Unser, M., and
Eden, M.,
Multiresolution Feature Extraction and Selection for
Texture Segmentation,
PAMI(11), No. 7, July 1989, pp. 717-728.
IEEE DOI
BibRef
8907
Earlier:
A Multi-Resolution Feature Reduction Technique for
Image Segmentation with Multiple Components,
CVPR88(568-573).
IEEE DOI
BibRef
Spann, M.,
Horne, C.,
Image Segmentation Using a Dynamic Thresholding Pyramid,
PR(22), No. 6, 1989, pp. 719-732.
Elsevier DOI
0309
BibRef
Ahuja, N.,
A Transform for Multiscale Image Segmentation by Integrated Edge and
Region Detection,
PAMI(18), No. 12, December 1996, pp. 1211-1235.
IEEE DOI
9701
Scale Space.
Medial Axis Transform. First, global operation on pairs of pixels, then integration of the results.
Uses an attraction force field where pixels in a region are "attracted"
resulting in a convergent flow field.
BibRef
Ahuja, N.[Narendra],
A Transform for Multiscale Image Segmentation,
AIU96(45-64).
BibRef
9600
And:
TRBeckman Institute, 96-01, July 1995.
BibRef
A Transform for Detection of Multiscale Image Structure,
CVPR93(780-781).
IEEE DOI
BibRef
And:
DARPA93(893-903).
Multiple scale, generate edges and skeletons to get final regions.
BibRef
Ahuja, N.,
Jackson, S.A.,
Multiscale Region Detection,
ARPA96(961-968).
BibRef
9600
Courtney, C.,
Ahuja, N.,
Segmentation of Volume Images Using a Multiscale Transform,
ICPR96(II: 432-436).
IEEE DOI
9608
(Univ. of Illinois, USA)
BibRef
Tabb, M.,
Ahuja, N.,
Multiscale Image Segmentation by Integrated Edge and Region Detection,
IP(6), No. 5, May 1997, pp. 642-655.
IEEE DOI
9705
BibRef
Ahuja, N.[Narendra], and
Tabb, M.[Mark],
Multiscale Image Segmentation Using a Recent Transform,
ARPA94(II:1523-1530).
BibRef
9400
Tabb, M.,
Ahuja, N.,
A Multiscale Region-Based Approach to Image Matching,
ICPR94(A:415-419).
IEEE DOI
BibRef
9400
Bajcsy, P.[Peter],
Ahuja, N.[Narendra],
Segmentation of Multidimensional Images,
ARPA96(937-942).
Scale Space.
BibRef
9600
Lam, S.W.C.[Stephen W. C.],
Ip, H.H.S.[Horace H. S.],
Structural Texture Segmentation Using Irregular Pyramid,
PRL(15), No. 7, July 1994, pp. 691-698.
BibRef
9407
Earlier:
Adaptive pyramid approach to texture segmentation,
CAIP93(267-274).
Springer DOI
9309
BibRef
Ip, H.H.S.[Horace H.S.],
Lam, S.W.C.[Stephen W.C.],
3-Dimensional Structural Texture Modeling and Segmentation,
PR(28), No. 9, September 1995, pp. 1299-1319.
Elsevier DOI
BibRef
9509
Hofmann, T.[Thomas],
Puzicha, J.[Jan], and
Buhmann, J.M.[Joachim M.],
Unsupervised Texture Segmentation in a
Deterministic Annealing Framework,
PAMI(20), No. 8, August 1998, pp. 803-818.
IEEE DOI
BibRef
9808
Earlier:
An Optimization Approach to Unsupervised Hierarchical
Texture Segmentation,
ICIP97(III: 213-216).
IEEE DOI Abstract available from:
WWW Link.
See also Pairwise Data Clustering by Deterministic Annealing.
BibRef
Hofmann, T.[Thomas],
Puzicha, J.[Jan],
Buhmann, J.M.[Joachim M.],
Unsupervised Segmentation of Textured Images by
Pairwise Data Clustering,
ICIP96(III: 137-140).
IEEE DOI
BibRef
9600
And:
A Deterministic Annealing
Framework for Unsupervised Texture Segmentation,
TRIAI-TR-96-2,
Institut f|r Informatik III, University of Bonn. 1996.
