Sonka, M.,
Park, W.[Wonkyu],
Hoffman, E.A.,
Rule-based detection of intrathoracic airway trees,
MedImg(15), No. 3, June 1996, pp. 314-326.
IEEE Top Reference.
0203
BibRef
Frerichs, I.,
Hahn, G.,
Hellige, G.,
Thoracic Electrical Impedance Tomographic Measurements During Volume
Controlled Ventilation-Effects of Tidal Volume and Positive
End-Expiratory Pressure,
MedImg(18), No. 9, September 1999, pp. 764-773.
IEEE Top Reference.
0110
BibRef
Tschirren, J.,
McLennan, G.,
Palagyi, K.,
Hoffman, E.A.,
Sonka, M.,
Matching and anatomical labeling of human airway tree,
MedImg(24), No. 12, December 2005, pp. 1540-1547.
IEEE DOI
0601
BibRef
Tschirren, J.,
Hoffman, E.A.,
McLennan, G.,
Sonka, M.,
Intrathoracic airway trees: segmentation and airway morphology analysis
from low-dose CT scans,
MedImg(24), No. 12, December 2005, pp. 1529-1539.
IEEE DOI
0601
BibRef
Lelieveldt, B.P.F.,
van der Geest, R.J.,
Ramze Rezaee, M.,
Bosch, J.G.,
Reiber, J.H.C.,
Anatomical model matching with fuzzy implicit surfaces for segmentation
of thoracic volume scans,
MedImg(18), No. 3, March 1999, pp. 218-230.
IEEE Top Reference.
0110
BibRef
Weruaga, L.,
Morales, J.,
Nunez, L.,
Verdu, R.,
Estimating volumetric motion in human thorax with parametric matching
constraints,
MedImg(22), No. 6, June 2003, pp. 766-772.
IEEE Abstract.
0308
BibRef
Loeckx, D.,
Maes, F.,
Vandermeulen, D.,
Suetens, P.,
Temporal subtraction of thorax CR images using statistical deformation
model,
MedImg(22), No. 11, November 2003, pp. 1490-1504.
IEEE Abstract.
0311
BibRef
Camara, O.[Oscar],
Colliot, O.[Olivier],
Bloch, I.[Isabelle],
Computational modeling of thoracic and abdominal anatomy using spatial
relationships for image segmentation,
RealTimeImg(10), No. 4, August 2004, pp. 263-273.
Elsevier DOI
0410
See also Fuzzy Spatial Relationships for Image Processing and Interpretation: A Review.
BibRef
Kuhnigk, J.M.,
Dicken, V.,
Bornemann, L.,
Bakai, A.,
Wormanns, D.,
Krass, S.,
Peitgen, H.O.,
Morphological Segmentation and Partial Volume Analysis for Volumetry of
Solid Pulmonary Lesions in Thoracic CT Scans,
MedImg(25), No. 4, April 2006, pp. 417-434.
IEEE DOI
0604
BibRef
Takizawa, H.[Hotaka],
Yamamoto, S.[Shinji],
Shiina, T.[Tsuyoshi],
Accuracy Improvement of Pulmonary Nodule Detection Based on Spatial
Statistical Analysis of Thoracic CT Scans,
IEICE(E90-D), No. 8, August 2007, pp. 1168-1174.
DOI Link
0708
BibRef
Earlier:
Accuracy Improvement of Lung Cancer Detection Based on Spatial
Statistical Analysis of Thoracic CT Scans,
MIRAGE07(607-617).
Springer DOI
0703
BibRef
Takizawa, H.[Hotaka],
Yamamoto, S.[Shinji],
Shiina, T.[Tsuyoshi],
Recognition of Lung Cancers on CT
Using 3-D Object Models of Different Classes,
MVA09(257-).
PDF File.
0905
BibRef
Rit, S.,
Sarrut, D.,
Desbat, L.,
Comparison of Analytic and Algebraic Methods for Motion-Compensated
Cone-Beam CT Reconstruction of the Thorax,
MedImg(28), No. 10, October 2009, pp. 1513-1525.
IEEE DOI
0910
BibRef
Camara, O.,
Delso, G.,
Colliot, O.,
Moreno-Ingelmo, A.,
Bloch, I.,
Explicit Incorporation of Prior Anatomical Information Into a Nonrigid
Registration of Thoracic and Abdominal CT and 18-FDG Whole-Body
Emission PET Images,
MedImg(26), No. 2, February 2007, pp. 164-178.
