
A Safe and Intelligent Knowledge Graph Construction Model Suitable for Smart Gridaper Title,
ICIVC21(253-258)
IEEE DOI 2112
Computational modeling, Smart grids, smart grid, knowledge map, ternary extraction BibRef

Yang, G.C.[Geng-Cong], Zhang, J.Y.[Jing-Yi], Zhang, Y.[Yong], Wu, B.Y.[Bao-Yuan], Yang, Y.[Yujiu],
Probabilistic Modeling of Semantic Ambiguity for Scene Graph Generation,
CVPR21(12522-12531)
IEEE DOI 2111
Visualization, Uncertainty, Semantics, Diversity reception, Measurement uncertainty, Predictive models, Linguistics BibRef

Li, R.J.[Rong-Jie], Zhang, S.Y.[Song-Yang], Wan, B.[Bo], He, X.M.[Xu-Ming],
Bipartite Graph Network with Adaptive Message Passing for Unbiased Scene Graph Generation,
CVPR21(11104-11114)
IEEE DOI 2111
Training, Visualization, Adaptive systems, Message passing, Neural networks, Genomics BibRef

Liu, H.Y.[Heng-Yue], Yan, N.[Ning], Mortazavi, M.[Masood], Bhanu, B.[Bir],
Fully Convolutional Scene Graph Generation,
CVPR21(11541-11551)
IEEE DOI 2111
Measurement, Visualization, Semantics, Pipelines, Genomics, Object detection, Detectors BibRef

Suhail, M.[Mohammed], Mittal, A.[Abhay], Siddiquie, B.[Behjat], Broaddus, C.[Chris], Eledath, J.[Jayan], Medioni, G.[Gerard], Sigal, L.[Leonid],
Energy-Based Learning for Scene Graph Generation,
CVPR21(13931-13940)
IEEE DOI 2111
Training, Visualization, Computational modeling, Genomics, Benchmark testing, Pattern recognition BibRef

Dhingra, N.[Naina], Ritter, F.[Florian], Kunz, A.[Andreas],
BGT-Net: Bidirectional GRU Transformer Network for Scene Graph Generation,
WiCV21(2150-2159)
IEEE DOI 2109
Visualization, Image edge detection, Genomics, Pattern recognition, Softening BibRef

Liao, W.T.[Wen-Tong], Lan, C.L.[Cui-Ling], Yang, M.Y.[Michael Ying], Zeng, W.J.[Wen-Jun], Rosenhahn, B.[Bodo],
Target-Tailored Source-Transformation for Scene Graph Generation,
MULA21(1663-1671)
IEEE DOI 2109
Visualization, Message passing, Image edge detection, Semantics, Genomics, Transforms, Object detection BibRef

Wang, W.B.[Wen-Bin], Wang, R.P.[Rui-Ping], Shan, S.G.[Shi-Guang], Chen, X.L.[Xi-Lin],
Sketching Image Gist: Human-Mimetic Hierarchical Scene Graph Generation,
ECCV20(XIII:222-239).
Springer DOI 2011
BibRef

Zareian, A.[Alireza], Karaman, S.[Svebor], Chang, S.F.[Shih-Fu],
Bridging Knowledge Graphs to Generate Scene Graphs,
ECCV20(XXIII:606-623).
Springer DOI 2011
BibRef

Tang, K.H.[Kai-Hua], Niu, Y.L.[Yu-Lei], Huang, J.Q.[Jian-Qiang], Shi, J.X.[Jia-Xin], Zhang, H.W.[Han-Wang],
Unbiased Scene Graph Generation from Biased Training,
CVPR20(3713-3722)
IEEE DOI 2008
Visualization, Training, Task analysis, Predictive models, Dogs, Cognition, Genomics BibRef

Kurosawa, I.[Ikuto], Kobayashi, T.[Tetsunori], Hayashi, Y.[Yoshihiko],
Exploring and Exploiting the Hierarchical Structure of a Scene for Scene Graph Generation,
ICPR21(1422-1429)
IEEE DOI 2105
Visualization, Aggregates, Neural networks, Genomics, Knowledge discovery, Labeling BibRef

Lin, X.[Xin], Ding, C.X.[Chang-Xing], Zhan, Y.B.[Yi-Bing], Li, Z.J.[Zi-Jian], Tao, D.C.[Da-Cheng],
HL-Net: Heterophily Learning Network for Scene Graph Generation,
CVPR22(19454-19463)
IEEE DOI 2210
Visualization, Image analysis, Codes, Message passing, Genomics, Transformers, Scene analysis and understanding, Visual reasoning BibRef