BibRef
Puzicha, J.,
Hofmann, T.,
Buhmann, J.M.,
Non-Parametric Similarity Measures for Unsupervised Texture Segmentation
and Image Retrieval,
CVPR97(267-272).
IEEE DOI
WWW Link.
9704
Gabor filters; texture.
BibRef
Puzicha, J.[Jan],
Buhmann, J.M.[Joachim M.],
Multiscale Annealing for Grouping and Unsupervised Texture Segmentation,
CVIU(76), No. 3, December 1999, pp. 213-230.
DOI Link
0001
BibRef
Earlier:
Multiscale Annealing for Real-Time Unsupervised Texture Segmentation,
ICCV98(267-273).
IEEE DOI
BibRef
And:
TRIAI-TR-97-4, Institut f|r Informatik III,
University of Bonn. April 1997.
Abstract available from:
WWW Link.
BibRef
Comer, M.L.[Mary L.],
Delp, E.J.[Edward J.],
Segmentation of Textured Images Using a Multiresolution Gaussian
Autoregressive Model,
IP(8), No. 3, March 1999, pp. 408-420.
IEEE DOI
BibRef
9903
Comer, M.L.[Mary L.],
Delp, E.J.[Edward J.],
The EM/MPM Algorithm for Segmentation of Textured Images: Analysis and
Further Experimental Results,
IP(9), No. 10, October 2000, pp. 1731-1744.
IEEE DOI
0010
BibRef
Earlier:
ICIP96(III: 947-950).
IEEE DOI
BibRef
Earlier:
Parameter estimation and segmentation of noisy or textured images using
the EM algorithm and MPM estimation,
ICIP94(II: 650-654).
IEEE DOI
9411
BibRef
Hsu, T.I.[Tao-I],
Kuo, J.L.[Jiann Ling],
Wilson, R.,
A multiresolution texture gradient method for unsupervised segmentation,
PR(33), No. 11, November 2000, pp. 1819-1833.
Elsevier DOI
0011
BibRef
Bandera Rubio, A.[Antonio],
Urdiales García, C.[Cristina],
Arrebola, F.[Fabián],
Sandoval Hernández, F.[Francisco],
Scale-dependent hierarchical unsupervised segmentation of textured
images,
PRL(22), No. 2, February 2001, pp. 171-181.
Elsevier DOI
0101
BibRef
Coslado, F.J.,
Camacho, P.,
González, M.,
Sandoval, F.[Francisco],
Hardware architecture for hierarchical segmentation in foveal images,
IJIST(14), No. 4, 2004, pp. 153-166.
DOI Link
0408
BibRef
Marfil, R.,
Rodríguez, J.A.,
Bandera Rubio, A.[Antonio],
Sandoval Hernández, F.[Francisco],
Bounded irregular pyramid: a new structure for color image segmentation,
PR(37), No. 3, March 2004, pp. 623-626.
Elsevier DOI
0401
BibRef
Calderón, M.[Mariletty],
Marfil, R.[Rebeca],
Bandera, A.[Antonio],
Segmentation and Classification of Geoenvironmental Zones of Interest
in Aerial Images Using the Bounded Irregular Pyramid,
CTIC16(290-301).
Springer DOI
1608
BibRef
Rubio, T.J.,
Bandera Rubio, A.[Antonio],
Urdiales García, C.[Cristina],
Sandoval Hernández, F.[Francisco],
A hierarchical context-based textured image segmentation algorithm for
aerial images,
Texture02(117-122).
0207
BibRef
Marfil, R.,
Molina-Tanco, L.,
Bandera Rubio, A.[Antonio],
Rodríguez, J.A.,
Sandoval Hernández, F.[Francisco],
Pyramid segmentation algorithms revisited,
PR(39), No. 8, August 2006, pp. 1430-1451.
Elsevier DOI
0606
Irregular pyramids; Regular pyramids; Combinatorial map; Graphs;
Decimation schemes
See also Fast gesture recognition based on a two-level representation.
BibRef
Marfil, R.,
Molina-Tanco, L.,
Rodriguez, J.A.,
Sandoval, F.,
Real-time object tracking using bounded irregular pyramids,
PRL(28), No. 9, 1 July 2007, pp. 985-1001.
