Cohen, E.[Elaine],
Lyche, T.[Tom],
Riesenfeld, R.F.[Richard F.],
Discrete B-splines and subdivision techniques in computer-aided
geometric design and computer graphics,
CGIP(14), No. 2, October 1980, pp. 87-111.
Elsevier DOI
0501
Unify models, interference calculation, contouring, rendering, etc.
BibRef
Dierckx, P.,
Algorithms for Smoothing Data with Periodic and Parametric Splines,
CGIP(20), No. 2, October 1982, pp. 171-184.
Elsevier DOI Fitting splines to data.
BibRef
8210
Tiller, W.,
Rational B-Splines for Curve and Surface Representation,
IEEE_CGA(3), No. 6, November 1983, pp. 61-69.
BibRef
8311
Frost, C.E.,
Kinzel, G.L.,
An Automatic Adjustment Procedure for Rational Splines,
Computers&Graphics(6), 1982, pp. 171-176.
BibRef
8200
Barsky, B.A.,
Beatty, J.C.,
Local Control of Bias and Tension in Beta-Splines,
TOG(2), 1983, pp. 109-134.
BibRef
8300
Barsky, B.A.[Brian A.],
Exponential and Polynomial Methods for Applying Tension to an
Interpolating Spline Curve,
CVGIP(27), No. 1, July 1984, pp. 1-18.
Elsevier DOI
BibRef
8407
Alia, G.,
Barsi, F.,
Martinelli, E., and
Tani, N.,
Angular Spline: A New Approach to the Interpolation Problem
in Computer Graphics,
CVGIP( 39), No. 1, July 1987, pp. 56-72.
Elsevier DOI
BibRef
8707
Pham, B.[Binh],
Conic B-Splines for Curve Fitting: A Unifying Approach,
CVGIP(45), No. 1, January 1989, pp. 117-125.
Elsevier DOI Representations.
BibRef
8901
Cheng, F.,
Goshtasby, A.,
A Parallel B-Spline Surface Fitting Algorithm,
TOG(8), 1989, pp. 41-50.
BibRef
8900
Goshtasby, A.[Ardeshir],
Cheng, F.H.[Fu-Hua],
Barsky, B.A.[Brian A.],
B-Spline Curves and Surfaces Viewed as Digital Filters,
CVGIP(52), No. 2, November 1990, pp. 264-275.
Elsevier DOI
BibRef
9011
Schoenberg, I.J.,
Contributions to the Problem of Approximation of Equidistant Data by
Analytic Functions,
in I.J Schoenberg Selected Papers, Springer, 1988, pp. 3-57.
Springer DOI B-Spline descriptions.
BibRef
0000
Unser, M.[Michael],
Aldroubi, A.[Akram],
Eden, M.[Murray],
B-spline Signal Processing. I. Theory,
TSP(41), 1993, pp. 821-833.
IEEE DOI
BibRef
9300
Unser, M.[Michael],
Aldroubi, A.[Akram],
Eden, M.[Murray],
B-spline Signal Processing. II. Efficiency Design and Applications,
TSP(41), 1993, pp. 834-848.
IEEE DOI
BibRef
9300
Unser, M.,
Aldroubi, A., and
Eden, M.,
Fast B-Spline Transforms for Continuous
Image Representation and Interpolation,
PAMI(13), No. 3, March 1991, pp. 277-285.
IEEE DOI
BibRef
9103
Rabut, C.[Christophe],
Even Degree B-Spline Curves and Surfaces,
GMIP(54), No. 4, July 1992, pp. 351-356.
A Note on
See also B-Spline Curves and Surfaces Viewed as Digital Filters.
BibRef
9207
Pavlidis, T.,
Applications of Splines to Shape Description,
VF91(431-441).
Splines for representing contours.
BibRef
9100
Goldman, R.[Ron],
Warren, J.[Joe],
An Extension of Chaiken's Algorithm to B-Spline Curves with
Knots in Geometric Progression,
GMIP(55), No. 1, January 1993, pp. 58-yy.
BibRef
9301
Howell, G.W.[Gary W.],
Fausett, D.W.[Donald W.],
Fausett, L.[Laurene],
Quasi-Circular Splines: A Shape-Preserving Approximation,
GMIP(55), No. 2, March 1993, pp. 89-yy.
