26.1.12.4 Speech Enhancement

Chapter Contents (Back)
Speech. Enhancement. Speech Enhancement.

Mumolo, E.[Enzo],
Spectral domain texture analysis for speech enhancement,
PR(35), No. 10, October 2002, pp. 2181-2191.
Elsevier DOI 0206
BibRef

Chang, J.H.[Joon-Hyuk], Gazor, S.[Saeed], Kim, N.S.[Nam Soo], Mitra, S.K.[Sanjit K.],
Multiple statistical models for soft decision in noisy speech enhancement,
PR(40), No. 3, March 2007, pp. 1123-1134.
Elsevier DOI 0611
Speech enhancement; DCT; Multiple statistical model; Gaussian; Laplacian; Gamma; GOF; PSFM; SAP; PESQ BibRef

Esch, T., Rungeler, M., Heese, F., Vary, P.,
Estimation of Rapidly Time-Varying Harmonic Noise for Speech Enhancement,
SPLetters(19), No. 10, October 2012, pp. 659-662.
IEEE DOI 1209
BibRef

Mohammadiha, N., Martin, R., Leijon, A.,
Spectral Domain Speech Enhancement Using HMM State-Dependent Super-Gaussian Priors,
SPLetters(20), No. 3, March 2013, pp. 253-256.
IEEE DOI 1303
BibRef

Taal, C.H., Jensen, J., Leijon, A.,
On Optimal Linear Filtering of Speech for Near-End Listening Enhancement,
SPLetters(20), No. 3, March 2013, pp. 225-228.
IEEE DOI 1303
BibRef

Szurley, J., Bertrand, A., Moonen, M.,
On the Use of Time-Domain Widely Linear Filtering for Binaural Speech Enhancement,
SPLetters(20), No. 7, 2013, pp. 649-652.
IEEE DOI 1307
speech enhancement BibRef

Mowlaee, P., Saeidi, R.,
Iterative Closed-Loop Phase-Aware Single-Channel Speech Enhancement,
SPLetters(20), No. 12, 2013, pp. 1235-1239.
IEEE DOI 1311
Delays BibRef

Kulmer, J., Mowlaee, P.,
Phase Estimation in Single Channel Speech Enhancement Using Phase Decomposition,
SPLetters(22), No. 5, May 2015, pp. 598-602.
IEEE DOI 1411
Harmonic analysis BibRef

Xu, Y.[Yong], Du, J.[Jun], Dai, L.R.[Li-Rong], Lee, C.H.[Chin-Hui],
An Experimental Study on Speech Enhancement Based on Deep Neural Networks,
SPLetters(21), No. 1, January 2014, pp. 65-68.
IEEE DOI 1402
BibRef

Jin, Y.G.[Yu Gwang], Shin, J.W.[Jong Won], Kim, N.S.[Nam Soo],
Spectro-Temporal Filtering for Multichannel Speech Enhancement in Short-Time Fourier Transform Domain,
SPLetters(21), No. 3, March 2014, pp. 352-355.
IEEE DOI 1403
Fourier transforms BibRef

Kwon, K.[Kisoo], Shin, J.W.[Jong Won], Kim, N.S.[Nam Soo],
NMF-Based Speech Enhancement Using Bases Update,
SPLetters(22), No. 4, April 2015, pp. 450-454.
IEEE DOI 1411
matrix decomposition BibRef

Kim, M., Smaragdis, P.,
Mixtures of Local Dictionaries for Unsupervised Speech Enhancement,
SPLetters(22), No. 3, March 2015, pp. 293-297.
IEEE DOI 1410
Dictionaries BibRef

Kleijn, W.B., Hendriks, R.C.,
A Simple Model of Speech Communication and its Application to Intelligibility Enhancement,
SPLetters(22), No. 3, March 2015, pp. 303-307.
IEEE DOI 1410
Auditory system BibRef

Doclo, S., Kellermann, W., Makino, S., Nordholm, S.E.,
Multichannel Signal Enhancement Algorithms for Assisted Listening Devices: Exploiting spatial diversity using multiple microphones,
SPMag(32), No. 2, March 2015, pp. 18-30.
IEEE DOI 1503
audio signal processing BibRef

Kleijn, W.B., Crespo, J.B., Hendriks, R.C., Petkov, P., Sauert, B., Vary, P.,
Optimizing Speech Intelligibility in a Noisy Environment: A unified view,
SPMag(32), No. 2, March 2015, pp. 43-54.
IEEE DOI 1503
speech enhancement BibRef

Gerkmann, T., Krawczyk-Becker, M., Le Roux, J.,
Phase Processing for Single-Channel Speech Enhancement: History and recent advances,
SPMag(32), No. 2, March 2015, pp. 55-66.
IEEE DOI 1503
array signal processing BibRef

Tong, R.J.[Ren-Jie], Bao, G.Z.[Guang-Zhao], Ye, Z.F.[Zhong-Fu],
A Higher Order Subspace Algorithm for Multichannel Speech Enhancement,
SPLetters(22), No. 11, November 2015, pp. 2004-2008.
IEEE DOI 1509
AWGN BibRef

Tavares, R., Coelho, R.,
Speech Enhancement with Nonstationary Acoustic Noise Detection in Time Domain,
SPLetters(23), No. 1, January 2016, pp. 6-10.
IEEE DOI 1601
speech enhancement BibRef

