8.7.5 Splines, General Methods, General Papers

Chapter Contents (Back)
Splines.
See also Spline Based Models, B-Splines.

Cohen, E.[Elaine], Lyche, T.[Tom], Riesenfeld, R.F.[Richard F.],
Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics,
CGIP(14), No. 2, October 1980, pp. 87-111.
Elsevier DOI 0501
Unify models, interference calculation, contouring, rendering, etc. BibRef

Dierckx, P.,
Algorithms for Smoothing Data with Periodic and Parametric Splines,
CGIP(20), No. 2, October 1982, pp. 171-184.
Elsevier DOI Fitting splines to data. BibRef 8210

Tiller, W.,
Rational B-Splines for Curve and Surface Representation,
IEEE_CGA(3), No. 6, November 1983, pp. 61-69. BibRef 8311

Frost, C.E., Kinzel, G.L.,
An Automatic Adjustment Procedure for Rational Splines,
Computers&Graphics(6), 1982, pp. 171-176. BibRef 8200

Barsky, B.A., Beatty, J.C.,
Local Control of Bias and Tension in Beta-Splines,
TOG(2), 1983, pp. 109-134. BibRef 8300

Barsky, B.A.[Brian A.],
Exponential and Polynomial Methods for Applying Tension to an Interpolating Spline Curve,
CVGIP(27), No. 1, July 1984, pp. 1-18.
Elsevier DOI BibRef 8407

Alia, G., Barsi, F., Martinelli, E., and Tani, N.,
Angular Spline: A New Approach to the Interpolation Problem in Computer Graphics,
CVGIP( 39), No. 1, July 1987, pp. 56-72.
Elsevier DOI BibRef 8707

Pham, B.[Binh],
Conic B-Splines for Curve Fitting: A Unifying Approach,
CVGIP(45), No. 1, January 1989, pp. 117-125.
Elsevier DOI Representations. BibRef 8901

Cheng, F., Goshtasby, A.,
A Parallel B-Spline Surface Fitting Algorithm,
TOG(8), 1989, pp. 41-50. BibRef 8900

Goshtasby, A.[Ardeshir], Cheng, F.H.[Fu-Hua], Barsky, B.A.[Brian A.],
B-Spline Curves and Surfaces Viewed as Digital Filters,
CVGIP(52), No. 2, November 1990, pp. 264-275.
Elsevier DOI BibRef 9011

Schoenberg, I.J.,
Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions,
in I.J Schoenberg Selected Papers, Springer, 1988, pp. 3-57.
Springer DOI B-Spline descriptions. BibRef 0000

Unser, M.[Michael], Aldroubi, A.[Akram], Eden, M.[Murray],
B-spline Signal Processing. I. Theory,
TSP(41), 1993, pp. 821-833.
IEEE DOI BibRef 9300

Unser, M.[Michael], Aldroubi, A.[Akram], Eden, M.[Murray],
B-spline Signal Processing. II. Efficiency Design and Applications,
TSP(41), 1993, pp. 834-848.
IEEE DOI BibRef 9300

Unser, M., Aldroubi, A., and Eden, M.,
Fast B-Spline Transforms for Continuous Image Representation and Interpolation,
PAMI(13), No. 3, March 1991, pp. 277-285.
IEEE DOI BibRef 9103

Rabut, C.[Christophe],
Even Degree B-Spline Curves and Surfaces,
GMIP(54), No. 4, July 1992, pp. 351-356. A Note on
See also B-Spline Curves and Surfaces Viewed as Digital Filters. BibRef 9207

Pavlidis, T.,
Applications of Splines to Shape Description,
VF91(431-441). Splines for representing contours. BibRef 9100

Goldman, R.[Ron], Warren, J.[Joe],
An Extension of Chaiken's Algorithm to B-Spline Curves with Knots in Geometric Progression,
GMIP(55), No. 1, January 1993, pp. 58-yy. BibRef 9301

Howell, G.W.[Gary W.], Fausett, D.W.[Donald W.], Fausett, L.[Laurene],
Quasi-Circular Splines: A Shape-Preserving Approximation,
GMIP(55), No. 2, March 1993, pp. 89-yy. BibRef 9303

Ferrari, L.A., Silbermann, M.J., Sankar, P.V.,
Efficient Algorithms for the Implementation of General B-Splines,
GMIP(56), No. 1, January 1994, pp. 102-yy. BibRef 9401

