22.2.15 Soil Salinity Measurements

Chapter Contents (Back)
Salinity. Soil Salinity.

Allbed, A.[Amal], Kumar, L.[Lalit], Sinha, P.[Priyakant],
Mapping and Modelling Spatial Variation in Soil Salinity in the Al Hassa Oasis Based on Remote Sensing Indicators and Regression Techniques,
RS(6), No. 2, 2014, pp. 1137-1157.
DOI Link 1403

Moreira, L.C.J.[Luis Clenio J.], dos Santos Teixeira, A.[Adunias], Soares Galvăo, L.[Lęnio],
Laboratory Salinization of Brazilian Alluvial Soils and the Spectral Effects of Gypsum,
RS(6), No. 4, 2014, pp. 2647-2663.
DOI Link 1405

Nawar, S.[Said], Buddenbaum, H.[Henning], Hill, J.[Joachim], Kozak, J.[Jacek],
Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy and Landsat Data Using Two Quantitative Methods (PLSR and MARS),
RS(6), No. 11, 2014, pp. 10813-10834.
DOI Link 1412

Wu, Y.[Yueru], Wang, W.Z.[Wei-Zhen], Zhao, S.J.[Shao-Jie], Liu, S.[Suhua],
Dielectric Properties of Saline Soils and an Improved Dielectric Model in C-Band,
GeoRS(53), No. 1, January 2015, pp. 440-452.
curve fitting BibRef

Nurmemet, I.[Ilyas], Ghulam, A.[Abduwasit], Tiyip, T.[Tashpolat], Elkadiri, R.[Racha], Ding, J.L.[Jian-Li], Maimaitiyiming, M.[Matthew], Abliz, A.[Abdulla], Sawut, M.[Mamat], Zhang, F.[Fei], Abliz, A.[Abdugheni], Sun, Q.[Qian],
Monitoring Soil Salinization in Keriya River Basin, Northwestern China Using Passive Reflective and Active Microwave Remote Sensing Data,
RS(7), No. 7, 2015, pp. 8803.
DOI Link 1506

Xu, C.[Chi], Zeng, W.Z.[Wen-Zhi], Huang, J.S.[Jie-Sheng], Wu, J.W.[Jing-Wei], van Leeuwen, W.J.D.[Willem J.D.],
Prediction of Soil Moisture Content and Soil Salt Concentration from Hyperspectral Laboratory and Field Data,
RS(8), No. 1, 2016, pp. 42.
DOI Link 1602

Bai, L.[Lin], Wang, C.Z.[Cui-Zhen], Zang, S.Y.[Shu-Ying], Zhang, Y.H.[Yu-Hong], Hao, Q.[Qiannan], Wu, Y.X.[Yue-Xiang],
Remote Sensing of Soil Alkalinity and Salinity in the Wuyu'er-Shuangyang River Basin, Northeast China,
RS(8), No. 2, 2016, pp. 163.
DOI Link 1603

Xu, L.[Lu], Wang, Q.[Quan],
Retrieval of Soil Water Content in Saline Soils from Emitted Thermal Infrared Spectra Using Partial Linear Squares Regression,
RS(7), No. 11, 2015, pp. 14646.
DOI Link 1512

da Rocha Neto, O.C.[Odílio Coimbra], dos Santos Teixeira, A.[Adunias], Leăo, d.A.[de_Oliveira_Raimundo Alípio], Moreira, L.C.J.[Luis Clenio Jario], Galvăo, L.S.[Lęnio Soares],
Hyperspectral Remote Sensing for Detecting Soil Salinization Using ProSpecTIR-VS Aerial Imagery and Sensor Simulation,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link 1702

Lugassi, R.[Rachel], Goldshleger, N.[Naftaly], Chudnovsky, A.[Alexandra],
Studying Vegetation Salinity: From the Field View to a Satellite-Based Perspective,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link 1703