Gholami-Boroujeny, S.[Shiva], Fallatah, A.[Anwar], Heffernan, B.P.[Brian P.], Dajani, H.R.[Hilmi R.],
Neural network-based adaptive noise cancellation for enhancement of speech auditory brainstem responses,
SIViP(10), No. 1, February 2016, pp. 389-395.
Springer DOI 1601
BibRef

Luo, Y.[You], Bao, G.Z.[Guang-Zhao], Xu, Y.F.[Yang-Fei], Ye, Z.F.[Zhong-Fu],
Supervised Monaural Speech Enhancement Using Complementary Joint Sparse Representations,
SPLetters(23), No. 2, February 2016, pp. 237-241.
IEEE DOI 1602
BibRef

Chung, H., Plourde, E., Champagne, B.,
Discriminative Training of NMF Model Based on Class Probabilities for Speech Enhancement,
SPLetters(23), No. 4, April 2016, pp. 502-506.
IEEE DOI 1604
Convergence BibRef

Wang, S.S., Chern, A., Tsao, Y., Hung, J.W., Lu, X., Lai, Y.H., Su, B.,
Wavelet Speech Enhancement Based on Nonnegative Matrix Factorization,
SPLetters(23), No. 8, August 2016, pp. 1101-1105.
IEEE DOI 1608
Fourier transforms BibRef

Petkov, P.N., Stylianou, Y.,
Adaptive Gain Control for Enhanced Speech Intelligibility Under Reverberation,
SPLetters(23), No. 10, October 2016, pp. 1434-1438.
IEEE DOI 1610
adaptive control BibRef

Sun, P., Qin, J.,
Low-Rank and Sparsity Analysis Applied to Speech Enhancement Via Online Estimated Dictionary,
SPLetters(23), No. 12, December 2016, pp. 1862-1866.
IEEE DOI 1612
expectation-maximisation algorithm BibRef

Reddy, C.K.A.[C. Karadagur Ananda], Shankar, N., Bhat, G.S.[G. Shreedhar], Charan, R., Panahi, I.,
An Individualized Super-Gaussian Single Microphone Speech Enhancement for Hearing Aid Users With Smartphone as an Assistive Device,
SPLetters(24), No. 11, November 2017, pp. 1601-1605.
IEEE DOI 1710
hearing aids, maximum likelihood estimation, signal denoising BibRef

van Kuyk, S., Kleijn, W.B., Hendriks, R.C.,
An Instrumental Intelligibility Metric Based on Information Theory,
SPLetters(25), No. 1, January 2018, pp. 115-119.
IEEE DOI 1801
information theory, speech enhancement, speech intelligibility, SIIB, information theoretic intelligibility metrics, mutual information BibRef

Zão, L., Coelho, R.,
On the Estimation of Fundamental Frequency From Nonstationary Noisy Speech Signals Based on the Hilbert-Huang Transform,
SPLetters(25), No. 2, February 2018, pp. 248-252.
IEEE DOI 1802
Hilbert transforms, speech enhancement, HHT-Amp, Hilbert-Huang transform, decomposition modes, nonstationary acoustic noises BibRef

Lee, J., Skoglund, J., Shabestary, T., Kang, H.,
Phase-Sensitive Joint Learning Algorithms for Deep Learning-Based Speech Enhancement,
SPLetters(25), No. 8, August 2018, pp. 1276-1280.
IEEE DOI 1808
learning (artificial intelligence), speech enhancement, time-frequency analysis, single-channel speech enhancement BibRef

Martín-Doñas, J.M., Gomez, A.M., Gonzalez, J.A., Peinado, A.M.,
A Deep Learning Loss Function Based on the Perceptual Evaluation of the Speech Quality,
SPLetters(25), No. 11, November 2018, pp. 1680-1684.
IEEE DOI 1811
distortion, learning (artificial intelligence), mean square error methods, neural nets, speech enhancement, DNN BibRef

Kim, G., Lee, H., Kim, B., Oh, S., Lee, S.,
Unpaired Speech Enhancement by Acoustic and Adversarial Supervision for Speech Recognition,
SPLetters(26), No. 1, January 2019, pp. 159-163.
IEEE DOI 1901
learning (artificial intelligence), natural language processing, neural nets, signal classification, generative adversarial network BibRef

Lei, P.[Peng], Chen, M.L.[Mei-Ling], Wang, J.[Jun],
Speech enhancement for in-vehicle voice control systems using wavelet analysis and blind source separation,
IET-ITS(13), No. 4, April 2019, pp. 693-702.
DOI Link 1903
BibRef

Ram, R.[Rashmirekha], Mohanty, M.N.[Mihir Narayan],
Use of radial basis function network with discrete wavelet transform for speech enhancement,
IJCVR(9), No. 2, 2019, pp. 207-223.
DOI Link 1904
BibRef

Kim, J., Hahn, M.,
Speech Enhancement Using a Two-Stage Network for an Efficient Boosting Strategy,
SPLetters(26), No. 5, May 2019, pp. 770-774.
IEEE DOI 1905
adaptive filters, computational complexity, learning (artificial intelligence), neural net architecture, two-stage network BibRef

