Bacus, J.W.,
Gose, E.E.,
Leukocyte Pattern Recognition,
SMC(2), No. 4, September 1972, pp. 513-525.
BibRef
7209
Bacus, J.W.,
A whitening transformation for two-color blood cell images,
PR(8), No. 1, January 1976, pp. 53-60.
Elsevier DOI
0309
BibRef
Landeweerd, G.H.,
Gelsema, E.S.,
The Use of Nuclear Texture Parameters in the Automatic
Analysis of Leukocytes,
PR(10), No. 2, 1978, pp. 57-61.
Elsevier DOI
BibRef
7800
Norgren, P.E.[Philip E.],
Kulkarni, A.V.[Ashok V.],
Graham, M.D.[Marshall D.],
Leukocyte image analysis in the diff3 system,
PR(13), No. 4, 1981, pp. 299-314.
Elsevier DOI
0309
BibRef
Mui, J.K., and
Fu, K.S.,
Automated Classification of Nuecleated Blood Cells Using a
Binary Tree Classifier,
PAMI(2), No. 5, September 1980, pp. 429-443.
BibRef
8009
Landeweerd, G.H.,
Gelsema, E.S.,
Brenner, J.F.,
Selles, W.D.,
Zahniser, D.J.,
Pattern Recognition of Nucleated Cells from the Peripheral Blood,
PR(16), No. 2, 1983, pp. 131-140.
Elsevier DOI
BibRef
8300
Earlier:
PR(15), No. 5, 1982, pp. 425.
Elsevier DOI
BibRef
Landeweerd, G.H.,
Timmers, T.,
Gelsema, E.S.,
Bins, M.,
Halie, M.R.,
Classification of Normal and Abnormal Samples of Peripheral Blood
by Linear Mapping of the Feature Space,
PR(16), No. 3, 1983, pp. 319-326.
Elsevier DOI
0309
BibRef
Landeweerd, G.H.,
Timmers, T.,
Gelsema, E.S.,
Bins, M.,
Halie, M.R.,
Binary Tree Versus Single Level Tree Classification of White Blood
Cells,
PR(16), No. 6, 1983, pp. 571-577.
Elsevier DOI
0309
BibRef
Bronkorsta, P.J.H.,
Reinders, M.J.T.,
Hendriks, E.A.,
Grimbergen, J.,
Heethaar, R.M.,
Brakenhoff, G.J.,
On-line detection of red blood cell shape using deformable templates,
PRL(21), No. 5, May 2000, pp. 413-424.
0005
BibRef
Theera-Umpon, N.[Nipon],
Dougherty, E.R.[Edward R.],
Gader, P.D.[Paul D.],
Non-homothetic granulometric mixing theory with application to blood
cell counting,
PR(34), No. 12, December 2001, pp. 2547-2560.
Elsevier DOI
0110
BibRef
Earlier: A1, A3, Only:
Training Neural Networks to Count White Blood Cells Via a Minimum
Counting Error Objective Function,
ICPR00(Vol II: 299-302).
IEEE DOI
0009
BibRef
di Ruberto, C.[Cecilia],
Dempster, A.[Andrew],
Khan, S.[Shahid],
Jarra, B.[Bill],
Analysis of infected blood cell images using morphological operators,
IVC(20), No. 2, February 2002, pp. 133-146.
Elsevier DOI
0202
BibRef
Earlier:
Segmentation of Blood Images Using Morphological Operators,
ICPR00(Vol III: 397-400).
IEEE DOI
IEEE DOI
0009
BibRef
di Ruberto, C.,
Dempster, A.,
Khan, S.,
Jarra, B.,
Automatic Thresholding of Infected Blood Images Using Granulometry and
Regional Extrema,
ICPR00(Vol III: 441-444).
IEEE DOI
0009
BibRef
de Andrade Waldemarin, K.C.[Kátia Cristina],
Emílio Beletti, M.[Marcelo],
da Fontoura Costa, L.[Luciano],
Nuclear morphometry of neoplastic cells as a method for diagnosis of
histiocytoma, mastocytoma and transmissible venereal tumor in dogs,
RealTimeImg(10), No. 4, August 2004, pp. 197-204.