Sankar, P.V., Ferrari, L.A.,
Simple Algorithms and Architectures for B-Spline Interpolation,
PAMI(10), No. 2, March 1988, pp. 271-276.
IEEE DOI BibRef 8803

Flickner, M.D., Hafner, J.L., Rodriguez, E.J., Sanz, J.L.C.,
Periodic Quasi-Orthogonal Spline Bases and Applications to Least-Squares Curve-Fitting of Digital Images,
IP(5), No. 1, January 1996, pp. 71-88.
IEEE DOI BibRef 9601
Earlier:
Fast least-squares curve fitting using quasi-orthogonal splines,
ICIP94(I: 686-690).
IEEE DOI 9411
BibRef

Ishida, J.,
The General B-Spline Interpolation Method and Its Application to the Modification of Curves and Surfaces,
CAD(29), No. 11, November 1997, pp. 779-790. 9712
BibRef

Tuohy, S.T., Maekawa, T., Shen, G., Patrikalakis, N.M.,
Approximation of Measured Data with Interval B-Splines,
CAD(29), No. 11, November 1997, pp. 791-799. 9712
BibRef

Karczewicz, M., Gabbouj, M.,
Robust B-Spline Image Modeling with Application to Image Processing,
IP(7), No. 6, June 1998, pp. 912-917.
IEEE DOI 9806

See also Dedicated Hardware System for a Class of Nonlinear Order Statistics Rational Hybrid Filters with Applications to Image Processing, A. BibRef

Wang, Y.P., Lee, S.L., Toraichi, K.,
Multiscale Curvature-Based Shape Representation Using B-Spline Wavelets,
IP(8), No. 11, November 1999, pp. 1586-1592.
IEEE DOI 9911
BibRef

Panda, R.[Rutuparna], Chatterji, B.N.,
Least squares generalized B-spline signal and image processing,
SP(81), No. 10, October 2001, pp. 2005-2017.
Elsevier DOI 0110
BibRef

Lehmann, T.M., Gonner, C., Spitzer, K.,
Addendum: B-spline interpolation in medical image processing,
MedImg(20), No. 7, July 2001, pp. 660-665.
IEEE Top Reference. 0110
BibRef

Hu, S.M., Tai, C.L., Zhang, S.,
An extension algorithm for B-splines by curve unclamping,
CAD(34), 2002, pp. 415-419.
Elsevier DOI BibRef 0200

van de Ville, D., Blu, T., Unser, M., Philips, W., Lemahieu, I., van de Walle, R.,
Hex-splines: a novel spline family for hexagonal lattices,
IP(13), No. 6, June 2004, pp. 758-772.
IEEE DOI 0406
BibRef

Condat, L.[Laurent], van de Ville, D.[Dimitri],
Quasi-Interpolating Spline Models for Hexagonally-Sampled Data,
IP(16), No. 5, May 2007, pp. 1195-1206.
IEEE DOI 0704
BibRef

van de Ville, D., Blu, T., Unser, M.,
Isotropic Polyharmonic B-Splines: Scaling Functions and Wavelets,
IP(14), No. 11, November 2005, pp. 1798-1813.
IEEE DOI 0510
BibRef

Beg, M.F.[M. Faisal], Miller, M.I.[Michael I.], Trouvé, A.[Alain], Younes, L.[Laurent],
Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms,
IJCV(61), No. 2, February 2005, pp. 139-157.
DOI Link 0410
BibRef

Beg, M.F.[M. Faisal], Khan, A.,
Symmetric Data Attachment Terms for Large Deformation Image Registration,
MedImg(26), No. 9, September 2007, pp. 1179-1189.
IEEE DOI 0710
BibRef

Miller, M.I.[Michael I.], Trouvé, A.[Alain], Younes, L.[Laurent],
Geodesic Shooting for Computational Anatomy,
JMIV(24), No. 2, March 2006, pp. 209-228.
Springer DOI 0605
BibRef
Earlier:
The Metric Spaces, Euler Equations, and Normal Geodesic Image Motions of Computational Anatomy,
ICIP03(II: 635-638).
IEEE DOI 0312
BibRef