Yang, X., Yu, Y.,
Estimating Soil Salinity Under Various Moisture Conditions: An Experimental Study,
GeoRS(55), No. 5, May 2017, pp. 2525-2533.
salinity (geophysical), soil, SSC estimated error, exponent function, laboratory experiment, land desertification processes, large-scale SSC mapping, mean-square error, remote sensing technology, soil reflectance spectra, soil salinity, various moisture conditions, Moisture, Remote sensing, Salinity (geophysical), Soil moisture, Surface waves, Hyperspectral imaging, parameter estimation, predictive models, salinity, soil moisture, soil properties, spectral analysis, spectroscopy BibRef

Liu, L.[Lanfa], Ji, M.[Min], Buchroithner, M.[Manfred],
A Case Study of the Forced Invariance Approach for Soil Salinity Estimation in Vegetation-Covered Terrain Using Airborne Hyperspectral Imagery,
IJGI(7), No. 2, 2018, pp. xx-yy.
DOI Link 1802

Nurmemet, I.[Ilyas], Sagan, V.[Vasit], Ding, J.L.[Jian-Li], Halik, Ü.[Ümüt], Abliz, A.[Abdulla], Yakup, Z.[Zaytungul],
A WFS-SVM Model for Soil Salinity Mapping in Keriya Oasis, Northwestern China Using Polarimetric Decomposition and Fully PolSAR Data,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805

Fan, X.W.[Xing-Wang], Liu, Y.B.[Yuan-Bo], Tao, J.M.[Jin-Mei], Weng, Y.L.[Yong-Ling],
Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression,
RS(7), No. 1, 2015, pp. 488-511.
DOI Link 1502

Bannari, A.[Abderrazak], El-Battay, A.[Ali], Bannari, R.[Rachid], Rhinane, H.[Hassan],
Sentinel-MSI VNIR and SWIR Bands Sensitivity Analysis for Soil Salinity Discrimination in an Arid Landscape,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806

Meissner, T.[Thomas], Wentz, F.J.[Frank J.], Le Vine, D.M.[David M.],
The Salinity Retrieval Algorithms for the NASA Aquarius Version 5 and SMAP Version 3 Releases,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808

Fu, C.B.[Cheng-Biao], Gan, S.[Shu], Yuan, X.P.[Xi-Ping], Xiong, H.G.[Hei-Gang], Tian, A.H.[An-Hong],
Determination of Soil Salt Content Using a Probability Neural Network Model Based on Particle Swarm Optimization in Areas Affected and Non-Affected by Human Activities,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810

Hoa, P.V.[Pham Viet], Giang, N.V.[Nguyen Vu], Binh, N.A.[Nguyen An], Hai, L.V.H.[Le Vu Hong], Pham, T.D.[Tien-Dat], Hasanlou, M.[Mahdi], Bui, D.T.[Dieu Tien],
Soil Salinity Mapping Using SAR Sentinel-1 Data and Advanced Machine Learning Algorithms: A Case Study at Ben Tre Province of the Mekong River Delta (Vietnam),
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902

Li, X.J.[Xiao-Jie], Ren, J.H.[Jian-Hua], Zhao, K.[Kai], Liang, Z.W.[Zheng-Wei],
Correlation between Spectral Characteristics and Physicochemical Parameters of Soda-Saline Soils in Different States,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link 1903

Hu, J.[Jie], Peng, J.[Jie], Zhou, Y.[Yin], Xu, D.Y.[Dong-Yun], Zhao, R.Y.[Rui-Ying], Jiang, Q.S.[Qing-Song], Fu, T.T.[Ting-Ting], Wang, F.[Fei], Shi, Z.[Zhou],
Quantitative Estimation of Soil Salinity Using UAV-Borne Hyperspectral and Satellite Multispectral Images,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link 1904

Wang, S.[Sijia], Chen, Y.H.[Yun-Hao], Wang, M.[Mingguo], Zhao, Y.[Yifei], Li, J.[Jing],
SPA-Based Methods for the Quantitative Estimation of the Soil Salt Content in Saline-Alkali Land from Field Spectroscopy Data: A Case Study from the Yellow River Irrigation Regions,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link 1905

Zhang, S.M.[Su-Ming], Zhao, G.X.[Geng-Xing],
A Harmonious Satellite-Unmanned Aerial Vehicle-Ground Measurement Inversion Method for Monitoring Salinity in Coastal Saline Soil,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link 1908