Nakatani, T., Kinoshita, K.,
A Unified Convolutional Beamformer for Simultaneous Denoising and Dereverberation,
SPLetters(26), No. 6, June 2019, pp. 903-907.
IEEE DOI 1906
array signal processing, signal denoising, speech enhancement, speech recognition, simultaneous denoising, robust speech recognition BibRef

Li, X., Leglaive, S., Girin, L., Horaud, R.,
Audio-Noise Power Spectral Density Estimation Using Long Short-Term Memory,
SPLetters(26), No. 6, June 2019, pp. 918-922.
IEEE DOI 1906
audio signal processing, Fourier transforms, learning (artificial intelligence), speech enhancement, speech enhancement BibRef

Fu, S., Liao, C., Tsao, Y.,
Learning With Learned Loss Function: Speech Enhancement With Quality-Net to Improve Perceptual Evaluation of Speech Quality,
SPLetters(27), 2020, pp. 26-30.
IEEE DOI 2001
Perception optimization, PESQ, speech enhancement, speech quality assessment BibRef

Wu, J., Yu, C., Fu, S., Liu, C., Chien, S., Tsao, Y.,
Increasing Compactness of Deep Learning Based Speech Enhancement Models With Parameter Pruning and Quantization Techniques,
SPLetters(26), No. 12, December 2019, pp. 1887-1891.
IEEE DOI 2001
distributed processing, learning (artificial intelligence), neural nets, quantisation (signal), signal denoising, Low Computational Cost BibRef

Yu, C., Hung, K., Wang, S., Tsao, Y., Hung, J.,
Time-Domain Multi-Modal Bone/Air Conducted Speech Enhancement,
SPLetters(27), 2020, pp. 1035-1039.
IEEE DOI 2007
Noise measurement, Speech enhancement, Task analysis, Training, Time-domain analysis, Convolution, Multi-modal, fusion strategy BibRef

Hsieh, T.A., Wang, H.M., Lu, X., Tsao, Y.,
WaveCRN: An Efficient Convolutional Recurrent Neural Network for End-to-End Speech Enhancement,
SPLetters(27), 2020, pp. 2149-2153.
IEEE DOI 2012
Speech enhancement, Feature extraction, Task analysis, Noise reduction, Convolution, Noise measurement, Training, simple recurrent unit BibRef

Siniscalchi, S.M.,
Vector-to-Vector Regression via Distributional Loss for Speech Enhancement,
SPLetters(28), 2021, pp. 254-258.
IEEE DOI 2102
Noise measurement, Speech enhancement, Predictive models, Data models, Training, Histograms, Linear programming, speech enhancement BibRef

Cui, Z.[Zihao], Bao, C.C.[Chang-Chun],
Power Exponent Based Weighting Criterion for DNN-Based Mask Approximation in Speech Enhancement,
SPLetters(28), 2021, pp. 618-622.
IEEE DOI 2104
Speech enhancement, Noise measurement, Linear programming, Training, Databases, Indexes, Time-frequency analysis, speech enhancement BibRef

Witkowski, M.[Marcin], Kowalczyk, K.[Konrad],
Split Bregman Approach to Linear Prediction Based Dereverberation With Enforced Speech Sparsity,
SPLetters(28), 2021, pp. 942-946.
IEEE DOI 2106
Microphones, Reverberation, Cost function, Time-frequency analysis, Standards, Speech enhancement, Mathematical model, speech sparsity BibRef

Pan, N.N.[Ning-Ning], Wang, Y.Z.[Yu-Zhu], Chen, J.D.[Jing-Dong], Benesty, J.[Jacob],
A Single-Input/Binaural-Output Antiphasic Speech Enhancement Method for Speech Intelligibility Improvement,
SPLetters(28), 2021, pp. 1445-1449.
IEEE DOI 2108
Convolution, Rendering (computer graphics), Ear, Speech enhancement, Training, Noise measurement, Decoding, intelligibility BibRef

Xiang, X.X.[Xiao-Xiao], Zhang, X.J.[Xiao-Juan], Chen, H.Z.[Hao-Zhe],
A Convolutional Network With Multi-Scale and Attention Mechanisms for End-to-End Single-Channel Speech Enhancement,
SPLetters(28), 2021, pp. 1455-1459.
IEEE DOI 2108
Convolution, Speech enhancement, Noise measurement, Decoding, Training, Feature extraction, Time-domain analysis, dense connectivity BibRef

Xiang, X.X.[Xiao-Xiao], Zhang, X.J.[Xiao-Juan], Chen, H.Z.[Hao-Zhe],
Two-Stage Learning and Fusion Network With Noise Aware for Time-Domain Monaural Speech Enhancement,
SPLetters(28), 2021, pp. 1754-1758.
IEEE DOI 2109
Convolution, Decoding, Logic gates, Speech enhancement, Training, Noise measurement, Signal to noise ratio, Speech enhancement, dilated dense block BibRef

Li, G.[Gang], Wang, X.C.[Xiao-Chen], Hu, R.M.[Rui-Min], Zhang, H.Y.[Hu-Yin], Ke, S.F.[Shan-Fa],
Intelligibility Enhancement Via Normal-to-Lombard Speech Conversion With Long Short-Term Memory Network and Bayesian Gaussian Mixture Model,
MultMed(23), 2021, pp. 3035-3047.
IEEE DOI 2109
Vocoders, Speech enhancement, Working environment noise, Real-time systems, Delays, speech conversion BibRef