BibRef
9303
Ferrari, L.A.,
Silbermann, M.J.,
Sankar, P.V.,
Efficient Algorithms for the Implementation of General B-Splines,
GMIP(56), No. 1, January 1994, pp. 102-yy.
BibRef
9401
Sankar, P.V.,
Ferrari, L.A.,
Simple Algorithms and Architectures for B-Spline Interpolation,
PAMI(10), No. 2, March 1988, pp. 271-276.
IEEE DOI
BibRef
8803
Flickner, M.D.,
Hafner, J.L.,
Rodriguez, E.J.,
Sanz, J.L.C.,
Periodic Quasi-Orthogonal Spline Bases and Applications to
Least-Squares Curve-Fitting of Digital Images,
IP(5), No. 1, January 1996, pp. 71-88.
IEEE DOI
BibRef
9601
Earlier:
Fast least-squares curve fitting using quasi-orthogonal splines,
ICIP94(I: 686-690).
IEEE DOI
9411
BibRef
Ishida, J.,
The General B-Spline Interpolation Method and Its Application to the
Modification of Curves and Surfaces,
CAD(29), No. 11, November 1997, pp. 779-790.
9712
BibRef
Tuohy, S.T.,
Maekawa, T.,
Shen, G.,
Patrikalakis, N.M.,
Approximation of Measured Data with Interval B-Splines,
CAD(29), No. 11, November 1997, pp. 791-799.
9712
BibRef
Karczewicz, M.,
Gabbouj, M.,
Robust B-Spline Image Modeling with Application to Image Processing,
IP(7), No. 6, June 1998, pp. 912-917.
IEEE DOI
9806
See also Dedicated Hardware System for a Class of Nonlinear Order Statistics Rational Hybrid Filters with Applications to Image Processing, A.
BibRef
Wang, Y.P.,
Lee, S.L.,
Toraichi, K.,
Multiscale Curvature-Based Shape Representation Using B-Spline Wavelets,
IP(8), No. 11, November 1999, pp. 1586-1592.
IEEE DOI
9911
BibRef
Panda, R.[Rutuparna],
Chatterji, B.N.,
Least squares generalized B-spline signal and image processing,
SP(81), No. 10, October 2001, pp. 2005-2017.
Elsevier DOI
0110
BibRef
Lehmann, T.M.,
Gonner, C.,
Spitzer, K.,
Addendum: B-spline interpolation in medical image processing,
MedImg(20), No. 7, July 2001, pp. 660-665.
IEEE Top Reference.
0110
BibRef
Hu, S.M.,
Tai, C.L.,
Zhang, S.,
An extension algorithm for B-splines by curve unclamping,
CAD(34), 2002, pp. 415-419.
Elsevier DOI
BibRef
0200
van de Ville, D.,
Blu, T.,
Unser, M.,
Philips, W.,
Lemahieu, I.,
van de Walle, R.,
Hex-splines: a novel spline family for hexagonal lattices,
IP(13), No. 6, June 2004, pp. 758-772.
IEEE DOI
0406
BibRef
Condat, L.[Laurent],
van de Ville, D.[Dimitri],
Quasi-Interpolating Spline Models for Hexagonally-Sampled Data,
IP(16), No. 5, May 2007, pp. 1195-1206.
IEEE DOI
0704
BibRef
van de Ville, D.,
Blu, T.,
Unser, M.,
Isotropic Polyharmonic B-Splines: Scaling Functions and Wavelets,
IP(14), No. 11, November 2005, pp. 1798-1813.
IEEE DOI
0510
BibRef
Beg, M.F.[M. Faisal],
Miller, M.I.[Michael I.],
Trouvé, A.[Alain],
Younes, L.[Laurent],
Computing Large Deformation Metric Mappings via Geodesic Flows of
Diffeomorphisms,
IJCV(61), No. 2, February 2005, pp. 139-157.
DOI Link
0410
BibRef
Beg, M.F.[M. Faisal],
Khan, A.,
Symmetric Data Attachment Terms for Large Deformation Image
Registration,
MedImg(26), No. 9, September 2007, pp. 1179-1189.
IEEE DOI
0710
BibRef
Miller, M.I.[Michael I.],
Trouvé, A.[Alain],
Younes, L.[Laurent],
Geodesic Shooting for Computational Anatomy,
JMIV(24), No. 2, March 2006, pp. 209-228.
Springer DOI
0605
BibRef
Earlier:
The Metric Spaces, Euler Equations, and Normal Geodesic Image Motions
of Computational Anatomy,
ICIP03(II: 635-638).