Elsevier DOI
0410
BibRef
Sabino, D.M.U.[Daniela Mayumi Ushizima],
da Fontoura Costa, L.[Luciano],
Rizzatti, E.G.[Edgar Gil],
Zago, M.A.[Marco Antonio],
A texture approach to leukocyte recognition,
RealTimeImg(10), No. 4, August 2004, pp. 205-216.
Elsevier DOI
0410
BibRef
Ray, N.,
Acton, S.T.,
Ley, K.,
Tracking leukocytes in vivo with shape and size constrained active
contours,
MedImg(21), No. 10, October 2002, pp. 1222-1235.
IEEE Top Reference.
0301
BibRef
Ray, N.[Nilanjan],
Acton, S.T.[Scott T.],
Motion gradient vector flow: an external force for tracking rolling
leukocytes with shape and size constrained active contours,
MedImg(23), No. 12, December 2004, pp. 1466-1478.
IEEE Abstract.
0412
BibRef
Earlier:
Tracking fast-rolling leukocytes in vivo with active contours,
ICIP02(III: 165-168).
IEEE DOI
0210
BibRef
Cui, J.[Jing],
Ray, N.,
Acton, S.T.,
Lin, Z.[Zongli],
Application of the Affine Transform Invariant Model to Cell Tracking,
Southwest06(56-60).
IEEE DOI
0603
BibRef
Acton, S.T.[Scott T.],
Ray, N.[Nilanjan],
Biomedical Image Analysis: Tracking,
Morgan Claypool2006.
Synthesis Lectures on Image, Video, and Multimedia Processing
WWW Link.
BibRef
0600
Ray, N.,
Acton, S.T.,
Active contours for cell tracking,
Southwest02(274-278).
IEEE Top Reference.
0208
BibRef
Acton, S.T.,
Biomedical Image Analysis at the Cellular Level,
IMVIP08(27-27).
IEEE DOI
0809
BibRef
Mukherjee, D.P.,
Ray, N.,
Acton, S.T.,
Level Set Analysis for Leukocyte Detection and Tracking,
IP(13), No. 4, April 2004, pp. 562-572.
IEEE DOI
0404
BibRef
Dong, G.[Gang],
Acton, S.T.,
A variational method for leukocyte detection,
ICIP03(II: 161-164).
IEEE DOI
0312
BibRef
Dong, G.[Gang],
Ray, N.,
Acton, S.T.,
Intravital leukocyte detection using the gradient inverse coefficient
of variation,
MedImg(24), No. 7, July 2005, pp. 910-924.
IEEE DOI
0508
BibRef
Zhang, X.W.[Xi-Wen],
Song, J.Q.[Ji-Qiang],
Lyu, M.R.[Michael R.],
Cai, S.J.[Shi-Jie],
Extraction of karyocytes and their components from microscopic bone
marrow images based on regional color features,
PR(37), No. 2, February 2004, pp. 351-361.
Elsevier DOI
0311
BibRef
Ahammer, H.,
Kropfl, J.M.,
Hackl, C.,
Sedivy, R.,
Image statistics and data mining of anal intraepithelial neoplasia,
PRL(29), No. 16, 1 December 2008, pp. 2189-2196.
Elsevier DOI
0811
Image statistics; Data mining; Classification; Neoplasia; HIV
BibRef
Liu, R.[Ran],
Dey, D.K.[Dipak K.],
Boss, D.[Daniel],
Marquet, P.[Pierre],
Javidi, B.[Bahram],
Recognition and classification of red blood cells using digital
holographic microscopy and data clustering with discriminant analysis,
JOSA-A(28), No. 6, June 2011, pp. 1204-1210.
WWW Link.
1101
BibRef
Chen, H.M.[Hung-Ming],
Tsao, Y.T.[Ya-Ting],
Tsai, S.N.[Shin-Ni],
Automatic image segmentation and classification based on direction
texton technique for hemolytic anemia in thin blood smears,
MVA(25), No. 2, February 2014, pp. 501-510.