Allassonnière, S.[Stéphanie], Trouvé, A.[Alain], Younes, L.[Laurent],
Geodesic Shooting and Diffeomorphic Matching Via Textured Meshes,
EMMCVPR05(365-381).
Springer DOI 0601
BibRef

Dinten, J.M., Trouve, A.,
A deformable model approach for the determination of transition strips on radiographic images,
ICPR92(II:355-358).
IEEE DOI 9208
BibRef

Younes, L.[Laurent],
Combining Geodesic Interpolating Splines and Affine Transformations,
IP(15), No. 5, May 2006, pp. 1111-1119.
IEEE DOI 0605
BibRef

Camion, V.[Vincent], Younes, L.[Laurent],
Geodesic Interpolating Splines,
EMMCVPR01(513-527).
Springer DOI 0205
BibRef

Garcin, L.[Laurent], Younes, L.[Laurent],
Geodesic Matching with Free Extremities,
JMIV(25), No. 3, October 2006, pp. 329-340.
Springer DOI 0611
BibRef
Earlier:
Geodesic Image Matching: A Wavelet Based Energy Minimization Scheme,
EMMCVPR05(349-364).
Springer DOI 0601
BibRef

Felsberg, M.[Michael], Forssen, P.E.[Per-Erik], Scharr, H.[Hanno],
Channel Smoothing: Efficient Robust Smoothing of Low-Level Signal Features,
PAMI(28), No. 2, February 2006, pp. 209-222.
IEEE DOI 0601
Encode into channels, average the channels, decode the channels. BibRef

Felsberg, M.[Michael],
Extending Graph-Cut to Continuous Value Domain Minimization,
CRV07(274-281).
IEEE DOI 0705
BibRef

Felsberg, M.[Michael],
Wiener Channel Smoothing: Robust Wiener Filtering of Images,
DAGM05(468).
Springer DOI 0509
BibRef

Ciulla, C., Deek, F.P.,
Novel Schemes of Trivariate Linear and One-Dimensional Quadratic B-Spline Interpolation Functions Based on the Sub-Pixel Efficacy Region,
GVIP(05), No. V8, 2005, pp. 42-53.
HTML Version. BibRef 0500

Ameur, E.B.[El Bachir], Sbibih, D.[Driss], Almhdie, A.[Ahmad], Leger, C.[Christophe],
New Spline Quasi-Interpolant for Fitting 3-D Data on the Sphere: Applications to Medical Imaging,
SPLetters(14), No. 5, May 2007, pp. 333-336.
IEEE DOI 0704
BibRef

Li, X.[Xin], Deng, J.S.[Jian-Song], Chen, F.L.[Fa-Lai],
Surface modeling with polynomial splines over hierarchical T-meshes,
VC(23), No. 12, December 2007, pp. 1027-1033.
Springer DOI 0712
BibRef

Shen, L.Y.[Li-Yong], Chen, F.L.[Fa-Lai], Jüttler, B.[Bert], Deng, J.S.[Jian-Song],
Approximate mu-Bases of Rational Curves and Surfaces,
GMP06(175-188).
Springer DOI 0607
BibRef

Aigner, M.[Martin], Jüttler, B.[Bert],
Robust fitting of implicitly defined surfaces using Gauss-Newton-type techniques,
VC(25), No. 8, August 2009, pp. xx-yy.
Springer DOI 0907
BibRef

Aigner, M., Sir, Z., Jüttler, B.,
Least-Squares Approximation by Pythagorean Hodograph Spline Curves Via an Evolution Process,
GMP06(45-58).
Springer DOI 0607
BibRef

Biswas, S.[Sambhunath], Lovell, B.C.[Brian C.],
Bézier and Splines in Image Processing and Machine Vision,
Springer2008, ISBN: 978-1-84628-956-9.
WWW Link. Survey, Splines. Survey, Active Contours. BibRef 0800

Khan, M.A.[Murtaza Ali], Ohno, Y.[Yoshio],
Compression of Video Data Using Parametric Line and Natural Cubic Spline Block Level Approximation,
IEICE(E90-D), No. 5, May 2007, pp. 844-850.
DOI Link 0705
Spline approximation first. BibRef

Khan, M.A.[Murtaza Ali],
A new method for video data compression by quadratic Bézier curve fitting,
SIViP(6), No. 1, March 2012, pp. 19-24.
WWW Link. 1203
BibRef