IEEE DOI
0312
BibRef
Allassonnière, S.[Stéphanie],
Trouvé, A.[Alain],
Younes, L.[Laurent],
Geodesic Shooting and Diffeomorphic Matching Via Textured Meshes,
EMMCVPR05(365-381).
Springer DOI
0601
BibRef
Dinten, J.M.,
Trouve, A.,
A deformable model approach for the determination of transition strips
on radiographic images,
ICPR92(II:355-358).
IEEE DOI
9208
BibRef
Younes, L.[Laurent],
Combining Geodesic Interpolating Splines and Affine Transformations,
IP(15), No. 5, May 2006, pp. 1111-1119.
IEEE DOI
0605
BibRef
Camion, V.[Vincent],
Younes, L.[Laurent],
Geodesic Interpolating Splines,
EMMCVPR01(513-527).
Springer DOI
0205
BibRef
Garcin, L.[Laurent],
Younes, L.[Laurent],
Geodesic Matching with Free Extremities,
JMIV(25), No. 3, October 2006, pp. 329-340.
Springer DOI
0611
BibRef
Earlier:
Geodesic Image Matching: A Wavelet Based Energy Minimization Scheme,
EMMCVPR05(349-364).
Springer DOI
0601
BibRef
Felsberg, M.[Michael],
Forssen, P.E.[Per-Erik],
Scharr, H.[Hanno],
Channel Smoothing:
Efficient Robust Smoothing of Low-Level Signal Features,
PAMI(28), No. 2, February 2006, pp. 209-222.
IEEE DOI
0601
Encode into channels, average the channels, decode the channels.
BibRef
Felsberg, M.[Michael],
Extending Graph-Cut to Continuous Value Domain Minimization,
CRV07(274-281).
IEEE DOI
0705
BibRef
Felsberg, M.[Michael],
Wiener Channel Smoothing: Robust Wiener Filtering of Images,
DAGM05(468).
Springer DOI
0509
BibRef
Ciulla, C.,
Deek, F.P.,
Novel Schemes of Trivariate Linear and One-Dimensional Quadratic
B-Spline Interpolation Functions Based on the Sub-Pixel Efficacy Region,
GVIP(05), No. V8, 2005, pp. 42-53.
HTML Version.
BibRef
0500
Ameur, E.B.[El Bachir],
Sbibih, D.[Driss],
Almhdie, A.[Ahmad],
Leger, C.[Christophe],
New Spline Quasi-Interpolant for Fitting 3-D Data on the Sphere:
Applications to Medical Imaging,
SPLetters(14), No. 5, May 2007, pp. 333-336.
IEEE DOI
0704
BibRef
Li, X.[Xin],
Deng, J.S.[Jian-Song],
Chen, F.L.[Fa-Lai],
Surface modeling with polynomial splines over hierarchical T-meshes,
VC(23), No. 12, December 2007, pp. 1027-1033.
Springer DOI
0712
BibRef
Shen, L.Y.[Li-Yong],
Chen, F.L.[Fa-Lai],
Jüttler, B.[Bert],
Deng, J.S.[Jian-Song],
Approximate mu-Bases of Rational Curves and Surfaces,
GMP06(175-188).
Springer DOI
0607
BibRef
Aigner, M.[Martin],
Jüttler, B.[Bert],
Robust fitting of implicitly defined surfaces using Gauss-Newton-type
techniques,
VC(25), No. 8, August 2009, pp. xx-yy.
Springer DOI
0907
BibRef
Aigner, M.,
Sir, Z.,
Jüttler, B.,
Least-Squares Approximation by Pythagorean Hodograph Spline Curves Via
an Evolution Process,
GMP06(45-58).
Springer DOI
0607
BibRef
Biswas, S.[Sambhunath],
Lovell, B.C.[Brian C.],
Bézier and Splines in Image Processing and Machine Vision,
Springer2008, ISBN: 978-1-84628-956-9.
WWW Link.
Survey, Splines.
Survey, Active Contours.
BibRef
0800
Khan, M.A.[Murtaza Ali],
Ohno, Y.[Yoshio],
Compression of Video Data Using Parametric Line and Natural Cubic
Spline Block Level Approximation,
IEICE(E90-D), No. 5, May 2007, pp. 844-850.
DOI Link
0705
Spline approximation first.