WWW Link.
1402
BibRef
Xia, W.F.[Wen-Fei],
Ma, X.P.[Xiao-Peng],
Li, X.R.[Xing-Rui],
Lu, C.[Chao],
Yang, X.W.[Xiao-Wei],
Zhu, Z.[Zhi],
Yi, J.L.[Ji-Lin],
Reversal effect of low-intensity ultrasound on adriamycin-resistant
human hepatoma cells in vitro and in vivo,
IJIST(24), No. 1, 2014, pp. 23-28.
DOI Link
1403
ultrasound, adriamycin-resistant, MDR, hepatoma, HepG2
BibRef
Lee, H.[Howard],
Chen, Y.P.P.[Yi-Ping Phoebe],
Cell morphology based classification for red cells in blood smear
images,
PRL(49), No. 1, 2014, pp. 155-161.
Elsevier DOI
1410
BibRef
di Ruberto, C.[Cecilia],
Loddo, A.[Andrea],
Putzu, L.[Lorenzo],
A leucocytes count system from blood smear images,
MVA(27), No. 8, November 2016, pp. 1151-1160.
Springer DOI
1612
BibRef
Earlier:
A Multiple Classifier Learning by Sampling System for White Blood Cells
Segmentation,
CAIP15(II:415-425).
Springer DOI
1511
BibRef
And:
Learning by Sampling for White Blood Cells Segmentation,
CIAP15(I:557-567).
Springer DOI
1511
BibRef
di Ruberto, C.[Cecilia],
Loddo, A.[Andrea],
Putzu, L.[Lorenzo],
Histological Image Analysis by Invariant Descriptors,
CIAP17(I:345-356).
Springer DOI
1711
BibRef
Wang, X.Z.[Xiang-Zhou],
Liu, L.[Lin],
Du, X.H.[Xiao-Hui],
Zhang, J.[Jing],
Liu, J.X.[Juan-Xiu],
Ni, G.M.[Guang-Ming],
Hao, R.Q.[Ru-Qian],
Liu, Y.[Yong],
Leukocyte recognition in human fecal samples using texture features,
JOSA-A(35), No. 11, November 2018, pp. 1941-1948.
DOI Link
1912
Edge detection, Feature extraction, Image recognition,
Image resolution, Segmentation, Visual system
BibRef
Abbasi, M.[Mohamadreza],
Kermani, S.[Saeed],
Tajebib, A.[Ardeshir],
Amin, M.M.[Morteza Moradi],
Abbasi, M.[Manije],
Automatic detection of acute lymphoblastic leukaemia based on extending
the multifractal features,
IET-IPR(14), No. 1, January 2020, pp. 132-137.
DOI Link
1912
BibRef
And:
Corrigendum:
IET-IPR(14), No. 5, 17 April 2020, pp. 995-995.
DOI Link
2004
BibRef
Bouchet, A.[Agustina],
Montes, S.[Susana],
Ballarin, V.[Virginia],
Díaz, I.[Irene],
Intuitionistic fuzzy set and fuzzy mathematical morphology applied to
color leukocytes segmentation,
SIViP(14), No. 3, April 2020, pp. 557-564.
Springer DOI
2004
BibRef
Shemona, J.S.[Jeya Sudharsan],
Chellappan, A.K.[Agees Kumar],
Segmentation techniques for early cancer detection in red blood cells
with deep learning-based classifier'a comparative approach,
IET-IPR(14), No. 9, 20 July 2020, pp. 1726-1732.
DOI Link
2007
BibRef
Rao, B.S.[Boyina Subrahmanyeswara],
Accurate leukocoria predictor based on deep VGG-net CNN technique,
IET-IPR(14), No. 10, August 2020, pp. 2241-2248.