Wang, S.[Sijia], Chen, Y.H.[Yun-Hao], Wang, M.[Mingguo], Li, J.[Jing],
Performance Comparison of Machine Learning Algorithms for Estimating the Soil Salinity of Salt-Affected Soil Using Field Spectral Data,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link 1911

Wang, J.J.[Jian-Jun], Sun, Q.[Quan], Shang, J.L.[Jia-Li], Zhang, J.H.[Jia-Hua], Wu, F.[Fei], Zhou, G.S.[Gui-Sheng], Dai, Q.G.[Qi-Gen],
A New Approach for Estimating Soil Salinity Using A Low-Cost Soil Sensor In Situ: A Case Study in Saline Regions of China's East Coast,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link 2001

Tian, A., Fu, C., Yau, H., Su, X., Xiong, H.,
A New Methodology of Soil Salinization Degree Classification by Probability Neural Network Model Based on Centroid of Fractional Lorenz Chaos Self-Synchronization Error Dynamics,
GeoRS(58), No. 2, February 2020, pp. 799-810.
Soil, Hyperspectral imaging, Chaotic communication, Neural networks, Soil measurements, Dynamic error, soil spectral reflectance BibRef

Wu, B., Li, X., Zhao, K., Jiang, T., Zheng, X., Li, X., Gu, L., Wang, X.,
A Nondestructive Conductivity Estimating Method for Saline-Alkali Land Based on Ground Penetrating Radar,
GeoRS(58), No. 4, April 2020, pp. 2605-2614.
Ground penetrating radar, Soil, Conductivity, Correlation, Land surface, Soil measurements, Conductivity measurement, saline-alkali soil BibRef

Wang, Z.[Zheng], Zhang, F.[Fei], Zhang, X.L.[Xian-Long], Chan, N.W.[Ngai Weng], Kung, H.T.[Hsiang-Te], Zhou, X.H.[Xiao-Hong], Wang, Y.[Yishan],
Quantitative Evaluation of Spatial and Temporal Variation of Soil Salinization Risk Using GIS-Based Geostatistical Method,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008

Ding, J.L.[Jian-Li], Yang, S.T.[Sheng-Tian], Shi, Q.[Qian], Wei, Y.[Yang], Wang, F.[Fei],
Using Apparent Electrical Conductivity as Indicator for Investigating Potential Spatial Variation of Soil Salinity across Seven Oases along Tarim River in Southern Xinjiang, China,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008

Bannari, A.[Abderrazak], Al-Ali, Z.M.[Zahra M.],
Assessing Climate Change Impact on Soil Salinity Dynamics between 1987-2017 in Arid Landscape Using Landsat TM, ETM+ and OLI Data,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009

Moussa, I.[Issaka], Walter, C.[Christian], Michot, D.[Didier], Boukary, I.A.[Issifou Adam], Nicolas, H.[Hervé], Pichelin, P.[Pascal], Guéro, Y.[Yadji],
Soil Salinity Assessment in Irrigated Paddy Fields of the Niger Valley Using a Four-Year Time Series of Sentinel-2 Satellite Images,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link 2010

Li, H.Y.[Hong-Yi], Liu, X.[Xinlu], Hu, B.[Bifeng], Biswas, A.[Asim], Jiang, Q.S.[Qing-Song], Liu, W.Y.[Wei-Yang], Wang, N.[Nan], Peng, J.[Jie],
Field-Scale Characterization of Spatio-Temporal Variability of Soil Salinity in Three Dimensions,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012

Wang, N.[Nan], Xue, J.[Jie], Peng, J.[Jie], Biswas, A.[Asim], He, Y.[Yong], Shi, Z.[Zhou],
Integrating Remote Sensing and Landscape Characteristics to Estimate Soil Salinity Using Machine Learning Methods: A Case Study from Southern Xinjiang, China,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012

Szatmári, G.[Gábor], Bakacsi, Z.[Zsófia], Laborczi, A.[Annamária], Petrik, O.[Ottó], Pataki, R.[Róbert], Tóth, T.[Tibor], Pásztor, L.[László],
Elaborating Hungarian Segment of the Global Map of Salt-Affected Soils (GSSmap): National Contribution to an International Initiative,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012