Cheng, L.B.[Long-Biao], Li, J.F.[Jun-Feng], Yan, Y.H.[Yong-Hong],
FSCNet: Feature-Specific Convolution Neural Network for Real-Time Speech Enhancement,
SPLetters(28), 2021, pp. 1958-1962.
IEEE DOI 2110
Convolution, Speech enhancement, Power capacitors, Kernel, Feature extraction, Time-frequency analysis, Decoding, speech enhancement BibRef

Tai, W.X.[Wen-Xin], Lan, T.[Tian], Wang, Q.H.[Qian-Hui], Liu, Q.[Qiao],
IDANet: An Information Distillation and Aggregation Network for Speech Enhancement,
SPLetters(28), 2021, pp. 1998-2002.
IEEE DOI 2110
Convolution, Feature extraction, Speech enhancement, Noise measurement, Decoding, Encoding, Training, Speech enhancement, deformable convolution BibRef

Wang, Z.Q.[Zhong-Qiu], Wichern, G.[Gordon], Le Roux, J.[Jonathan],
On the Compensation Between Magnitude and Phase in Speech Separation,
SPLetters(28), 2021, pp. 2018-2022.
IEEE DOI 2110
Time-domain analysis, Measurement, Training, Speech enhancement, Spectrogram, Signal to noise ratio, Task analysis, deep learning BibRef

Xiang, X.X.[Xiao-Xiao], Zhang, X.J.[Xiao-Juan], Chen, H.Z.[Hao-Zhe],
A Nested U-Net With Self-Attention and Dense Connectivity for Monaural Speech Enhancement,
SPLetters(29), 2022, pp. 105-109.
IEEE DOI 2202
Convolution, Speech enhancement, Feature extraction, Decoding, Time-domain analysis, Signal to noise ratio, Sensors, time-domain BibRef

Wang, Z.Q.[Zhong-Qiu], Watanabe, S.[Shinji],
Improving Frame-Online Neural Speech Enhancement With Overlapped-Frame Prediction,
SPLetters(29), 2022, pp. 1422-1426.
IEEE DOI 2207
Prediction algorithms, Speech enhancement, Discrete Fourier transforms, Spectrogram, Predictive models, online speech enhancement BibRef

Kim, H.[Hansol], Kang, K.[Kyeongmuk], Shin, J.W.[Jong Won],
Factorized MVDR Deep Beamforming for Multi-Channel Speech Enhancement,
SPLetters(29), 2022, pp. 1898-1902.
IEEE DOI 2209
Speech enhancement, Estimation, Artificial neural networks, MISO communication, Array signal processing, Deep learning, factorized MVDR beamformer BibRef

Fras, M.[Mieszko], Kowalczyk, K.[Konrad],
Convolutional Weighted Parametric Multichannel Wiener Filter for Reverberant Source Separation,
SPLetters(29), 2022, pp. 1928-1932.
IEEE DOI 2209
Wiener filters, Convolution, Reverberation, Microphones, Distortion, Speech enhancement, Transfer functions, Source separation, Wiener filter BibRef

Hwang, S.[Soojoong], Lee, E.[Eunkyun], Jang, I.[Inseon], Shin, J.W.[Jong Won],
Alias-and-Separate: Wideband Speech Coding Using Sub-Nyquist Sampling and Speech Separation,
SPLetters(29), 2022, pp. 2003-2007.
IEEE DOI 2210
Speech coding, Bit rate, Wideband, Encoding, Narrowband, Decoding, Speech enhancement, Frequency aliasing, speech codec, audio codec, coded signal enhancement BibRef

Yadav, S.K.[Shekhar Kumar], George, N.V.[Nithin V.],
Sparse Distortionless Modal Beamforming for Spherical Microphone Arrays,
SPLetters(29), 2022, pp. 2068-2072.
IEEE DOI 2211
Array signal processing, Microphone arrays, Harmonic analysis, Acoustic distortion, Speech enhancement, Power harmonic filters, sparse priors BibRef

Lee, J.Y.[Jin-Young], Kang, H.G.[Hong-Goo],
Two-Stage Refinement of Magnitude and Complex Spectra for Real-Time Speech Enhancement,
SPLetters(29), 2022, pp. 2188-2192.
IEEE DOI 2212
Convolution, Speech enhancement, Noise measurement, Estimation, Training, Time-frequency analysis, Kernel, two-stage network BibRef

Yu, R.X.[Run-Xiang], Zhao, Z.W.[Zi-Wei], Ye, Z.F.[Zhong-Fu],
PFRNet: Dual-Branch Progressive Fusion Rectification Network for Monaural Speech Enhancement,
SPLetters(29), 2022, pp. 2358-2362.
IEEE DOI 2212
Feature extraction, Transformers, Speech enhancement, Tensors, Convolution, Decoding, Time-frequency analysis, monaural speech enhancement BibRef

Rosenbaum, T.[Tomer], Cohen, I.[Israel], Winebrand, E.[Emil], Gabso, O.[Ofri],
Differentiable Mean Opinion Score Regularization for Perceptual Speech Enhancement,
PRL(166), 2023, pp. 159-163.
Elsevier DOI 2302
Speech enhancement, Mean opinion score, Speech quality assessment, Speech naturalness assessment BibRef