DOI Link
2008
BibRef
Pandey, P.[Prashant],
Prathosh, A.P.,
Kyatham, V.[Vinay],
Mishra, D.[Deepak],
Dastidar, T.R.[Tathagato Rai],
Target-Independent Domain Adaptation for WBC Classification Using
Generative Latent Search,
MedImg(39), No. 12, December 2020, pp. 3979-3991.
IEEE DOI
2012
Training, Adaptation models, Task analysis, Microscopy,
Biomedical imaging, Cloning, Cameras, WBC, microscopic imaging,
VAE
BibRef
Joshi, S.[Shivani],
Kumar, R.[Rajiv],
Dwivedi, A.[Avinash],
Hybrid DSSCS and convolutional neural network for peripheral blood cell
recognition system,
IET-IPR(14), No. 17, 24 December 2020, pp. 4450-4460.
DOI Link
2104
BibRef
Omer, A.E.[Ala Eldin],
Safavi-Naeini, S.[Safieddin],
Hughson, R.[Richard],
Shaker, G.[George],
Blood Glucose Level Monitoring Using an FMCW Millimeter-Wave Radar
Sensor,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Yan, H.[Hong],
Mao, X.Y.[Xuan-Yu],
Yang, X.[Xu],
Xia, Y.Q.[Yong-Quan],
Wang, C.B.[Cheng-Bin],
Wang, J.J.[Jun-Jun],
Xia, R.[Rui],
Xu, X.J.[Xue-Jing],
Wang, Z.Q.[Zhi-Qiang],
Li, Z.Y.[Zhi-Yang],
Zhao, X.[Xie],
Li, Y.[Yan],
Liu, G.Y.[Guo-Ye],
He, L.[Li],
Wang, Z.Y.[Zhong-Yu],
Wang, Z.Q.[Zhi-Qiong],
Li, Z.Q.[Zhi-Qiang],
Cai, W.D.[Wei-Dong],
Shen, H.[Han],
Chang, H.[Hang],
Development and Validation of an Unsupervised Feature Learning System
for Leukocyte Characterization and Classification:
A Multi-Hospital Study,
IJCV(129), No. 6, June 2021, pp. 1837-1856.
Springer DOI
2106
BibRef
Makkapati, V.V.[Vishnu V.],
Spaeth, M.,
Ulman, S.,
Camera-Projector System for detecting
haemoglobin levels during accidents,
US_Patent9,968,282, May 15, 2018.
WWW Link.
BibRef
1805
Tomczak, A.[Agnieszka],
Ilic, S.[Slobodan],
Marquardt, G.[Gaby],
Engel, T.[Thomas],
Forster, F.[Frank],
Navab, N.[Nassir],
Albarqouni, S.[Shadi],
Multi-Task Multi-Domain Learning for Digital Staining and
Classification of Leukocytes,
MedImg(40), No. 10, October 2021, pp. 2897-2910.
IEEE DOI
2110
Task analysis, Image segmentation, Image reconstruction,
Feature extraction, Generators, White blood cells, Microscopy,
generative adversarial networks
BibRef
Liu, P.[Peirong],
Lee, Y.Z.[Yueh Z.],
Aylward, S.R.[Stephen R.],
Niethammer, M.[Marc],
Perfusion Imaging: An Advection Diffusion Approach,
MedImg(40), No. 12, December 2021, pp. 3424-3435.
IEEE DOI
2112
Estimation, Imaging, Handheld computers, Brain modeling,
Mathematical model, Blood, Time series analysis,
stroke
BibRef
Li, X.Y.[Xin-Yu],
Li, M.[Ming],
Wu, Y.F.[Yong-Fei],
Zhou, X.S.[Xiao-Shuang],
Zhang, L.F.[Li-Feng],
Ping, X.B.[Xin-Bo],
Zhang, X.[Xingna],
Zheng, W.[Wen],
Multi-instance inflated 3D CNN for classifying urine red blood cells
from multi-focus videos,
IET-IPR(16), No. 8, 2022, pp. 2114-2123.
DOI Link
2205
BibRef
Nurçin, F.V.[Fatih Veysel],
Improved segmentation of overlapping red blood cells on malaria blood
smear images with TransUNet architecture,
IJIST(32), No. 5, 2022, pp. 1673-1680.