IEEE DOI
0702
BibRef
Murphy, K.,
van Ginneken, B.,
Reinhardt, J.M.,
Kabus, S.,
Ding, K.,
Deng, X.,
Cao, K.,
Du, K.,
Christensen, G.E.,
Garcia, V.,
Vercauteren, T.,
Ayache, N.J.,
Commowick, O.,
Malandain, G.,
Glocker, B.,
Paragios, N.,
Navab, N.,
Gorbunova, V.,
Sporring, J.,
de Bruijne, M.,
Han, X.,
Heinrich, M.P.,
Schnabel, J.A.,
Jenkinson, M.,
Lorenz, C.,
Modat, M.,
McClelland, J.R.,
Ourselin, S.,
Muenzing, S.E.A.,
Viergever, M.A.,
de Nigris, D.,
Collins, D.L.,
Arbel, T.,
Peroni, M.,
Li, R.,
Sharp, G.C.,
Schmidt-Richberg, A.,
Ehrhardt, J.,
Werner, R.,
Smeets, D.,
Loeckx, D.,
Song, G.,
Tustison, N.,
Avants, B.,
Gee, J.C.,
Staring, M.,
Klein, S.,
Stoel, B.C.,
Urschler, M.,
Werlberger, M.,
Vandemeulebroucke, J.,
Rit, S.,
Sarrut, D.,
Pluim, J.P.W.,
Evaluation of Registration Methods on Thoracic CT:
The EMPIRE10 Challenge,
MedImg(30), No. 11, November 2011, pp. 1901-1920.
IEEE DOI
1111
Survey, Registration.
BibRef
Zhu, Y.,
Kim, Y.C.,
Proctor, M.I.,
Narayanan, S.S.,
Nayak, K.S.,
Dynamic 3-D Visualization of Vocal Tract Shaping During Speech,
MedImg(32), No. 5, May 2013, pp. 838-848.
IEEE DOI
1305
BibRef
Tajbakhsh, N.[Nima],
Wu, H.[Hong],
Xue, W.Z.[Wen-Zhe],
Gotway, M.B.[Michael B.],
Liang, J.M.[Jian-Ming],
A novel online boosting algorithm for automatic anatomy detection,
MVA(24), No. 7, October 2013, pp. 1359-1370.
Springer DOI
1309
BibRef
Earlier: A1, A2, A3, A5, Only:
Automated Detection of Major Thoracic Structures with a Novel Online
Learning Method,
MLMI11(273-281).
Springer DOI
1109
BibRef
Mercan, C.A.,
Celebi, M.S.,
An approach for chest tube detection in chest radiographs,
IET-IPR(8), No. 2, February 2014, pp. 122-129.
DOI Link
1403
diagnostic radiography
BibRef
Fetita, C.,
Ortner, M.,
Brillet, P.Y.,
Preteux, F.,
Grenier, P.,
Volumetric Quantification of Airway Wall in CT via Collision-Free
Active Surface Model: Application to Asthma Assessment,
MedImg(33), No. 7, July 2014, pp. 1512-1526.
IEEE DOI
1407
Atmospheric modeling
BibRef
Herrmann, J.,
Hoffman, E.A.,
Kaczka, D.W.,
Frequency-Selective Computed Tomography:
Applications During Periodic Thoracic Motion,
MedImg(36), No. 8, August 2017, pp. 1722-1732.
IEEE DOI
1708
Computed tomography, Image reconstruction, Image resolution,
Motion artifacts, Standards, Ventilation, X-ray imaging, Heart,
X-ray imaging and computed tomography, image acquisition,
image reconstruction: analytical methods, lung,
motion compensation and analysis, tracking, (time, series, analysis)
BibRef
Wang, J.,
Schaffert, R.,
Borsdorf, A.,
Heigl, B.,
Huang, X.,
Hornegger, J.,
Maier, A.,
Dynamic 2-D/3-D Rigid Registration Framework Using Point-To-Plane
Correspondence Model,
MedImg(36), No. 9, September 2017, pp. 1939-1954.