Wang, J.Q.[Jia-Qiang], Peng, J.[Jie], Li, H.Y.[Hong-Yi], Yin, C.Y.[Cai-Yun], Liu, W.Y.[Wei-Yang], Wang, T.W.[Tian-Wei], Zhang, H.P.[Hua-Ping],
Soil Salinity Mapping Using Machine Learning Algorithms with the Sentinel-2 MSI in Arid Areas, China,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link 2101

Gao, Y.[Yao], Liu, X.Q.[Xiu-Qing], Hou, W.T.[Wen-Tao], Han, Y.H.[Yong-Hui], Wang, R.[Robert], Zhang, H.[Heng],
Characteristics of Saline Soil in Extremely Arid Regions: A Case Study Using GF-3 and ALOS-2 Quad-Pol SAR Data in Qinghai, China,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102

Al-Ali, Z.M., Bannari, A., Rhinane, H., El-Battay, A., Shahid, S.A., Hameid, N.,
Validation and Comparison of Physical Models for Soil Salinity Mapping over an Arid Landscape Using Spectral Reflectance Measurements and Landsat-OLI Data,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102

Xie, W.P.[Wen-Ping], Yang, J.S.[Jing-Song], Yao, R.J.[Rong-Jiang], Wang, X.P.[Xiang-Ping],
Spatial and Temporal Variability of Soil Salinity in the Yangtze River Estuary Using Electromagnetic Induction,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link 2105

Yu, T.[Tao], Jiapaer, G.[Guli], Bao, A.[Anming], Zheng, G.X.[Guo-Xiong], Jiang, L.L.[Liang-Liang], Yuan, Y.[Ye], Huang, X.R.[Xiao-Ran],
Using Synthetic Remote Sensing Indicators to Monitor the Land Degradation in a Salinized Area,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link 2108

Qi, G.H.[Guang-Hui], Chang, C.Y.[Chun-Yan], Yang, W.[Wei], Gao, P.[Peng], Zhao, G.X.[Geng-Xing],
Soil Salinity Inversion in Coastal Corn Planting Areas by the Satellite-UAV-Ground Integration Approach,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109

Tian, A.H.[An-Hong], Fu, C.B.[Cheng-Biao], Yau, H.T.[Her-Terng], Su, X.Y.[Xiao-Yi], Xiong, H.G.[Hei-Gang],
Soil Salinization Level Monitoring and Classifying by Mixed Chaotic Systems,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110

Zhao, L.[Liya], Yang, Q.[Qi], Zhao, Q.[Qiang], Wu, J.W.[Jing-Wei],
Assessing the Long-Term Evolution of Abandoned Salinized Farmland via Temporal Remote Sensing Data,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link 2110

Xu, X.[Xibo], Chen, Y.H.[Yun-Hao], Wang, M.G.[Ming-Guo], Wang, S.J.[Si-Jia], Li, K.N.[Kang-Ning], Li, Y.G.[Yong-Guang],
Improving Estimates of Soil Salt Content by Using Two-Date Image Spectral Changes in Yinbei, China,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link 2110

Tian, A.H.[An-Hong], Zhao, J.[Junsan], Tang, B.[Bohui], Zhu, D.M.[Da-Ming], Fu, C.B.[Cheng-Biao], Xiong, H.G.[Hei-Gang],
Hyperspectral Prediction of Soil Total Salt Content by Different Disturbance Degree under a Fractional-Order Differential Model with Differing Spectral Transformations,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112

Naimi, S.[Salman], Ayoubi, S.[Shamsollah], Zeraatpisheh, M.[Mojtaba], Dematte, J.A.M.[Jose Alexandre Melo],
Ground Observations and Environmental Covariates Integration for Mapping of Soil Salinity: A Machine Learning-Based Approach,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link 2112

Fu, C.B.[Cheng-Biao], Tian, A.H.[An-Hong], Zhu, D.M.[Da-Ming], Zhao, J.[Junsan], Xiong, H.G.[Hei-Gang],
Estimation of Salinity Content in Different Saline-Alkali Zones Based on Machine Learning Model Using FOD Pretreatment Method,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link 2112