DOI Link
2209
malaria, overlapping red blood cells, segmentation, TransUNet
BibRef
Nozaka, H.[Hiroyuki],
Kamata, K.[Kosuke],
Yamagata, K.[Kazufumi],
The Effectiveness of Data Augmentation for Mature White Blood Cell
Image Classification in Deep Learning: Selection of an Optimal
Technique for Hematological Morphology Recognition,
IEICE(E106-D), No. 5, May 2023, pp. 707-714.
WWW Link.
2305
BibRef
Dhar, P.[Prasenjit],
Kothandapani, S.D.[Suganya Devi],
Satti, S.K.[Satish Kumar],
Padmanabhan, S.[Srinivasan],
HPKNN: Hyper-parameter optimized KNN classifier for classification of
poikilocytosis,
IJIST(33), No. 3, 2023, pp. 928-950.
DOI Link
2305
anemia, Freeman chain code, KNN classifier, poikilocytosis
BibRef
Wu, H.[Huisi],
Lin, C.F.[Can-Feng],
Liu, J.S.[Jia-Sheng],
Song, Y.[Youyi],
Wen, Z.K.[Zhen-Kun],
Qin, J.[Jing],
Feature Masking on Non-Overlapping Regions for Detecting Dense Cells
in Blood Smear Image,
MedImg(42), No. 6, June 2023, pp. 1668-1680.
IEEE DOI
2306
Feature extraction, Task analysis, Cells (biology), Blood, Head,
Training, Deep learning, Cell detection, dense detection,
non-overlapping region
BibRef
Tomczak, A.[Agnieszka],
Ilic, S.[Slobodan],
Marquardt, G.[Gaby],
Engel, T.[Thomas],
Navab, N.[Nassir],
Albarqouni, S.[Shadi],
Digital Staining of White Blood Cells With Confidence Estimation,
MedImg(42), No. 12, December 2023, pp. 3895-3906.
IEEE DOI
2312
BibRef
Xu, L.Q.[Lin-Quan],
Chen, Y.[Yuwen],
Lu, S.M.[Song-Mei],
Zhong, K.[Kunhua],
Li, Y.J.[Yu-Jie],
Yi, B.[Bin],
A self-supervised causal feature reinforcement learning method for
non-invasive hemoglobin prediction,
IET-IPR(18), No. 1, 2024, pp. 22-33.
DOI Link
2401
biomedical imaging, computer vision, convolutional neural nets, neural nets
BibRef
Li, C.[Chongchong],
Liu, Y.T.[Yu-Ting],
Improved Generalization of White Blood Cell Classification by
Learnable Illumination Intensity Invariant Layer,
SPLetters(31), 2024, pp. 176-180.
IEEE DOI
2401
BibRef
Dsilva, L.R.[Liora Rosvin],
Tantri, S.H.[Shivani Harish],
Sampathila, N.[Niranjana],
Mayrose, H.[Hilda],
Bairy, G.M.[G. Muralidhar],
Belurkar, S.[Sushma],
Saravu, K.[Kavitha],
Chadaga, K.[Krishnaraj],
Hafeez-Baig, A.[Abdul],
Wavelet scattering- and object detection-based computer vision for
identifying dengue from peripheral blood microscopy,
IJIST(34), No. 1, 2024, pp. e23020.
DOI Link
2401
computer vision, dengue, lymphocytes, WST, YOLOv8
BibRef
Atasoy, N.A.[Nesrin Aydin],
Rahhawi, A.F.A.A.[Amina Faris Abdulla Al],
Examining the classification performance of pre-trained capsule
networks on imbalanced bone marrow cell dataset,
IJIST(34), No. 3, 2024, pp. e23067.