BibRef
Khan, M.A.[Murtaza Ali],
A new method for video data compression by quadratic Bézier curve
fitting,
SIViP(6), No. 1, March 2012, pp. 19-24.
WWW Link.
1203
BibRef
Daniels, II, J.[Joel],
Ochotta, T.[Tilo],
Ha, L.K.[Linh K.],
Silva, C.T.[Cláudio T.],
Spline-based feature curves from point-sampled geometry,
VC(24), No. 6, June 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Bao, F.X.[Fang-Xun],
Sun, Q.H.[Qing-Hua],
Duan, Q.[Qi],
Point control of the interpolating curve with a rational cubic spline,
JVCIR(20), No. 4, May 2009, pp. 275-280.
Elsevier DOI
0905
Rational spline; Value control; Convexity control; Error estimate;
Cubic interpolation; Curve design; Local shape control; Inflection
point control
BibRef
Gomes, A.J.P.,
Voiculescu, I.,
Jorge, J.,
Wyvill, B.,
Galbraith, C.,
Implicit Curves and Surfaces: Mathematics, Data Structures
and Algorithms,
Springer2009, ISBN: 978-1-84882-405-8
WWW Link.
Buy this book: Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms
0906
BibRef
Kim, D.H.[Dae Hyun],
Kim, M.J.[Myoung-Jun],
A New Cubic B-Splines Design Method for Pen Input Environment,
IEICE(E92-D), No. 1, January 2009, pp. 69-77.
WWW Link.
0907
BibRef
Chaudhury, K.N.[Kunal Narayan],
Munoz-Barrutia, A.[Arrate],
Unser, M.[Michael],
Fast Space-Variant Elliptical Filtering Using Box Splines,
IP(19), No. 9, September 2010, pp. 2290-2306.
IEEE DOI
1008
BibRef
Earlier:
Fast adaptive elliptical filtering using box splines,
ICIP08(785-788).
IEEE DOI
0810
BibRef
Chaudhury, K.N.[Kunal Narayan],
Sanyal, S.,
Improvements on 'Fast Space-Variant Elliptical Filtering Using Box
Splines',
IP(21), No. 9, September 2012, pp. 3915-3923.
IEEE DOI
1208
BibRef
Chaudhury, K.N.,
Constant-Time Filtering Using Shiftable Kernels,
SPLetters(18), No. 11, November 2011, pp. 651-654.
IEEE DOI
1112
BibRef
Chaudhury, K.N.[Kunal N.],
Fast and accurate bilateral filtering using Gauss-polynomial
decomposition,
ICIP15(2005-2009)
IEEE DOI
1512
Bilateral filter
BibRef
Lin, T.C.,
Truong, T.K.,
Chen, S.H.,
Wang, L.J.,
Cheng, T.C.,
Simplified 2-D Cubic Spline Interpolation Scheme Using Direct
Computation Algorithm,
IP(19), No. 11, November 2010, pp. 2913-2923.
IEEE DOI
1011
BibRef
Hong, S.H.[Shao-Hua],
Wang, L.[Lin],
Truong, T.K.[Trieu-Kien],
Low-complexity direct computation algorithm for cubic-spline
interpolation scheme,
JVCIR(50), 2018, pp. 159-166.
Elsevier DOI
1802
Cubic-spline interpolation, Direct computation algorithm,
Fast Fourier transform, Low-complexity direct computation algorithm
BibRef
Hong, S.H.,
Wang, L.,
Truong, T.K.,
A New Simple Direct Computation of Cubic Convolution Spline
Interpolation,
ICIP20(513-517)
IEEE DOI
2011
Correlation, Image reconstruction, Convolution, Interpolation,
Image coding, Complexity theory, Splines (mathematics), CCSI,
simple direct computation algorithm
BibRef
Hu, M.X.[Ming-Xiao],
Feng, J.Q.[Jie-Qing],
Zheng, J.M.[Jian-Min],
An additional branch free algebraic B-spline curve fitting method,
VC(26), No. 6-8, June 2010, pp. 801-811.
WWW Link.
1101
BibRef
Abbas, A.[Abdulwahed],
Nasri, A.[Ahmad],
Maekawa, T.[Takashi],
Generating B-spline curves with points, normals and curvature
constraints: a constructive approach,
VC(26), No. 6-8, June 2010, pp. 823-829.
WWW Link.