IEEE DOI
1709
computerised tomography, image registration,
point-to-plane correspondence model, single-view X-ray image,
thorax phantom, Cameras,
Generators, Motion compensation, Robustness,
Solid modeling,
BibRef
Schaffert, R.,
Wang, J.,
Fischer, P.,
Maier, A.,
Borsdorf, A.,
Robust Multi-View 2-D/3-D Registration Using Point-To-Plane
Correspondence Model,
MedImg(39), No. 1, January 2020, pp. 161-174.
IEEE DOI
2001
Robustness, X-ray imaging, Cameras, Motion estimation,
Solid modeling, Feature extraction, Generators,
spine registration
BibRef
Schaffert, R.,
Wang, J.,
Fischer, P.,
Borsdorf, A.,
Maier, A.,
Learning an Attention Model for Robust 2-D/3-D Registration Using
Point-To-Plane Correspondences,
MedImg(39), No. 10, October 2020, pp. 3159-3174.
IEEE DOI
2010
Robustness, Training, X-ray imaging, Motion estimation,
Linear programming, Optimization, Training data,
head registration
BibRef
Samaghcheh, Z.N.[Zeinab Naseri],
Abdoli, F.[Fatemeh],
Abrishami Moghaddam, H.[Hamid],
Modaresi, M.[Mohammadreza],
Pak, N.[Neda],
A new model-based framework for lung tissue segmentation in
three-dimensional thoracic CT images,
SIViP(12), No. 2, February 2018, pp. 339-346.
Springer DOI
1802
BibRef
Commandeur, F.,
Goeller, M.,
Betancur, J.,
Cadet, S.,
Doris, M.,
Chen, X.,
Berman, D.S.,
Slomka, P.J.,
Tamarappoo, B.K.,
Dey, D.,
Deep Learning for Quantification of Epicardial and Thoracic Adipose
Tissue From Non-Contrast CT,
MedImg(37), No. 8, August 2018, pp. 1835-1846.
IEEE DOI
1808
Computed tomography, Heart, Calcium, Biomedical imaging,
Machine learning, Arteries, Feature extraction,
non-contrast computed tomography (CT)
BibRef
Price, H.B.,
Kimbell, J.S.,
Bu, R.,
Oldenburg, A.L.,
Geometric Validation of Continuous, Finely Sampled 3-D
Reconstructions From aOCT and CT in Upper Airway Models,
MedImg(38), No. 4, April 2019, pp. 1005-1015.
IEEE DOI
1904
Computed tomography,
Atmospheric modeling, Phantoms, Image segmentation, Electron tubes,
computed tomography
BibRef
Yang, M.L.[Meng-Lin],
Li, D.[Ding],
Zhang, W.S.[Wen-Sheng],
Spatial non-local attention for thoracic disease diagnosis and
visualisation in weakly supervised learning,
IET-IPR(13), No. 11, 19 September 2019, pp. 1922-1930.
DOI Link
1909
BibRef
Guan, Q.J.[Qing-Ji],
Huang, Y.P.[Ya-Ping],
Zhong, Z.[Zhun],
Zheng, Z.D.[Zhe-Dong],
Zheng, L.[Liang],
Yang, Y.[Yi],
Thorax Disease Classification with Attention Guided Convolutional
Neural Network,
PRL(131), 2020, pp. 38-45.
Elsevier DOI
2004
CXR image classification, Visual attention, Feature ensemble
BibRef
Guan, Q.,
Huang, Y.,
Luo, Y.,
Liu, P.,
Xu, M.,
Yang, Y.,
Discriminative Feature Learning for Thorax Disease Classification in
Chest X-ray Images,
IP(30), 2021, pp. 2476-2487.
IEEE DOI
2102
Diseases, X-ray imaging, Lesions, Pathology,
Medical diagnostic imaging, Location awareness, Semantics,
spatial-and-channel encoding
BibRef
Zhou, Y.,
Zhou, T.,
Zhou, T.,
Fu, H.,
Liu, J.,
Shao, L.,
Contrast-Attentive Thoracic Disease Recognition With Dual-Weighting
Graph Reasoning,
MedImg(40), No. 4, April 2021, pp. 1196-1206.