Lee, D.[Dongheon], Choi, J.W.[Jung-Woo],
DeFT-AN: Dense Frequency-Time Attentive Network for Multichannel Speech Enhancement,
SPLetters(30), 2023, pp. 155-159.
IEEE DOI 2303
Speech enhancement, Transformers, Noise measurement, Convolution, Time-frequency analysis, Time-domain analysis, transformer BibRef

Wang, T.T.[Ting-Ting], Pan, Z.[Zexu], Ge, M.[Meng], Yang, Z.[Zhen], Li, H.Z.[Hai-Zhou],
Time-Domain Speech Separation Networks With Graph Encoding Auxiliary,
SPLetters(30), 2023, pp. 110-114.
IEEE DOI 2303
Time-domain analysis, Encoding, Speech recognition, Convolution, Speech enhancement, Signal to noise ratio, Transforms, graph neural networks BibRef

Duan, Y.[Yicun], Ren, J.F.[Jian-Feng], Yu, H.[Heng], Jiang, X.D.[Xu-Dong],
GAN-in-GAN for Monaural Speech Enhancement,
SPLetters(30), 2023, pp. 853-857.
IEEE DOI 2307
Spectrogram, Generative adversarial networks, Training, Noise measurement, Generators, Noise reduction, Decoding, speech enhancement BibRef

Ai, Y.[Yang], Lu, Y.X.[Ye-Xin], Ling, Z.H.[Zhen-Hua],
Long-Frame-Shift Neural Speech Phase Prediction With Spectral Continuity Enhancement and Interpolation Error Compensation,
SPLetters(30), 2023, pp. 1097-1101.
IEEE DOI 2310
BibRef

Xiong, J.W.[Jun-Wen], Zhou, Y.[Yu], Zhang, P.[Peng], Xie, L.[Lei], Huang, W.[Wei], Zha, Y.F.[Yu-Fei],
Look&listen: Multi-Modal Correlation Learning for Active Speaker Detection and Speech Enhancement,
MultMed(25), 2023, pp. 5800-5812.
IEEE DOI 2311
BibRef

Liang, X.W.[Xing-Wei], Zhang, L.[Lu], Wu, Z.Y.[Zhi-Yong], Xu, R.F.[Rui-Feng],
Lite-RTSE: Exploring a Cost-Effective Lite DNN Model for Real-Time Speech Enhancement in RTC Scenarios,
SPLetters(30), 2023, pp. 1697-1701.
IEEE DOI 2312
BibRef

Yechuri, S.[Sivaramakrishna], Vanabathina, S.D.[Sunny Dayal],
Genetic Algorithm-Based Adaptive Wiener Gain for Speech Enhancement Using an Iterative Posterior NMF,
IJIG(23), No. 6 2023, pp. 2350054.
DOI Link 2312
BibRef

O'Shaughnessy, D.[Douglas],
Speech Enhancement: A Review of Modern Methods,
HMS(54), No. 1, February 2024, pp. 110-120.
IEEE DOI 2402
Survey, Speech Enhancement. Acoustic distortion, Acoustics, Speech enhancement, Speech coding, Reverberation, Noise measurement, Microphones. BibRef

Xu, X.[Xinmeng],
Improving Monaural Speech Enhancement by Mapping to Fixed Simulation Space With Knowledge Distillation,
SPLetters(31), 2024, pp. 386-390.
IEEE DOI 2402
Feature extraction, Speech enhancement, Spectrogram, Noise measurement, Training, Recording, Convolution, knowledge distillation BibRef

Xiang, B.[Bajian], Mao, W.Y.[Wen-Yu], Tan, K.J.[Kai-Jun], Lu, H.X.[Hua-Xiang],
CAT-DUnet: Enhancing Speech Dereverberation via Feature Fusion and Structural Similarity Loss,
SPLetters(31), 2024, pp. 456-460.
IEEE DOI 2402
Spectrogram, Convolution, Time-frequency analysis, Measurement, Training, Feature extraction, Deep learning, Attention mechanism, speech dereverberation BibRef

Park, H.J.[Hyun Joon], Shin, W.[Wooseok], Kim, J.S.[Jin Sob], Han, S.W.[Sung Won],
Leveraging Non-Causal Knowledge via Cross-Network Knowledge Distillation for Real-Time Speech Enhancement,
SPLetters(31), 2024, pp. 1129-1133.
IEEE DOI 2405
Real-time systems, Knowledge engineering, Convolution, Cause effect analysis, Speech enhancement, Decoding, Pipelines, non-causal knowledge BibRef

Jannu, C.[Chaitanya], Vanambathina, S.D.[Sunny Dayal],
Shuffle Attention U-Net for Speech Enhancement in Time Domain,
IJIG(24), No. 4, July 2024, pp. 2450043.
DOI Link 2408
BibRef

Han, R.[Runduo], Xu, W.M.[Wei-Ming], Zhang, Z.[Zihan], Liu, M.S.[Ming-Shuai], Xie, L.[Lei],
Distil-DCCRN: A Small-Footprint DCCRN Leveraging Feature-Based Knowledge Distillation in Speech Enhancement,
SPLetters(31), 2024, pp. 2075-2079.
IEEE DOI 2408
Feature extraction, Speech enhancement, Decoding, Time-frequency analysis, Standards, Long short term memory, knowledge distillation BibRef