Lin, X.[Xin], Ding, C.X.[Chang-Xing], Zhang, J.[Jing], Zhan, Y.B.[Yi-Bing], Tao, D.C.[Da-Cheng],
RU-Net: Regularized Unrolling Network for Scene Graph Generation,
CVPR22(19435-19444)
IEEE DOI 2210
Measurement, Visualization, Systematics, Laplace equations, Image analysis, Correlation, Databases, Visual reasoning BibRef

Lin, X.[Xin], Ding, C.X.[Chang-Xing], Zeng, J.Q.[Jin-Quan], Tao, D.C.[Da-Cheng],
GPS-Net: Graph Property Sensing Network for Scene Graph Generation,
CVPR20(3743-3752)
IEEE DOI 2008
Context modeling, Mathematical model, Ear, Visualization, Message passing, Dogs, Legged locomotion BibRef

Zareian, A.[Alireza], Wang, Z.[Zhecan], You, H.[Haoxuan], Chang, S.F.[Shih-Fu],
Learning Visual Commonsense for Robust Scene Graph Generation,
ECCV20(XXIII:642-657).
Springer DOI 2011
BibRef

Chen, L., Zhang, H., Xiao, J., He, X., Pu, S., Chang, S.,
Counterfactual Critic Multi-Agent Training for Scene Graph Generation,
ICCV19(4612-4622)
IEEE DOI 2004
biology computing, entropy, genomics, gradient methods, graph theory, image processing, learning (artificial intelligence), BibRef

Gkanatsios, N., Pitsikalis, V., Koutras, P., Maragos, P.,
Attention-Translation-Relation Network for Scalable Scene Graph Generation,
SGRL19(1754-1764)
IEEE DOI 2004
computer graphics, feature extraction, attention-translation-relation network, background class, Vision and Language BibRef

Chen, T.S.[Tian-Shui], Yu, W.H.[Wei-Hao], Chen, R.Q.[Ri-Quan], Lin, L.[Liang],
Knowledge-Embedded Routing Network for Scene Graph Generation,
CVPR19(6156-6164).
IEEE DOI 2002
BibRef

Chen, Z.[Zhanwen], Rezayi, S.[Saed], Li, S.[Sheng],
More Knowledge, Less Bias: Unbiasing Scene Graph Generation with Explicit Ontological Adjustment,
WACV23(4012-4021)
IEEE DOI 2302
Training, Visualization, Solid modeling, Source coding, Image edge detection, Semantics, Knowledge based systems, Vision + language and/or other modalities BibRef

Gu, J.X.[Jiu-Xiang], Zhao, H.D.[Han-Dong], Lin, Z.[Zhe], Li, S.[Sheng], Cai, J.F.[Jian-Fei], Ling, M.Y.[Ming-Yang],
Scene Graph Generation With External Knowledge and Image Reconstruction,
CVPR19(1969-1978).
IEEE DOI 2002
BibRef

Wang, W.B.[Wen-Bin], Wang, R.P.[Rui-Ping], Shan, S.G.[Shi-Guang], Chen, X.L.[Xi-Lin],
Exploring Context and Visual Pattern of Relationship for Scene Graph Generation,
CVPR19(8180-8189).
IEEE DOI 2002
BibRef

Khademi, M.[Mahmoud], Schulte, O.[Oliver],
Dynamic Gated Graph Neural Networks for Scene Graph Generation,
ACCV18(VI:669-685).
Springer DOI 1906
BibRef

Li, Y.K.[Yi-Kang], Ouyang, W.L.[Wan-Li], Zhou, B.[Bolei], Shi, J.P.[Jian-Ping], Zhang, C.[Chao], Wang, X.G.[Xiao-Gang],
Factorizable Net: An Efficient Subgraph-Based Framework for Scene Graph Generation,
ECCV18(I: 346-363).
Springer DOI 1810
BibRef

Yang, J.W.[Jian-Wei], Lu, J.[Jiasen], Lee, S.[Stefan], Batra, D.[Dhruv], Parikh, D.[Devi],
Graph R-CNN for Scene Graph Generation,
ECCV18(I: 690-706).
Springer DOI 1810
BibRef

Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.[Li],
Scene Graph Generation by Iterative Message Passing,
CVPR17(3097-3106)
IEEE DOI 1711
Image edge detection, Message passing, Predictive models, Proposals, Semantics, Visualization BibRef

Li, Y., Ouyang, W., Zhou, B., Wang, K., Wang, X.,
Scene Graph Generation from Objects, Phrases and Region Captions,
ICCV17(1270-1279)
IEEE DOI 1802
graph theory, image classification, image representation, neural nets, object detection, Visualization BibRef

Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Network Embedding, Graph Embedding .


Last update:Mar 27, 2023 at 09:32:08