Daniels, II, J.[Joel], Ochotta, T.[Tilo], Ha, L.K.[Linh K.], Silva, C.T.[Cláudio T.],
Spline-based feature curves from point-sampled geometry,
VC(24), No. 6, June 2008, pp. xx-yy.
Springer DOI 0804
BibRef

Bao, F.X.[Fang-Xun], Sun, Q.H.[Qing-Hua], Duan, Q.[Qi],
Point control of the interpolating curve with a rational cubic spline,
JVCIR(20), No. 4, May 2009, pp. 275-280.
Elsevier DOI 0905
Rational spline; Value control; Convexity control; Error estimate; Cubic interpolation; Curve design; Local shape control; Inflection point control BibRef

Gomes, A.J.P., Voiculescu, I., Jorge, J., Wyvill, B., Galbraith, C.,
Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms,
Springer2009, ISBN: 978-1-84882-405-8
WWW Link. Buy this book: Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms 0906
BibRef

Kim, D.H.[Dae Hyun], Kim, M.J.[Myoung-Jun],
A New Cubic B-Splines Design Method for Pen Input Environment,
IEICE(E92-D), No. 1, January 2009, pp. 69-77.
WWW Link. 0907
BibRef

Chaudhury, K.N.[Kunal Narayan], Munoz-Barrutia, A.[Arrate], Unser, M.[Michael],
Fast Space-Variant Elliptical Filtering Using Box Splines,
IP(19), No. 9, September 2010, pp. 2290-2306.
IEEE DOI 1008
BibRef
Earlier:
Fast adaptive elliptical filtering using box splines,
ICIP08(785-788).
IEEE DOI 0810
BibRef

Chaudhury, K.N.[Kunal Narayan], Sanyal, S.,
Improvements on 'Fast Space-Variant Elliptical Filtering Using Box Splines',
IP(21), No. 9, September 2012, pp. 3915-3923.
IEEE DOI 1208
BibRef

Chaudhury, K.N.,
Constant-Time Filtering Using Shiftable Kernels,
SPLetters(18), No. 11, November 2011, pp. 651-654.
IEEE DOI 1112
BibRef

Chaudhury, K.N.[Kunal N.],
Fast and accurate bilateral filtering using Gauss-polynomial decomposition,
ICIP15(2005-2009)
IEEE DOI 1512
Bilateral filter BibRef

Lin, T.C., Truong, T.K., Chen, S.H., Wang, L.J., Cheng, T.C.,
Simplified 2-D Cubic Spline Interpolation Scheme Using Direct Computation Algorithm,
IP(19), No. 11, November 2010, pp. 2913-2923.
IEEE DOI 1011
BibRef

Hong, S.H.[Shao-Hua], Wang, L.[Lin], Truong, T.K.[Trieu-Kien],
Low-complexity direct computation algorithm for cubic-spline interpolation scheme,
JVCIR(50), 2018, pp. 159-166.
Elsevier DOI 1802
Cubic-spline interpolation, Direct computation algorithm, Fast Fourier transform, Low-complexity direct computation algorithm BibRef

Hong, S.H., Wang, L., Truong, T.K.,
A New Simple Direct Computation of Cubic Convolution Spline Interpolation,
ICIP20(513-517)
IEEE DOI 2011
Correlation, Image reconstruction, Convolution, Interpolation, Image coding, Complexity theory, Splines (mathematics), CCSI, simple direct computation algorithm BibRef

Hu, M.X.[Ming-Xiao], Feng, J.Q.[Jie-Qing], Zheng, J.M.[Jian-Min],
An additional branch free algebraic B-spline curve fitting method,
VC(26), No. 6-8, June 2010, pp. 801-811.
WWW Link. 1101
BibRef

Abbas, A.[Abdulwahed], Nasri, A.[Ahmad], Maekawa, T.[Takashi],
Generating B-spline curves with points, normals and curvature constraints: a constructive approach,
VC(26), No. 6-8, June 2010, pp. 823-829.
WWW Link. 1101
BibRef

Sun, Q.H.[Qing-Hua], Bao, F.X.[Fang-Xun], Zhang, Y.F.[Yun-Feng], Duan, Q.[Qi],
A bivariate rational interpolation based on scattered data on parallel lines,
JVCIR(24), No. 1, January 2013, pp. 75-80.
Elsevier DOI 1301
Rational spline; Scattered data; Triangulation; Bivariate interpolation; Computer-aided geometric design; Shape control BibRef