Gonzalez, P.[Philippe], Tan, Z.H.[Zheng-Hua], Østergaard, J.[Jan], Jensen, J.[Jesper], Alstrøm, T.S.[Tommy Sonne], May, T.[Tobias],
The Effect of Training Dataset Size on Discriminative and Diffusion-Based Speech Enhancement Systems,
SPLetters(31), 2024, pp. 2225-2229.
IEEE DOI 2409
Training, Noise, Speech enhancement, Databases, Reflection, Receivers, Ear, Speech enhancement, training data, discriminative models, diffusion models BibRef

Quan, C.S.[Chang-Sheng], Li, X.F.[Xiao-Fei],
Multichannel Long-Term Streaming Neural Speech Enhancement for Static and Moving Speakers,
SPLetters(31), 2024, pp. 2295-2299.
IEEE DOI 2410
Speech enhancement, Training, Convolution, Extrapolation, Complexity theory, Vectors, Streams, Streaming, speech denoising, multi-channel speech enhancement BibRef

Hao, Y.[Yiya], Xiong, F.F.[Fei-Fei], Li, B.[Bei], Ding, N.[Nai], Feng, J.[Jinwei],
EMDSQA: A Neural Speech Quality Assessment Model With Speaker Embedding,
SPLetters(31), 2024, pp. 3064-3068.
IEEE DOI 2411
Quality assessment, Training, Speech enhancement, Nuclear magnetic resonance, Vectors, Feature extraction, Accuracy, online communication speech BibRef

Yang, Z.[Ziye], Song, X.[Xiang], Chen, J.[Jie], Richard, C.[Cédric], Cohen, I.[Israel],
Learning Noise Adapters for Incremental Speech Enhancement,
SPLetters(31), 2024, pp. 2915-2919.
IEEE DOI 2411
Noise, Training, Adaptation models, Speech enhancement, Decoding, Data models, Transformers, Speech recognition, speech enhancement BibRef

Jannu, C.[Chaitanya], Vanambathina, S.D.[Sunny Dayal],
Self-Attention-Based Convolutional GRU for Enhancement of Adversarial Speech Examples,
IJIG(24), No. 6, November 2024, pp. 2450053.
DOI Link 2501
BibRef

Guo, Z.[Zilu], Du, J.[Jun], Siniscalchi, S.M.[Sabato Marco], Pan, J.[Jia], Liu, Q.F.[Qing-Feng],
Controllable Conformer for Speech Enhancement and Recognition,
SPLetters(32), 2025, pp. 156-160.
IEEE DOI 2501
Noise reduction, Speech enhancement, Signal to noise ratio, Estimation, Speech recognition, Noise measurement, Schedules, ASR BibRef

Wang, C.Z.[Cheng-Zhong], Gu, J.J.[Jian-Jun], Yao, D.D.[Ding-Ding], Li, J.F.[Jun-Feng], Yan, Y.H.[Yong-Hong],
GALD-SE: Guided Anisotropic Lightweight Diffusion for Efficient Speech Enhancement,
SPLetters(32), 2025, pp. 426-430.
IEEE DOI 2501
Anisotropic, Speech enhancement, Noise, Noise measurement, Diffusion processes, Estimation, Anisotropic magnetoresistance, anisotropic diffusion process BibRef

Hou, Z.[Zhongshu], Lei, T.[Tong], Hu, Q.[Qinwen], Cao, Z.Z.[Zhan-Zhong], Lu, J.[Jing],
SNR-Progressive Model With Harmonic Compensation for Low-SNR Speech Enhancement,
SPLetters(32), 2025, pp. 476-480.
IEEE DOI 2501
Harmonic analysis, Signal to noise ratio, Speech enhancement, Power harmonic filters, Estimation, Spectrogram, Noise measurement, SNR-progressive learning BibRef

Jannu, C.[Chaitanya], Vanambathina, S.D.[Sunny Dayal],
An Overview of Speech Enhancement Based on Deep Learning Techniques,
IJIG(25), No. 1, Januaury 2025, pp. 2550001.
DOI Link 2502
BibRef

Zhou, H.[Hao], Zhou, Y.[Yi], Cheng, Z.H.[Zhen-Hua], Zhao, Y.[Yu], Liu, Y.[Yin],
Improved Encoder-Decoder Architecture With Human-Like Perception Attention for Monaural Speech Enhancement,
SPLetters(32), 2025, pp. 1670-1674.
IEEE DOI 2505
Decoding, Speech enhancement, Noise measurement, Convolution, Noise, Dams, Training, Noise reduction, Computational modeling, attention mechanism BibRef

Yechuri, S.[Sivaramakrishna], Vanabathina, S.D.[Sunny Dayal],
Speech Enhancement: A Review of Different Deep Learning Methods,
IJIG(25), No. 3, May 2025, pp. 2550024.
DOI Link 2505
BibRef

Lei, Y.[Yue], Luo, X.[Xucheng], Tai, W.X.[Wen-Xin], Zhou, F.[Fan],
Progressive Skip Connection Improves Consistency of Diffusion-Based Speech Enhancement,
SPLetters(32), 2025, pp. 1650-1654.
IEEE DOI 2505
Training, Speech enhancement, Gaussian noise, Mutual information, Diffusion processes, Predictive models, Noise measurement, mutual information BibRef