IEEE DOI
2104
Lung, Diseases, X-rays, Visualization, Radiology, Medical diagnosis,
Lesions, Thoracic diseases,
dual-weighting graph reasoning
BibRef
Lian, J.[Jie],
Liu, J.Y.[Jing-Yu],
Zhang, S.[Shu],
Gao, K.[Kai],
Liu, X.Q.[Xiao-Qing],
Zhang, D.[Dingwen],
Yu, Y.Z.[Yi-Zhou],
A Structure-Aware Relation Network for Thoracic Diseases Detection
and Segmentation,
MedImg(40), No. 8, August 2021, pp. 2042-2052.
IEEE DOI
2108
BibRef
And:
Correction:
MedImg(43), No. 2, February 2024, pp. 899-899.
IEEE DOI
2402
Diseases, Lung, X-ray imaging, Image segmentation, Proposals, Head,
Feature extraction, ChestX-Det
BibRef
Zhao, G.M.[Gang-Ming],
Fang, C.W.[Chao-Wei],
Li, G.B.[Guan-Bin],
Jiao, L.C.[Li-Cheng],
Yu, Y.Z.[Yi-Zhou],
Contralaterally Enhanced Networks for Thoracic Disease Detection,
MedImg(40), No. 9, September 2021, pp. 2428-2438.
IEEE DOI
2109
Diseases, Proposals, X-rays, Feature extraction, Location awareness,
Lung, Training, Chest X-ray, disease detection,
deep learning
BibRef
Hansen, L.[Lasse],
Heinrich, M.P.[Mattias P.],
GraphRegNet: Deep Graph Regularisation Networks on Sparse Keypoints
for Dense Registration of 3D Lung CTs,
MedImg(40), No. 9, September 2021, pp. 2246-2257.
IEEE DOI
2109
Lung, Computed tomography,
Biomedical imaging, Feature extraction, Strain, Estimation,
thoracic CT
BibRef
Roser, P.[Philipp],
Birkhold, A.[Annette],
Preuhs, A.[Alexander],
Syben, C.[Christopher],
Felsner, L.[Lina],
Hoppe, E.[Elisabeth],
Strobel, N.[Norbert],
Kowarschik, M.[Markus],
Fahrig, R.[Rebecca],
Maier, A.[Andreas],
X-Ray Scatter Estimation Using Deep Splines,
MedImg(40), No. 9, September 2021, pp. 2272-2283.
IEEE DOI
2109
Splines (mathematics), X-ray imaging, Photonics, Detectors,
Neural networks, Thorax, Estimation, Approximation, B-spline,
X-ray scatter
BibRef
Jiang, J.[Jue],
Veeraraghavan, H.[Harini],
One Shot PACS: Patient Specific Anatomic Context and Shape Prior
Aware Recurrent Registration-Segmentation of Longitudinal Thoracic
Cone Beam CTs,
MedImg(41), No. 8, August 2022, pp. 2021-2032.
IEEE DOI
2208
Image segmentation, Shape, Tumors, Strain, Training, Deformable models,
Computed tomography, One-shot learning,
anatomic context and shape prior
BibRef
Zhang, R.H.[Rui-Hua],
Yang, F.[Fan],
Luo, Y.[Yan],
Liu, J.Y.[Jian-Yi],
Wang, C.[Cong],
Learning invariant representation for unsupervised domain adaptive
thorax disease classification,
PRL(160), 2022, pp. 155-162.
Elsevier DOI
2208
Thorax disease classification, Invariant representation,
Unsupervised domain adaptation
BibRef
Lee, M.S.[Min Seok],
Han, S.W.[Sung Won],
DuETNet: Dual Encoder based Transfer Network for thoracic disease
classification,
PRL(161), 2022, pp. 143-153.
Elsevier DOI
2209
Thoracic disease classification,
Imbalanced multi-class classification,
Attention mechanism
BibRef
Zhao, G.Z.[Guang-Zhe],
Shao, S.[Shuai],
Yu, M.[Min],
Key techniques for classification of thorax diseases based on deep
learning,
IJIST(32), No. 6, 2022, pp. 2184-2197.
DOI Link
2212
ChestX-ray image analysis, convolution-al neural networks,
medical image classification
BibRef
Wu, Y.[Yirui],
Li, H.[Hao],
Feng, X.[Xi],
Casanova, A.[Andrea],
Abate, A.F.[Andrea F.],
Wan, S.H.[Shao-Hua],
GDRL: An interpretable framework for thoracic pathologic prediction,
PRL(165), 2023, pp. 154-160.