Dube, M.[Mridula], Sharma, R.[Reenu],
Piecewise Quartic Trigonometric Polynomial B-Spline Curves with Two Shape Parameters,
IJIG(12), No. 4, October 2012, pp. 1250028.
DOI Link 1305
BibRef

Averbuch, A.Z.[Amir Z.], Neittaanmäki, P.[Pekka], Zheludev, V.A.[Valery A.],
Spline and Spline Wavelet Methods with Applications to Signal and Image Processing,

Springer2014. ISBN 978-94-017-8925-7
WWW Link. 1404
BibRef

Parvez, M.T.,
Optimised cubic spline approximations of image contours using points suppression,
IET-IPR(9), No. 12, 2015, pp. 1092-1100.
DOI Link 1512
image processing BibRef

Zhang, L.[Li], Ge, X.Y.[Xian-Yu], Tan, J.Q.[Jie-Qing],
Least square geometric iterative fitting method for generalized B-spline curves with two different kinds of weights,
VC(32), No. 9, September 2016, pp. 1109-1120.
WWW Link. 1609
BibRef

Cai, Z., Lan, T., Zheng, C.,
Hierarchical MK Splines: Algorithm and Applications to Data Fitting,
MultMed(19), No. 5, May 2017, pp. 921-934.
IEEE DOI 1704
Approximation algorithms BibRef

Zheng, S.H.[Shen-Hai], Fang, B.[Bin], Li, L.Q.[La-Quan], Gao, M.Q.[Ming-Qi], Chen, R.[Rui], Peng, K.Y.[Kai-Yi],
B-Spline based globally optimal segmentation combining low-level and high-level information,
PR(73), No. 1, 2018, pp. 144-157.
Elsevier DOI 1709
Multi-scale, image, segmentation BibRef

Conti, C.[Costanza], Romani, L.[Lucia], Schenone, D.[Daniela],
Semi-automatic spline fitting of planar curvilinear profiles in digital images using the Hough transform,
PR(74), No. 1, 2018, pp. 64-76.
Elsevier DOI 1711
Hough, transform BibRef

Briand, T.[Thibaud], Davy, A.[Axel],
Optimization of Image B-spline Interpolation for GPU Architectures,
IPOL(9), 2019, pp. 183-204.
DOI Link 1908
Code, B-Spline. OpenCV code. BibRef

Sun, J., Wang, Y., Shen, Y., Lu, S.,
High-Precision Trajectory Data Reconstruction for TTandC Systems Using LS B-Spline Approximation,
SPLetters(27), 2020, pp. 895-899.
IEEE DOI 2006
tracking, telemetry, and command. Splines (mathematics), Trajectory, Approximation algorithms, Interpolation, Signal processing algorithms, Measurement errors, trajectory data reconstruction BibRef

Heinecke, A., Ho, J., Hwang, W.,
Refinement and Universal Approximation via Sparsely Connected ReLU Convolution Nets,
SPLetters(27), 2020, pp. 1175-1179.
IEEE DOI 2007
Function approximation, neural networks, splines BibRef

Yu, B.[Bo], Yang, X.Z.[Xiu-Zhu],
The Hilbert Transform of B-Spline Wavelets,
SPLetters(28), 2021, pp. 693-697.
IEEE DOI 2104
Wavelet transforms, Transforms, Splines (mathematics), Signal processing, Mathematical model, Tools, Integral equations, hilbert transform BibRef

He, P.[Ping], Xu, X.H.[Xiao-Hua], Chang, X.C.[Xin-Cheng], Ding, J.[Jie], Chen, S.[Suquan],
Multi-manifold discriminant local spline embedding,
PR(129), 2022, pp. 108714.
Elsevier DOI 2206
Manifold learning, Dimension reduction, Classification, Thin plate spline, Multiple manifolds BibRef

Jover, I.L.[Icíar Lloréns], Debarre, T.[Thomas], Aziznejad, S.[Shayan], Unser, M.[Michael],
Coupled Splines for Sparse Curve Fitting,
IP(31), 2022, pp. 4707-4718.
IEEE DOI 2207
Splines (mathematics), Optimization, TV, Task analysis, Minimization, Inverse problems, Image edge detection, Inverse problems, sparsity BibRef