Xu, S.[Shiyun], Cao, Y.H.[Ying-Han], Zhang, W.J.[Wen-Jie], Zhang, Z.[Zehua], Wang, M.J.[Ming-Jiang],
FSTF-AN: Fused Sparse Temporal-Frequency Attentive Network for Multi-Channel Speech Enhancement,
SPLetters(32), 2025, pp. 2124-2128.
IEEE DOI 2506
Feature extraction, Speech enhancement, Transformers, Convolution, Spatial databases, Reverberation, Time-frequency analysis, multi-scale feed-forward network BibRef

Ma, H.[Hao], Chen, R.[Rujin], Zhang, X.L.[Xiao-Lei], Liu, J.[Ju], Li, X.L.[Xue-Long],
Enhancing Intelligibility for Generative Target Speech Extraction via Joint Optimization With Target Speaker ASR,
SPLetters(32), 2025, pp. 2309-2313.
IEEE DOI 2506
Speech enhancement, Training, Decoding, Spectrogram, Measurement, Semantics, Predictive models, Computational modeling, Vectors, multi-task joint learning BibRef

Sadeghi, M.[Mostafa], Ayilo, J.E.[Jean-Eudes], Serizel, R.[Romain], Alameda-Pineda, X.[Xavier],
Posterior Transition Modeling for Unsupervised Diffusion-Based Speech Enhancement,
SPLetters(32), 2025, pp. 2694-2698.
IEEE DOI 2507
Noise measurement, Speech enhancement, Training, Diffusion processes, Diffusion models, conditional transition modeling BibRef

Yang, D.H.[Da-Hee], Lee, J.[Jaeuk], Chang, J.H.[Joon-Hyuk],
Tokenized Generative Speech Enhancement With Language Model and Flow Matching,
SPLetters(32), 2025, pp. 2828-2832.
IEEE DOI 2508
Spectrogram, Noise measurement, Speech enhancement, Tokenization, Decoding, Training, Noise, Indexes, Computational modeling, Acoustics, flow-matching BibRef

Han, Y.[Yi], Chen, H.[Hang], Liu, L.J.[Li-Juan], Du, J.[Jun],
Dual-Branch Codec With Orthogonality Constraint and Knowledge Distillation for Noisy Environment,
SPLetters(32), 2025, pp. 3017-3021.
IEEE DOI 2509
Noise measurement, Noise, Codecs, Quantization (signal), Training, Speech enhancement, Speech coding, Decoding, Signal to noise ratio BibRef

Hua, H.[Hua], Shang, Z.Q.[Zeng-Qiang], Li, X.[Xuyuan], Yang, C.[Chen], Zhang, P.Y.[Peng-Yuan],
Flexpéro: Flexible Expressive Zero-Shot Speech Refinement via In-Context Learning,
SPLetters(32), 2025, pp. 3122-3126.
IEEE DOI 2509
Training, Speech enhancement, Mathematical models, Phonetics, Acoustics, Timbre, Data mining, Controllability, Context modeling, zero-shot speech generation BibRef

Wang, H.Y.[Hao-Yu], Qiang, C.Y.[Chun-Yu], Wang, T.R.[Tian-Rui], Gong, C.[Cheng], Wang, L.B.[Long-Biao],
Emotional Style Transfer With Intensity Control in Zero-Shot TTS,
SPLetters(32), 2025, pp. 3137-3141.
IEEE DOI 2509
Standards, Training, Data mining, Speech enhancement, Computer architecture, Vocoders, Timbre, Text to speech, cross speaker BibRef

Cheong, S.[Sein], Kim, M.[Minseung], Shin, J.W.[Jong Won],
Integrated DNN-Based Parameter Estimation for Multichannel Speech Enhancement,
SPLetters(32), 2025, pp. 3320-3324.
IEEE DOI 2509
Parameter estimation, Noise, Array signal processing, Estimation, Speech enhancement, Microphones, Noise measurement, DNN-based parameter estimation BibRef

Jiang, W.B.[Wen-Bin], Wen, F.[Fei], Yu, K.[Kai],
MOS-GAN: Mean Opinion Score GAN for Unsupervised Speech Enhancement,
SPLetters(32), 2025, pp. 3465-3469.
IEEE DOI 2510
Speech enhancement, Training, Measurement, Noise measurement, Generators, Unsupervised learning, Training data, Data models, unsupervised learning BibRef

Dmitrieva, E.[Ekaterina], Kaledin, M.[Maksim],
HiFi-Stream: Streaming Speech Enhancement With Generative Adversarial Networks,
SPLetters(32), 2025, pp. 3595-3599.
IEEE DOI 2510
Computational modeling, Frequency modulation, Convolution, Speech enhancement, Spectrogram, Training, Generators, streaming audio processing BibRef


Wang, Q.[Qiang], Song, X.[Xiang], He, Y.H.[Yu-Hang], Han, J.Z.[Ji-Zhou], Ding, C.H.[Chen-Hao], Gao, X.Y.[Xin-Yuan], Gong, Y.H.[Yi-Hong],
Boosting Domain Incremental Learning: Selecting the Optimal Parameters is All You Need,
CVPR25(4839-4849)
IEEE DOI 2508
Incremental learning, Accuracy, Memory management, Object detection, Benchmark testing, Speech enhancement, parameter-efficient fine-tuning BibRef