DOI Link
2404
capsule neural network, imbalanced image dataset classification,
transfer learning, white blood cell classification
BibRef
Jamakayala, J.[Jeevan],
Gorthi, R.K.S.[Rama Krishna Sai],
Feature Fusion Ensemble Architecture With Active Learning for
Microscopic Blood Smear Analysis,
ICIP21(3767-3771)
IEEE DOI
2201
Training, Optical microscopy, Microscopy, Feature extraction,
Optical imaging, Labeling, Task analysis, Blood smear,
Active Learning
BibRef
Wang, Y.,
Wang, W.,
van Gastel, M.,
de Haan, G.,
Modeling on the Feasibility of Camera-Based Blood Glucose Measurement,
CVPM19(1713-1720)
IEEE DOI
2004
Sugar, Blood, Absorption, Scattering, Temperature measurement, Dermis,
Camera vital signs, blood glucose, modeling,
diabetics
BibRef
di Ruberto, C.[Cecilia],
Loddo, A.[Andrea],
Putzu, L.[Lorenzo],
A Region Proposal Approach for Cells Detection and Counting from
Microscopic Blood Images,
CIAP19(II:47-58).
Springer DOI
1909
BibRef
Sjöstrand, E.[Emmy],
Jönsson, J.[Jesper],
Morell, A.[Adam],
Stråhlén, K.[Kent],
Color Normalization of Blood Cell Images,
SCIA19(477-488).
Springer DOI
1906
BibRef
Górriz, M.[Marc],
Aparicio, A.[Albert],
Raventós, B.[Berta],
Vilaplana, V.[Verónica],
Sayrol, E.[Elisa],
López-Codina, D.[Daniel],
Leishmaniasis Parasite Segmentation and Classification Using Deep
Learning,
AMDO18(53-62).
Springer DOI
1807
BibRef
Villamarín, J.A.[Julián A.],
Jiménez, Y.M.[Yady M.],
Molano, T.[Tatiana],
Gutiérrez, E.W.[Edgar W.],
Londoño, L.F.[Luis F.],
Gutiérrez, D.[David],
Montilla, D.[Daniela],
Ultrasonic Assessment of Platelet-Rich Plasma by Digital Signal
Processing Techniques,
CIARP17(306-313).
Springer DOI
1802
BibRef
Razzak, M.I.,
Naz, S.,
Microscopic Blood Smear Segmentation and Classification Using Deep
Contour Aware CNN and Extreme Machine Learning,
Microscopy17(801-807)
IEEE DOI
1709
Blood, Diseases, Feature extraction, Image color analysis,
Image segmentation, Microscopy, Shape, Blood Sample Analysis, ELM,
KWFLICM, RBC, cell morphology, image, analysis
BibRef
Carvajal, J.,
Smith, D.F.,
Zhao, K.,
Wiliem, A.,
Finucane, P.,
Hobson, P.,
Jennings, A.,
McDougall, R.,
Lovell, B.,
An Early Experience Toward Developing Computer Aided Diagnosis for
Gram-Stained Smears Images,
Microscopy17(814-820)
IEEE DOI
1709
Blood, Data mining, Feature extraction,
Microorganisms, Microscopy, Pathology
BibRef
Dong, Y.F.[Yue-Fang],
Fu, W.W.[Wei-Wei],
Zhou, Z.[Zhe],
Chen, N.[Nian],
Liu, M.[Min],
Chen, S.[Shi],
ABO blood group detection based on image processing technology,
ICIVC17(655-659)
IEEE DOI
1708
Filling, Image recognition, Image segmentation, ABO blood image,
agglutination/no agglutination, blood analysis,
standard deviation, threshold, segmentation
BibRef
Li, X.[Xiang],
Li, W.[Wei],
Xu, X.D.[Xiao-Dong],
Hu, W.[Wei],
Cell Classification Using Convolutional Neural Networks in Medical
Hyperspectral Imagery,
ICIVC17(501-504)
IEEE DOI
1708
Blood, Computer architecture, Hyperspectral imaging,
Medical diagnostic imaging, Microprocessors,
Support vector machines, blood cell classification,