Elsevier DOI
0704
Non-rigid object tracking; Multiple object tracking; Target representation and localization; Hierarchical template matching; Template-based tracking
BibRef
Torres, F.[Fuensanta],
Marfil, R.[Rebeca],
Bandera Rubio, A.[Antonio],
3D Image Segmentation Using the Bounded Irregular Pyramid,
CAIP09(979-986).
Springer DOI
0909
BibRef
Marfil, R.[Rebeca],
Bandera Rubio, A.[Antonio],
Sandoval Hernández, F.[Francisco],
Perception-Based Image Segmentation Using the Bounded Irregular Pyramid,
DAGM07(244-253).
Springer DOI
0709
BibRef
Marfil, R.[Rebeca],
Bandera Rubio, A.[Antonio],
Comparison of Perceptual Grouping Criteria within an Integrated
Hierarchical Framework,
GbRPR09(366-375).
Springer DOI
0905
BibRef
Antúnez, E.[Esther],
Marfil, R.[Rebeca],
Bandera Rubio, A.[Antonio],
A New Perception-Based Segmentation Approach Using Combinatorial
Pyramids,
CIAP11(I: 327-336).
Springer DOI
1109
BibRef
Wang, J.Z.[James Z.],
Li, J.[Jia],
Gray, R.M.[Robert M.],
Weiderhold, G.[Gio],
Unsupervised Multiresolution Segmentation for Images
with Low Depth of Field,
PAMI(23), No. 1, January 2001, pp. 85-90.
IEEE DOI
0101
BibRef
Earlier: A2, A1, A3, A4:
Multiresolution object-of-interest detection for images with low depth
of field,
CIAP99(32-37).
IEEE DOI
9909
Segmentation for indexing. Multi-resolution. Separate sharply focused
object of interest from other foreground and background objects.
Find where edges occur, the blurred regions do not have edges at
high resolutions.
BibRef
Pyun, K.[Kyungsuk],
Lim, J.[Johan],
Gray, R.M.[Robert M.],
A covariance adjustment method in compressed domain for noisy image
segmentation,
ICIP08(2268-2271).
IEEE DOI
0810
BibRef
Won, C.S.[Chee Sun],
Automatic Object Extraction in Images using Embedded Labels,
CRV08(231-236).
IEEE DOI
0805
BibRef
Won, C.S.[Chee Sun],
Pyan, K.,
Gray, R.M.,
Automatic object segmentation in images with low depth of field,
ICIP02(III: 805-808).
IEEE DOI
0210
Get the focused foreground objects.
BibRef
Liang, K.H.,
Tjahjadi, T.,
Adaptive Scale Fixing for Multiscale Texture Segmentation,
IP(15), No. 1, January 2006, pp. 249-256.
IEEE DOI
0601
BibRef
Dong, X.,
Pollak, I.,
Multiscale Segmentation With Vector-Valued Nonlinear Diffusions on
Arbitrary Graphs,
IP(15), No. 7, July 2006, pp. 1993-2005.
IEEE DOI
0606
BibRef
Earlier:
Multiscale Texture Segmentation with Vector-Valued Nonlinear Diffusions
on Arbitrary Graphs,
ICIP05(III: 824-827).
IEEE DOI
0512
BibRef
Dong, X.,
Pollak, I.,
Circle-Valued Nonlinear Diffusions with Application to Texture
Segmentation,
ICIP06(1105-1108).
IEEE DOI
0610
BibRef
Tzotsos, A.[Angelos],
Karantzalos, K.[Konstantinos],
Argialas, D.[Demetre],
Object-based image analysis through nonlinear scale-space filtering,
PandRS(66), No. 1, January 2011, pp. 2-16.
Elsevier DOI
1101
Automation; Analysis; Simplification; Segmentation; Classification
BibRef
Tzotsos, A.[Angelos],
Iosifidis, C.,
Argialas, D.[Demetre],
Integrating texture features into a region-based multi-scale image
segmentation algorithm,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Chen, J.,
Li, J.,
Pan, D.,
Zhu, Q.,
Mao, Z.,
Edge-Guided Multiscale Segmentation of Satellite Multispectral Imagery,
GeoRS(50), No. 11, November 2012, pp. 4513-4520.