1101
BibRef
Sun, Q.H.[Qing-Hua],
Bao, F.X.[Fang-Xun],
Zhang, Y.F.[Yun-Feng],
Duan, Q.[Qi],
A bivariate rational interpolation based on scattered data on parallel
lines,
JVCIR(24), No. 1, January 2013, pp. 75-80.
Elsevier DOI
1301
Rational spline; Scattered data; Triangulation; Bivariate
interpolation; Computer-aided geometric design; Shape control
BibRef
Dube, M.[Mridula],
Sharma, R.[Reenu],
Piecewise Quartic Trigonometric Polynomial B-Spline Curves with Two
Shape Parameters,
IJIG(12), No. 4, October 2012, pp. 1250028.
DOI Link
1305
BibRef
Averbuch, A.Z.[Amir Z.],
Neittaanmäki, P.[Pekka],
Zheludev, V.A.[Valery A.],
Spline and Spline Wavelet Methods with
Applications to Signal and Image Processing,
Parvez, M.T.,
Optimised cubic spline approximations of image contours using points
suppression,
IET-IPR(9), No. 12, 2015, pp. 1092-1100.
DOI Link
1512
image processing
BibRef
Zhang, L.[Li],
Ge, X.Y.[Xian-Yu],
Tan, J.Q.[Jie-Qing],
Least square geometric iterative fitting method for generalized
B-spline curves with two different kinds of weights,
VC(32), No. 9, September 2016, pp. 1109-1120.
WWW Link.
1609
BibRef
Cai, Z.,
Lan, T.,
Zheng, C.,
Hierarchical MK Splines: Algorithm and Applications to Data Fitting,
MultMed(19), No. 5, May 2017, pp. 921-934.
IEEE DOI
1704
Approximation algorithms
BibRef
Zheng, S.H.[Shen-Hai],
Fang, B.[Bin],
Li, L.Q.[La-Quan],
Gao, M.Q.[Ming-Qi],
Chen, R.[Rui],
Peng, K.Y.[Kai-Yi],
B-Spline based globally optimal segmentation combining low-level and
high-level information,
PR(73), No. 1, 2018, pp. 144-157.
Elsevier DOI
1709
Multi-scale, image, segmentation
BibRef
Conti, C.[Costanza],
Romani, L.[Lucia],
Schenone, D.[Daniela],
Semi-automatic spline fitting of planar curvilinear profiles in
digital images using the Hough transform,
PR(74), No. 1, 2018, pp. 64-76.
Elsevier DOI
1711
Hough, transform
BibRef
Briand, T.[Thibaud],
Davy, A.[Axel],
Optimization of Image B-spline Interpolation for GPU Architectures,
IPOL(9), 2019, pp. 183-204.
DOI Link
1908
Code, B-Spline. OpenCV code.
BibRef
Sun, J.,
Wang, Y.,
Shen, Y.,
Lu, S.,
High-Precision Trajectory Data Reconstruction for TTandC Systems Using
LS B-Spline Approximation,
SPLetters(27), 2020, pp. 895-899.
IEEE DOI
2006
tracking, telemetry, and command.
Splines (mathematics), Trajectory, Approximation algorithms,
Interpolation, Signal processing algorithms, Measurement errors,
trajectory data reconstruction
BibRef
Heinecke, A.,
Ho, J.,
Hwang, W.,
Refinement and Universal Approximation via Sparsely Connected ReLU
Convolution Nets,
SPLetters(27), 2020, pp. 1175-1179.
IEEE DOI
2007
Function approximation, neural networks, splines
BibRef
Yu, B.[Bo],
Yang, X.Z.[Xiu-Zhu],
The Hilbert Transform of B-Spline Wavelets,
SPLetters(28), 2021, pp. 693-697.
IEEE DOI
2104
Wavelet transforms, Transforms, Splines (mathematics),
Signal processing, Mathematical model, Tools, Integral equations,
hilbert transform
BibRef
He, P.[Ping],
Xu, X.H.[Xiao-Hua],
Chang, X.C.[Xin-Cheng],
Ding, J.[Jie],
Chen, S.[Suquan],
Multi-manifold discriminant local spline embedding,
PR(129), 2022, pp. 108714.
Elsevier DOI
2206
Manifold learning, Dimension reduction, Classification,
Thin plate spline, Multiple manifolds
BibRef
Jover, I.L.[Icíar Lloréns],
Debarre, T.[Thomas],
Aziznejad, S.[Shayan],
Unser, M.[Michael],
Coupled Splines for Sparse Curve Fitting,
IP(31), 2022, pp. 4707-4718.