Noh, S.T.[Seung-Tak], Harada, H.[Hiroki], Yang, X.[Xi], Fukusato, T.[Tsukasa], Igarashi, T.[Takeo],
PPW Curves: a C2 Interpolating Spline with Hyperbolic Blending of Rational Bézier Curves,
IEICE(E105-D), No. 10, October 2022, pp. 1704-1711.
WWW Link. 2210
BibRef

Sun, F.L.[Fang-Li], Cai, Z.C.[Zhan-Chuan],
A Family of Generalized Cardinal Polishing Splines,
IP(33), 2024, pp. 1952-1964.
IEEE DOI 2403
Splines (mathematics), Interpolation, Image reconstruction, Mathematical models, Convolution, Fourier transforms, Training, Riesz basis BibRef

Ge, W.[Wei], Zhang, H.[Heying], Zhang, J.[Jiashu], He, X.Y.[Xing-Yu],
Diffusion Pipelined Spline Adaptive Filter,
SPLetters(31), 2024, pp. 2170-2174.
IEEE DOI 2409
Splines (mathematics), Filters, Vectors, Adaptive filters, Signal processing algorithms, Indexes, Estimation, spline adaptive flter BibRef


Justiniano, J.[Jorge], Rajkovic, M.[Marko], Rumpf, M.[Martin],
Splines for Image Metamorphosis,
SSVM21(463-475).
Springer DOI 2106
BibRef

Zhou, P., Price, B., Cohen, S., Wilensky, G., Davis, L.S.,
Deepstrip: High-Resolution Boundary Refinement,
CVPR20(10555-10564)
IEEE DOI 2008
Strips, Image resolution, Splines (mathematics), Image edge detection, Image segmentation, Semantics, Active contours BibRef

Sommer, C., Usenko, V., Schubert, D., Demmel, N., Cremers, D.,
Efficient Derivative Computation for Cumulative B-Splines on Lie Groups,
CVPR20(11145-11153)
IEEE DOI 2008
Splines (mathematics), Trajectory, Calibration, Jacobian matrices, Transforms BibRef

Esmaeili, F., Amiri-Simkooei, A., Nafisi, V., Alizadeh Naeini, A.,
Application of B-spline Method in Surface Fitting Problem,
SMPR19(343-348).
DOI Link 1912
BibRef

Laube, P., Franz, M.O., Umlauf, G.,
Deep Learning Parametrization for B-Spline Curve Approximation,
3DV18(691-699)
IEEE DOI 1812
approximation theory, learning (artificial intelligence), neural net architecture, splines (mathematics), deep learning BibRef

Fey, M., Lenssen, J.E., Weichert, F., Müller, H.,
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels,
CVPR18(869-877)
IEEE DOI 1812
Splines (mathematics), Kernel, Convolution, Neural networks, Manifolds, Task analysis BibRef

Jiang, P., Shackleford, J.A.,
CNN Driven Sparse Multi-level B-Spline Image Registration,
CVPR18(9281-9289)
IEEE DOI 1812
Splines (mathematics), Strain, Optimization, Transforms, Image registration, Measurement, Training BibRef

Dokken, T., Skytt, V., Barrowclough, O.,
Locally Refined Splines Representation for Geospatial Big Data,
GeoBigData15(565-570).
DOI Link 1602
BibRef

Tan, J.S.[Joi San], Venkat, I.[Ibrahim], Belaton, B.[Bahari],
An Analytical Curvature B-Spline Algorithm for Effective Curve Modeling,
IVIC15(283-295).
Springer DOI 1511
BibRef

Morwald, T.[Thomas], Balzer, J.[Jonathan], Vincze, M.[Markus],
Direct Optimization of T-Splines Based on Multiview Stereo,
3DV14(20-27)
IEEE DOI 1503
Cameras BibRef

Karantza, A., Alarcon, S.L., Cahill, N.D.,
A comparison of sequential and GPU-accelerated implementations of B-spline signal processing operations for 2-D and 3-D images,
IPTA12(74-79)
IEEE DOI 1503
C++ language BibRef