convolutional neural network, deep learning, medical,
hyperspectral, imagery
BibRef
Kossowski, T.,
Stasinski, R.,
Multi-wavelength analysis of substances levels in human blood,
WSSIP17(1-4)
IEEE DOI
1707
Absorption, Blood, Compounds, Ethanol, Spectroscopy, Sugar,
Wavelength measurement, ethanol, glucose, multi-wavelength,
non-invasive, prediction
BibRef
Arvind, B.C.,
Nagaraj, S.K.,
Seelamantula, C.S.,
Gorthi, S.S.,
Active-disc-based Kalman filter technique for tracking of blood cells
in microfluidic channels,
ICIP16(3394-3398)
IEEE DOI
1610
Blood
BibRef
Lotfi, M.,
Nazari, B.,
Sadri, S.,
Sichani, N.K.,
The detection of Dacrocyte, Schistocyte and Elliptocyte cells in Iron
Deficiency Anemia,
IPRIA15(1-5)
IEEE DOI
1603
cellular biophysics
BibRef
Maji, P.,
Mandal, A.,
Ganguly, M.,
Saha, S.,
An automated method for counting and characterizing red blood cells
using mathematical morphology,
ICAPR15(1-6)
IEEE DOI
1511
blood
BibRef
Rawat, J.[Jyoti],
Bhadauria, H.S.,
Singh, A.[Annapurna],
Virmani, J.[Jitendra],
Review of Leukocyte Classification Techniques for
Microscopic Blood Images,
ICCSGD15(1948-1954).
1506
BibRef
Garg, S.[Sanyam],
Ramprasaath, R.S.,
Kapur, S.[Suman],
Rao, K.M.M.[Kunda M.M.],
Automated colorimetric analysis in paper based sensors,
ICIP14(3607-3611)
IEEE DOI
1502
Blood. Color analysis of paper used to collect samples.
BibRef
Henning, R.,
Rivas-Perea, P.,
Shaw, B.,
Hamerly, G.,
A Convolutional Neural Network approach for classifying leukocoria,
Southwest14(9-12)
IEEE DOI
1406
cancer
BibRef
Sheeba, F.[Feminna],
Thamburaj, R.[Robinson],
Mammen, J.J.[Joy John],
Nagar, A.K.[Atulya K.],
Splitting of Overlapping Cells in Peripheral Blood Smear Images by
Concavity Analysis,
IWCIA14(238-249).
Springer DOI
1405
BibRef
Habibzadeh, M.[Mehdi],
Krzyz.ak, A.[Adam],
Fevens, T.[Thomas],
Analysis of White Blood Cell Differential Counts Using Dual-Tree
Complex Wavelet Transform and Support Vector Machine Classifier,
ICCVG12(414-422).
Springer DOI
1210
BibRef
Mohapatra, S.[Subrajeet],
Patra, D.[Dipti],
Kumar, K.[Kundan],
Blood microscopic image segmentation using rough sets,
ICIIP11(1-6).
IEEE DOI
1112
BibRef
Makkapati, V.V.[Vishnu V.],
Naik, S.K.[Sarif K.],
Clump splitting based on detection of dominant points from contours,
CASE09(197-201).
WWW Link.
0908
BibRef
Bradhurst, C.J.[Christopher J.],
Boles, W.[Wageeh],
Xiao, Y.[Yin],
Segmentation of bone marrow stromal cells in phase contrast microscopy
images,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Ray, N.[Nilanjan],
A concave cost formulation for parametric curve fitting: Detection of
leukocytes from intravital microscopy images,
ICIP10(53-56).
IEEE DOI
1009
BibRef
Falcón-Ruiz, A.[Alexander],
Paz-Viera, J.[Juan],
Taboada-Crispí, A.[Alberto],
Sahli, H.[Hichem],
A Quality Analysis on JPEG 2000 Compressed Leukocyte Images by Means of
Segmentation Algorithms,
CIARP10(161-168).
Springer DOI
1011
BibRef
Rezatofighi, S.H.[Seyed Hamid],
Khaksari, K.[Kosar],
Soltanian-Zadeh, H.[Hamid],
Automatic Recognition of Five Types of White Blood Cells in Peripheral
Blood,
ICIAR10(II: 161-172).