Elsevier DOI
2301
Disentangled representation learning,
Group-disentangled feature representation, Thoracic pathologic prediction
BibRef
Ashok, M.[Malvika],
Gupta, A.[Abhishek],
Pandey, M.[Mohit],
HCIU: Hybrid clustered inception-based UNET for the automatic
segmentation of organs at risk in thoracic computed tomography images,
IJIST(33), No. 6, 2023, pp. 2203-2217.
DOI Link
2311
deep-learning, globalization, K-mean clustering, localization,
organs at risk, segmentation
BibRef
Gao, Q.[Qing],
Chen, Y.Q.[Yong-Quan],
Ju, Z.J.[Zhao-Jie],
Oropharynx Visual Detection by Using a Multi-Attention Single-Shot
Multibox Detector for Human-Robot Collaborative Oropharynx Sampling,
HMS(53), No. 6, December 2023, pp. 1073-1082.
IEEE DOI
2312
BibRef
Costi, F.[Flavia],
Onchis, D.M.[Darian M.],
Istin, C.[Codruta],
Cozma, G.V.[Gabriel V.],
Explainability-enhanced Neural Network for Thoracic Diagnosis
Improvement,
CAIP23(I:35-44).
Springer DOI
2312
BibRef
Xiao, J.F.[Jun-Fei],
Bai, Y.T.[Yu-Tong],
Yuille, A.L.[Alan L.],
Zhou, Z.[Zongwei],
Delving into Masked Autoencoders for Multi-Label Thorax Disease
Classification,
WACV23(3577-3589)
IEEE DOI
2302
Scalability, Transfer learning, X-rays, Transformers, Thorax,
Convolutional neural networks, Task analysis,
Applications: Biomedical/healthcare/medicine
BibRef
Lambert, Z.[Zoé],
Petitjean, C.[Caroline],
Dubray, B.[Bernard],
Kuan, S.[Su],
SegTHOR: Segmentation of Thoracic Organs at Risk in CT images,
IPTA20(1-6)
IEEE DOI
2206
Training, Image segmentation, Computed tomography, Tools, Thorax,
Tumors, Image segmentation, CT imaging, organ at risk, dataset,
radiotherapy
BibRef
Mahmood, H.[Hassan],
Islam, S.M.S.[Syed Mohammed Shamsul],
Hill, J.[James],
Tay, G.[Guan],
Rapid Segmentation of Thoracic Organs using U-net Architecture,
DICTA21(01-06)
IEEE DOI
2201
Image segmentation, Computed tomography, Computational modeling,
Computer architecture, Throughput, Planning, U-net, Thorax, Organs,
Medical Imaging
BibRef
Ma, Y.,
Ma, A.J.,
Pan, Y.,
Chen, X.,
Multi-Scale Feature Pyramids for Weakly Supervised Thoracic Disease
Localization,
ICIP20(2481-2485)
IEEE DOI
2011
Diseases, X-ray imaging, Space heating, Task analysis,
Feature extraction, Cogeneration, Weakly Supervised Localization,
Chest X-ray Image
BibRef
Solovyev, R.[Roman],
Melekhov, I.[Iaroslav],
Lesonen, T.[Timo],
Vaattovaara, E.[Elias],
Tervonen, O.[Osmo],
Tiulpin, A.[Aleksei],
Bayesian Feature Pyramid Networks for Automatic Multi-label
Segmentation of Chest X-rays and Assessment of Cardio-thoratic Ratio,
ACIVS20(117-130).
Springer DOI
2003
BibRef
Sze-To, A.[Antonio],
Wang, Z.[Zihe],
tCheXNet: Detecting Pneumothorax on Chest X-Ray Images Using Deep
Transfer Learning,
ICIAR19(II:325-332).