Chen, F.M.[Feng-Min], Wong, P.J.Y.[Patricia J.Y.],
Solving second order boundary value problems by discrete cubic splines,
ICARCV12(1800-1805).
IEEE DOI 1304
BibRef

Chen, F.M.[Feng-Min], Wong, P.J.Y.[Patricia J.Y.],
Discrete biquintic spline method for Fredholm integral equations of the second kind,
ICARCV12(1806-1811).
IEEE DOI 1304
BibRef

Jalel, S.[Sawssen], Marthon, P.[Philippe], Hamouda, A.[Atef],
Optimized NURBS Curves Modelling Using Genetic Algorithm for Mobile Robot Navigation,
CAIP15(I:534-545).
Springer DOI 1511
BibRef
And:
NURBS Based Multi-objective Path Planning,
MCPR15(190-199).
Springer DOI 1506
BibRef

Jalel, S.[Sawssen], Naouai, M.[Mohamed], Hamouda, A.[Atef], Jebabli, M.[Malek],
NURBS Parameterization: A New Method of Parameterization Using the Correlation Relationship between Nodes,
MCPR12(216-225).
Springer DOI 1208
Non-uniform rational B-splines BibRef

Naouai, M.[Mohamed], Hammouda, A.[Atef], Jalel, S.[Sawssen], Weber, C.[Christiane],
NURBS Skeleton: A New Shape Representation Scheme Using Skeletonization and NURBS Curves Modeling,
CIARP11(197-205).
Springer DOI 1111
BibRef

Zhou, Y.F.[Yuan-Feng], Zhang, C.M.[Cai-Ming], Gao, S.S.[Shan-Shan],
Extension of B-Spline Curves with G 2 Continuity,
ISVC08(II: 1096-1105).
Springer DOI 0812
BibRef

Behar-Jequín, S., Estrada-Sarlabous, J., Hernández-Mederos, V.,
Constrained Interpolation with Implicit Plane Cubic A-Splines,
CIARP08(724-732).
Springer DOI 0809
BibRef

Zang, Y.[Yu], Liu, Y.J.[Yong-Jin], Lai, Y.K.[Yu-Kun],
Note on Industrial Applications of Hu's Surface Extension Algorithm,
GMP08(xx-yy).
Springer DOI 0804

See also extension algorithm for B-splines by curve unclamping, An. BibRef

Salvi, P., Suzuki, H., Várady, T.,
Fast and Local Fairing of B-Spline Curves and Surfaces,
GMP08(xx-yy).
Springer DOI 0804
BibRef

Stefanus, L.Y.[L. Yohanes],
Shape Representations with Blossoms and Buds,
GMP06(397-408).
Springer DOI 0607
Polynomial representations. BibRef

He, Y.[Ying], Wang, K.X.[Ke-Xiang], Wang, H.Y.[Hong-Yu], Gu, X.F.[Xian-Feng], Qin, H.[Hong],
Manifold T-Spline,
GMP06(409-422).
Springer DOI 0607
BibRef

Glas, S.[Sonja], Recatalá, G.[Gabriel], Sorg, M.[Michael],
Automatic Reconstruction of Silhouettes Using B-Splines,
SCIA03(239-246).
Springer DOI 0310
BibRef

Bondarenko, A.V., Svinyin, S.F., Skourikhin, A.V.,
Multidimensional b-spline forms and their fourier transforms,
ICIP03(II: 907-909).
IEEE DOI 0312
BibRef

Mamic, G., Bennamoun, M.,
Automatic Bayesian Knot Placement for Spline Fitting,
ICIP01(I: 169-172).
IEEE DOI 0108
BibRef

Haruki, R., Horiuchi, T.,
Data Fitting by Spline Functions Using the Biorthonormal Basis of the B-spline Basis,
ICPR00(Vol III: 270-273).
IEEE DOI
IEEE DOI 0009
BibRef

Brigger, P., Engel, R., Unser, M.,
B-spline snakes and a JAVA interface: an intuitive tool for general contour outlining,
ICIP98(II: 277-281).
IEEE DOI 9810
BibRef

Guleer, S., Derin, H.[Haluk],
Adaptive feature selection and constrained weak-membrane optimization for boundary detection,
ICIP94(II: 222-226).
IEEE DOI 9411
BibRef

Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Texture Based Segmentation Techniques .


Last update:Nov 26, 2024 at 16:40:19