Springer DOI
1006
BibRef
Landau, M.[Michael],
Koltsova, E.[Ekaterina],
Ley, K.[Klaus],
Acton, S.T.[Scott T.],
Multi-cell 3D tracking with adaptive acceptance gates,
Southwest10(49-52).
IEEE DOI
1005
Track dendritic and T cells.
BibRef
Vromen, J.,
McCane, B.,
Red blood cell segmentation from SEM images,
IVCNZ09(44-49).
IEEE DOI
0911
BibRef
Martinez, L.,
A non-invasive spectral reflectance method for mapping blood oxygen
saturation in wounds,
AIPR02(112-116).
IEEE DOI
0210
BibRef
Beach, J.,
Spectral reflectance technique for retinal blood oxygen evaluation in
humans,
AIPR02(117-123).
IEEE DOI
0210
BibRef
Xiong, W.,
Ong, S.H.,
Lim, J.H.,
Tung, N.N.,
Liu, J.,
Racoceanu, D.,
Tan, K.,
Chong, A.,
Foong, K.,
Automatic working area classification in peripheral blood smears using
spatial distribution features across scales,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Seepuri, S.I.[Sun-Il],
Rodriguez, J.J.[Jeffrey J.],
Elliott, D.A.[David A.],
Automated 3-D Segmentation of Internal Hemoglobin in TEM Images,
Southwest08(117-120).
IEEE DOI
0803
BibRef
Díaz, G.[Gloria],
Gonzalez, F.A.[Fabio A.],
Romero, E.[Eduardo],
Automatic Clump Splitting for Cell Quantification in Microscopical
Images,
CIARP07(763-772).
Springer DOI
0711
BibRef
And:
Infected Cell Identification in Thin Blood Images Based on Color Pixel
Classification: Comparison and Analysis,
CIARP07(812-821).
Springer DOI
0711
BibRef
Eom, S.[Seongeun],
Kim, S.J.[Seung-Jun],
Shin, V.[Vladimir],
Ahn, B.[Byungha],
Leukocyte Segmentation in Blood Smear Images Using Region-Based Active
Contours,
ACIVS06(867-876).
Springer DOI
0609
BibRef
Kasson, P.M.,
Huppa, J.B.,
Davis, M.M.,
Brunger, A.T.,
Quantitative analysis of lymphocyte membrane protein redistribution
from fluorescence microscopy,
ICIP04(V: 2933-2936).
IEEE DOI
0505
BibRef
Nilsson, B.,
Heyden, A.,
Model-based segmentation of leukocytes clusters,
ICPR02(I: 727-730).
IEEE DOI
0211
BibRef
Nilsson, B.,
Heyden, A.,
Segmentation of Dense Leukocyte Clusters,
MMBIA01(xx-yy).
0110
BibRef
Krause, P.[Paul],
Tewfik, A.H.[Ahmed H.],
Greenleaf, J.F.[James F.],
Detection of Blood Perfusion,
ICIP99(II:192-196).
IEEE DOI
BibRef
9900
Ferri, M.,
Lombardini, S.,
Pallotti, C.,
Leukocyte classifications by size functions,
WACV94(223-229).
IEEE Abstract.
0403
BibRef
Kovalev, V.A.,
Grigoriev, A.Y.,
Ahn, H.S.[Hyo-Sok],
Robust recognition of white blood cell images,
ICPR96(IV: 371-375).
IEEE DOI
0509
BibRef
Cseke, I.,
A fast segmentation scheme for white blood cell images,
ICPR92(III:530-533).
IEEE DOI
9208
BibRef
Bartfeld, E.,
Zajicek, G.,
Kenet, G.,
Schwartz-Arad, D.,
Measuring hepatocytes reaction to dimethylnitrosamine using
computerized microscope,
ICPR88(I: 465-467).
IEEE DOI
8811
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Blood Cell Cancers, Lymphoma, Leukemia .