IEEE DOI
2207
Splines (mathematics), Optimization, TV, Task analysis, Minimization,
Inverse problems, Image edge detection, Inverse problems,
sparsity
BibRef
Noh, S.T.[Seung-Tak],
Harada, H.[Hiroki],
Yang, X.[Xi],
Fukusato, T.[Tsukasa],
Igarashi, T.[Takeo],
PPW Curves: a C2 Interpolating Spline with Hyperbolic Blending of
Rational Bézier Curves,
IEICE(E105-D), No. 10, October 2022, pp. 1704-1711.
WWW Link.
2210
BibRef
Sun, F.L.[Fang-Li],
Cai, Z.C.[Zhan-Chuan],
A Family of Generalized Cardinal Polishing Splines,
IP(33), 2024, pp. 1952-1964.
IEEE DOI
2403
Splines (mathematics), Interpolation, Image reconstruction,
Mathematical models, Convolution, Fourier transforms, Training,
Riesz basis
BibRef
Ge, W.[Wei],
Zhang, H.[Heying],
Zhang, J.[Jiashu],
He, X.Y.[Xing-Yu],
Diffusion Pipelined Spline Adaptive Filter,
SPLetters(31), 2024, pp. 2170-2174.
IEEE DOI
2409
Splines (mathematics), Filters, Vectors, Adaptive filters,
Signal processing algorithms, Indexes, Estimation, spline adaptive flter
BibRef
Zhou, P.,
Price, B.,
Cohen, S.,
Wilensky, G.,
Davis, L.S.,
Deepstrip: High-Resolution Boundary Refinement,
CVPR20(10555-10564)
IEEE DOI
2008
Strips, Image resolution, Splines (mathematics),
Image edge detection, Image segmentation, Semantics, Active contours
BibRef
Sommer, C.,
Usenko, V.,
Schubert, D.,
Demmel, N.,
Cremers, D.,
Efficient Derivative Computation for Cumulative B-Splines on Lie
Groups,
CVPR20(11145-11153)
IEEE DOI
2008
Splines (mathematics), Trajectory, Calibration,
Jacobian matrices, Transforms
BibRef
Esmaeili, F.,
Amiri-Simkooei, A.,
Nafisi, V.,
Alizadeh Naeini, A.,
Application of B-spline Method in Surface Fitting Problem,
SMPR19(343-348).
DOI Link
1912
BibRef
Laube, P.,
Franz, M.O.,
Umlauf, G.,
Deep Learning Parametrization for B-Spline Curve Approximation,
3DV18(691-699)
IEEE DOI
1812
approximation theory, learning (artificial intelligence),
neural net architecture, splines (mathematics),
deep learning
BibRef
Fey, M.,
Lenssen, J.E.,
Weichert, F.,
Müller, H.,
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline
Kernels,
CVPR18(869-877)
IEEE DOI
1812
Splines (mathematics), Kernel, Convolution, Neural networks,
Manifolds, Task analysis
BibRef
Jiang, P.,
Shackleford, J.A.,
CNN Driven Sparse Multi-level B-Spline Image Registration,
CVPR18(9281-9289)
IEEE DOI
1812
Splines (mathematics), Strain, Optimization, Transforms,
Image registration, Measurement, Training
BibRef
Dokken, T.,
Skytt, V.,
Barrowclough, O.,
Locally Refined Splines Representation for Geospatial Big Data,
GeoBigData15(565-570).
DOI Link
1602
BibRef
Tan, J.S.[Joi San],
Venkat, I.[Ibrahim],
Belaton, B.[Bahari],
An Analytical Curvature B-Spline Algorithm for Effective Curve Modeling,
IVIC15(283-295).
Springer DOI
1511
BibRef
Morwald, T.[Thomas],
Balzer, J.[Jonathan],
Vincze, M.[Markus],
Direct Optimization of T-Splines Based on Multiview Stereo,
3DV14(20-27)
IEEE DOI
1503
Cameras
BibRef
Karantza, A.,
Alarcon, S.L.,
Cahill, N.D.,
A comparison of sequential and GPU-accelerated implementations of
B-spline signal processing operations for 2-D and 3-D images,
IPTA12(74-79)
IEEE DOI
1503
C++ language
BibRef
Chen, F.M.[Feng-Min],
Wong, P.J.Y.[Patricia J.Y.],
Solving second order boundary value problems by discrete cubic splines,
ICARCV12(1800-1805).