Gu, Q.Y.[Qian-Yi], Han, Y.[Yang], Xu, Y.P.[Ya-Ping], Yao, H.Y.[Hai-Yan], Niu, H.F.[Hao-Fang], Huang, F.[Fang],
Laboratory Research on Polarized Optical Properties of Saline-Alkaline Soil Based on Semi-Empirical Models and Machine Learning Methods,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link 2201

Jiang, X.F.[Xiao-Fang], Duan, H.[Hanchen], Liao, J.[Jie], Guo, P.[Pinglin], Huang, C.[Cuihua], Xue, X.[Xian],
Estimation of Soil Salinization by Machine Learning Algorithms in Different Arid Regions of Northwest China,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201

Muhetaer, N.[Nuerbiye], Nurmemet, I.[Ilyas], Abulaiti, A.[Adilai], Xiao, S.[Sentian], Zhao, J.[Jing],
A Quantifying Approach to Soil Salinity Based on a Radar Feature Space Model Using ALOS PALSAR-2 Data,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201

Wei, Q.[Qinyu], Nurmemet, I.[Ilyas], Gao, M.H.[Min-Hua], Xie, B.Q.[Bo-Qiang],
Inversion of Soil Salinity Using Multisource Remote Sensing Data and Particle Swarm Machine Learning Models in Keriya Oasis, Northwestern China,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202

Rafik, A.[Abdellatif], Ibouh, H.[Hassan], Fels, A.E.A.E.[Abdelhafid El Alaoui El], Eddahby, L.[Lhou], Mezzane, D.[Daoud], Bousfoul, M.[Mohamed], Amazirh, A.[Abdelhakim], Ouhamdouch, S.[Salah], Bahir, M.[Mohammed], Gourfi, A.[Abdelali], Dhiba, D.[Driss], Chehbouni, A.[Abdelghani],
Soil Salinity Detection and Mapping in an Environment under Water Stress between 1984 and 2018 (Case of the Largest Oasis in Africa-Morocco),
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link 2205

Zhao, W.J.[Wen-Ju], Zhou, C.[Chun], Zhou, C.Q.[Chang-Quan], Ma, H.[Hong], Wang, Z.J.[Zhi-Jun],
Soil Salinity Inversion Model of Oasis in Arid Area Based on UAV Multispectral Remote Sensing,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link 2205

Measho, S.[Simon], Li, F.[Fadong], Pellikka, P.[Petri], Tian, C.[Chao], Hirwa, H.[Hubert], Xu, N.[Ning], Qiao, Y.F.[Yun-Feng], Khasanov, S.[Sayidjakhon], Kulmatov, R.[Rashid], Chen, G.[Gang],
Soil Salinity Variations and Associated Implications for Agriculture and Land Resources Development Using Remote Sensing Datasets in Central Asia,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link 2206

Hien, L.T.T.[Le Thi Thu], Gobin, A.[Anne], Lim, D.T.[Duong Thi], Quan, D.T.[Dang Tran], Hue, N.T.[Nguyen Thi], Thang, N.N.[Nguyen Ngoc], Binh, N.T.[Nguyen Thanh], Dung, V.T.K.[Vu Thi Kim], Linh, P.H.[Pham Ha],
Soil Moisture Influence on the FTIR Spectrum of Salt-Affected Soils,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link 2206

AbdelRahman, M.A.E.[Mohamed A. E.], Afifi, A.A.[Ahmed A.], D'Antonio, P.[Paola], Gabr, S.S.[Safwat S.], Scopa, A.[Antonio],
Detecting and Mapping Salt-Affected Soil with Arid Integrated Indices in Feature Space Using Multi-Temporal Landsat Imagery,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link 2206

Azabdaftari, A., Sunar, F.,
Soil Salinity Mapping Using Multitemporal Landsat Data,
ISPRS16(B7: 3-9).
DOI Link 1610

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Sea Surface Salinity, SSS, SMOS .

Last update:Jun 27, 2022 at 12:58:02