Li, X.S.[Xin-Shu], Tan, Z.H.[Zhen-Hua], Xia, Z.C.[Zhen-Che], Wu, D.[Danke], Zhang, B.[Bin],
Single-Channel Speech Separation Focusing on Attention DE,
ICPR22(3204-3209)
IEEE DOI 2212
Training, Convolution, Particle separators, Focusing, Speech recognition, Speech enhancement, Feature extraction, SepFormer Block BibRef

Xu, X.M.[Xin-Meng], Hao, J.J.[Jian-Jun],
U-Former: Improving Monaural Speech Enhancement with Multi-head Self and Cross Attention,
ICPR22(663-369)
IEEE DOI 2212
Training, Time-frequency analysis, Target tracking, Neural networks, Speech recognition, Speech enhancement, multi-head cross-attention BibRef

Li, D.S.[Deng-Shi], Zhao, L.X.[Lan-Xin], Xiao, J.[Jing], Liu, J.Q.[Jia-Qi], Guan, D.Z.[Duan-Zheng], Wang, Q.R.[Qian-Rui],
Adaptive Speech Intelligibility Enhancement for Far-and-Near-end Noise Environments Based on Self-attention StarGAN,
MMMod22(II:205-217).
Springer DOI 2203
BibRef

Xiao, J.[Jing], Liu, J.Q.[Jia-Qi], Li, D.S.[Deng-Shi], Zhao, L.X.[Lan-Xin], Wang, Q.R.[Qian-Rui],
Speech Intelligibility Enhancement By Non-Parallel Speech Style Conversion Using CWT and iMetricGAN Based CycleGAN,
MMMod22(I:544-556).
Springer DOI 2203
BibRef

Hegde, S.B.[Sindhu B.], Prajwal, K.R., Mukhopadhyay, R.[Rudrabha], Namboodiri, V.[Vinay], Jawahar, C.V.,
Visual Speech Enhancement Without A Real Visual Stream,
WACV21(1925-1934)
IEEE DOI 2106
Visualization, Lips, Speech enhancement, Streaming media, Filtering algorithms, Information filters, Noise measurement BibRef

Sun, Z.B.[Zhong-Bo], Wang, Y.N.[Yan-Nan], Cao, L.[Li],
An Attention Based Speaker-independent Audio-visual Deep Learning Model for Speech Enhancement,
MMMod20(II:722-728).
Springer DOI 2003
BibRef

Wang, Y.,
Research Progress in Speech Enhancement Technology,
CVIDL20(222-226)
IEEE DOI 2102
neural nets, speech enhancement, abstract original speech signals, pure speech signals, deep learning BibRef

Dendani, B.[Bilal], Bahi, H.[Halima], Sari, T.[Toufik],
Speech Enhancement Based on Deep Autoencoder for Remote Arabic Speech Recognition,
ICISP20(221-229).
Springer DOI 2009
BibRef

Coto-Jiménez, M.[Marvin],
Experimental Study on Transfer Learning in Denoising Autoencoders for Speech Enhancement,
MCPR20(307-317).
Springer DOI 2007
BibRef

Zhang, R.[Rui], Hu, R.M.[Rui-Min], Li, G.[Gang], Wang, X.C.[Xiao-Chen],
Spectral Tilt Estimation for Speech Intelligibility Enhancement Using RNN Based on All-Pole Model,
MMMod19(II:144-156).
Springer DOI 1901
BibRef

Samui, S.[Suman], Chakrabarti, I.[Indrajit], Ghosh, S.K.[Soumya K.],
Improving the Performance of Deep Learning Based Speech Enhancement System Using Fuzzy Restricted Boltzmann Machine,
PReMI17(534-542).
Springer DOI 1711
BibRef

Pignotti, A.[Alessio], Marcozzi, D.[Daniele], Cifani, S.[Simone], Squartini, S.[Stefano], Piazza, F.[Francesco],
A Blind Source Separation Based Approach for Speech Enhancement in Noisy and Reverberant Environment,
COST08(356-367).
Springer DOI 0810
BibRef

Kuhnapfel, T.[Thorsten], Tan, T.[Tele], Venkatesh, S.[Svertha], Igel, B.[Burkhard],
Distributed Audio Network for Speech Enhancement in Challenging Noise Backgrounds,
AVSBS09(308-313).
IEEE DOI 0909
BibRef

Kuhnapfel, T.[Thorsten], Tan, T.[Tele], Venkatesh, S.[Svetha], Nordholm, S.E.[Sven Erik], Igel, B.[Burkhard],
Adaptive speech enhancement with varying noise backgrounds,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Li, W.H.[Wei-Hong], Liu, M.[Ming], Zhu, Z.G.[Zhi-Gang], Huang, T.S.[Thomas S.],
LDV Remote Voice Acquisition and Enhancement,
ICPR06(IV: 262-265).
IEEE DOI 0609
BibRef

Chapter on New Unsorted Entries, and Other Miscellaneous Papers continues in
Speech Synthesis, Synthetic Speech .


Last update:Oct 6, 2025 at 14:07:43