Springer DOI
1909
BibRef
Li, Z.,
Wang, C.,
Han, M.,
Xue, Y.,
Wei, W.,
Li, L.,
Fei-Fei, L.,
Thoracic Disease Identification and Localization with Limited
Supervision,
CVPR18(8290-8299)
IEEE DOI
1812
Diseases, Task analysis, X-ray imaging, Predictive models,
Biomedical imaging, Interpolation, Image analysis
BibRef
Wang, X.,
Peng, Y.,
Lu, L.,
Lu, Z.,
Summers, R.M.,
TieNet: Text-Image Embedding Network for Common Thorax Disease
Classification and Reporting in Chest X-Rays,
CVPR18(9049-9058)
IEEE DOI
1812
X-rays, Diseases, Task analysis, Visualization, Biomedical imaging,
Training, Feature extraction
BibRef
Kumar, P.[Pulkit],
Grewal, M.[Monika],
Srivastava, M.M.[Muktabh Mayank],
Boosted Cascaded Convnets for Multilabel Classification of Thoracic
Diseases in Chest Radiographs,
ICIAR18(546-552).
Springer DOI
1807
BibRef
Ben Aicha, A.,
Ezzine, K.,
Cancer larynx detection using glottal flow parameters and statistical
tools,
ISIVC16(65-70)
IEEE DOI
1704
Cancer
BibRef
Novozamsky, A.[Adam],
Sedlar, J.[Jiri],
Zita, A.[Ales],
Sroubek, F.[Filip],
Flussef, J.[Jan],
Svec, J.G.[Jan G.],
Vydrova, J.[Jitka],
Zitova, B.[Barbara],
Image analysis of videokymographic data,
ICIP15(78-82)
IEEE DOI
1512
data segmentation; medical imaging; videokymography.
laryngology and phoniatrics for examination of vocal fold vibrations.
BibRef
Balacey, H.[Hugo],
Dournes, G.[Gael],
Desbarats, P.[Pascal],
Montaudon, M.[Michel],
Domenger, J.P.[Jean-Philippe],
Laurent, F.[Francois],
A new processing sequence to assess airways using 3D CT-scan,
ICIP13(2339-2343)
IEEE DOI
1402
Biomedical image processing; anatomical structures; image segmentation
BibRef
Ivanovska, T.[Tatyana],
Dober, J.[Johannes],
Laqua, R.[René],
Hegenscheid, K.[Katrin],
Völzke, H.[Henry],
Pharynx Segmentation from MRI Data for Analysis of Sleep Related
Disoders,
ISVC13(I:20-29).
Springer DOI
1310
BibRef
Martins, A.L.D.[Ana L. D.],
Mascarenhas, N.D.A.[Nelson D.A.],
Wiener based spatial resolution enhancement of MRI sequences of the
vocal tract: A comparison between two correlation models,
ICIP12(869-872).
IEEE DOI
1302
BibRef
Schnurrer, W.[Wolfgang],
Seiler, J.[Jurgen],
Wige, E.[Eugen],
Kaup, A.[Andre],
Analysis of displacement compensation methods for wavelet lifting of
medical 3-D thorax CT volume data,
VCIP12(1-6).
IEEE DOI
1302
BibRef
Takizawa, H.[Hotaka],
Ishii, S.[Shigeyuki],
Lung Cancer Detection from Thoracic CT Scans Using 3-D Deformable
Models Based on Statistical Anatomical Analysis,
MIRAGE11(28-39).
Springer DOI
1110
BibRef
Windisch, L.[Luke],
Cheriet, F.[Farida],
Grimard, G.[Guy],
Bayesian Differentiation of Multi-scale Line-Structures for Model-Free
Instrument Segmentation in Thoracoscopic Images,
ICIAR05(938-948).
Springer DOI
0509
BibRef
Urschler, M.[Martin],
Bauer, J.[Joachim],
Ditt, H.[Hendrik],
Bischof, H.[Horst],
SIFT and Shape Context for Feature-Based Nonlinear Registration of
Thoracic CT Images,
CVAMIA06(73-84).
Springer DOI
0605
BibRef
Summers, R.,
Mullick, R.,
Finkelstein, S.,
Schrump, D.,
Confocal Volume Rendering of the Thorax,
ICIP01(II: 297-299).
IEEE DOI
0108
BibRef
Coutand, F.,
Garnero, L.,
Fonroget, J.,
Anatomical data fusion for quantitative reconstruction in cardiac
tomoscintigraphy using active contours of the organs of the thorax,
ICIP96(II: 733-736).
IEEE DOI
9610
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Pulmonary Nodules, Lung Nodules .