IEEE DOI
1304
BibRef
Chen, F.M.[Feng-Min],
Wong, P.J.Y.[Patricia J.Y.],
Discrete biquintic spline method for Fredholm integral equations of the
second kind,
ICARCV12(1806-1811).
IEEE DOI
1304
BibRef
Jalel, S.[Sawssen],
Marthon, P.[Philippe],
Hamouda, A.[Atef],
Optimized NURBS Curves Modelling Using Genetic Algorithm for Mobile
Robot Navigation,
CAIP15(I:534-545).
Springer DOI
1511
BibRef
And:
NURBS Based Multi-objective Path Planning,
MCPR15(190-199).
Springer DOI
1506
BibRef
Jalel, S.[Sawssen],
Naouai, M.[Mohamed],
Hamouda, A.[Atef],
Jebabli, M.[Malek],
NURBS Parameterization: A New Method of Parameterization Using the
Correlation Relationship between Nodes,
MCPR12(216-225).
Springer DOI
1208
Non-uniform rational B-splines
BibRef
Naouai, M.[Mohamed],
Hammouda, A.[Atef],
Jalel, S.[Sawssen],
Weber, C.[Christiane],
NURBS Skeleton: A New Shape Representation Scheme Using Skeletonization
and NURBS Curves Modeling,
CIARP11(197-205).
Springer DOI
1111
BibRef
Zhou, Y.F.[Yuan-Feng],
Zhang, C.M.[Cai-Ming],
Gao, S.S.[Shan-Shan],
Extension of B-Spline Curves with G 2 Continuity,
ISVC08(II: 1096-1105).
Springer DOI
0812
BibRef
Behar-Jequín, S.,
Estrada-Sarlabous, J.,
Hernández-Mederos, V.,
Constrained Interpolation with Implicit Plane Cubic A-Splines,
CIARP08(724-732).
Springer DOI
0809
BibRef
Zang, Y.[Yu],
Liu, Y.J.[Yong-Jin],
Lai, Y.K.[Yu-Kun],
Note on Industrial Applications of Hu's Surface Extension Algorithm,
GMP08(xx-yy).
Springer DOI
0804
See also extension algorithm for B-splines by curve unclamping, An.
BibRef
Salvi, P.,
Suzuki, H.,
Várady, T.,
Fast and Local Fairing of B-Spline Curves and Surfaces,
GMP08(xx-yy).
Springer DOI
0804
BibRef
Stefanus, L.Y.[L. Yohanes],
Shape Representations with Blossoms and Buds,
GMP06(397-408).
Springer DOI
0607
Polynomial representations.
BibRef
He, Y.[Ying],
Wang, K.X.[Ke-Xiang],
Wang, H.Y.[Hong-Yu],
Gu, X.F.[Xian-Feng],
Qin, H.[Hong],
Manifold T-Spline,
GMP06(409-422).
Springer DOI
0607
BibRef
Glas, S.[Sonja],
Recatalá, G.[Gabriel],
Sorg, M.[Michael],
Automatic Reconstruction of Silhouettes Using B-Splines,
SCIA03(239-246).
Springer DOI
0310
BibRef
Bondarenko, A.V.,
Svinyin, S.F.,
Skourikhin, A.V.,
Multidimensional b-spline forms and their fourier transforms,
ICIP03(II: 907-909).
IEEE DOI
0312
BibRef
Mamic, G.,
Bennamoun, M.,
Automatic Bayesian Knot Placement for Spline Fitting,
ICIP01(I: 169-172).
IEEE DOI
0108
BibRef
Haruki, R.,
Horiuchi, T.,
Data Fitting by Spline Functions Using the Biorthonormal Basis of the
B-spline Basis,
ICPR00(Vol III: 270-273).
IEEE DOI
IEEE DOI
0009
BibRef
Brigger, P.,
Engel, R.,
Unser, M.,
B-spline snakes and a JAVA interface: an intuitive tool for general
contour outlining,
ICIP98(II: 277-281).
IEEE DOI
9810
BibRef
Guleer, S.,
Derin, H.[Haluk],
Adaptive feature selection and constrained weak-membrane optimization
for boundary detection,
ICIP94(II: 222-226).
IEEE DOI
9411
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Texture Based Segmentation Techniques .