IEEE DOI
1210
BibRef
Hu, Y.,
Chen, J.,
Pan, D.,
Hao, Z.,
Edge-Guided Image Object Detection in Multiscale Segmentation for
High-Resolution Remotely Sensed Imagery,
GeoRS(54), No. 8, August 2016, pp. 4702-4711.
IEEE DOI
1608
feature extraction
BibRef
Witharana, C.[Chandi],
Civco, D.L.[Daniel L.],
Optimizing multi-resolution segmentation scale using empirical
methods: Exploring the sensitivity of the supervised discrepancy
measure Euclidean distance 2 (ED2),
PandRS(87), No. 1, 2014, pp. 108-121.
Elsevier DOI
1402
Multiresolution segmentation
BibRef
Dragut, L.,
Csillik, O.,
Eisank, C.,
Tiede, D.,
Automated parameterisation for multi-scale image segmentation on
multiple layers,
PandRS(88), No. 1, 2014, pp. 119-127.
Elsevier DOI
1402
Automation
BibRef
Zeune, L.[Leonie],
van Dalum, G.[Guus],
Terstappen, L.W.M.M.[Leon W.M.M.],
van Gils, S.A.[Stephan A.],
Brune, C.[Christoph],
Multiscale Segmentation via Bregman Distances and Nonlinear Spectral
Analysis,
SIIMS(10), No. 1, 2017, pp. 111-146.
DOI Link
1704
BibRef
And: A1, A4, A3, A5, Only:
Combining Contrast Invariant L1 Data Fidelities with Nonlinear Spectral
Image Decomposition,
SSVM17(80-93).
Springer DOI
1706
BibRef
Gu, H.[Haiyan],
Han, Y.S.[Yan-Shun],
Yang, Y.[Yi],
Li, H.T.[Hai-Tao],
Liu, Z.J.[Zheng-Jun],
Soergel, U.[Uwe],
Blaschke, T.[Thomas],
Cui, S.Y.[Shi-Yong],
An Efficient Parallel Multi-Scale Segmentation Method for Remote
Sensing Imagery,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Di, Y.,
Jiang, G.,
Yan, L.,
Liu, H.,
Zheng, S.,
Multi-scale Segmentation of High Resolution Remote Sensing Images By
Integrating Multiple Features,
Hannover17(247-255).
DOI Link
1805
BibRef
Su, Y.Z.[Yan-Zhou],
Cheng, J.[Jian],
Bai, H.W.[Hai-Wei],
Liu, H.J.[Hai-Jun],
He, C.T.[Chang-Tao],
Semantic Segmentation of Very-High-Resolution Remote Sensing Images
via Deep Multi-Feature Learning,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Cayllahua-Cahuina, E.[Edward],
Cousty, J.[Jean],
Guimarães, S.J.F.[Silvio Jamil F.],
Kenmochi, Y.[Yukiko],
Cámara-Chávez, G.[Guillermo],
de Albuquerque Araújo, A.[Arnaldo],
Hierarchical segmentation from a non-increasing edge observation
attribute,
PRL(131), 2020, pp. 105-112.
Elsevier DOI
2004
BibRef
Earlier:
A Study of Observation Scales Based on Felzenswalb-Huttenlocher
Dissimilarity Measure for Hierarchical Segmentation,
DGCI19(167-179).
Springer DOI
1905
Hierarchical segmentation, Non-increasing attributes, Mathematical morphology
BibRef
Al-Huda, Z.[Zaid],
Peng, B.[Bo],
Yang, Y.[Yan],
Algburi, R.N.A.[Riyadh Nazar Ali],
Object scale selection of hierarchical image segmentation with deep
seeds,
IET-IPR(15), No. 1, 2021, pp. 191-205.
DOI Link
2106
BibRef
Liu, Y.X.[Ye-Xin],
Zhou, J.[Jian],
Liu, L.[Lizhu],
Zhan, Z.J.[Zheng-Jia],
Hu, Y.Q.[Yue-Qiang],
Fu, Y.Q.[Yong-Qing],
Duan, H.G.[Hui-Gao],
FCP-Net: A Feature-Compression-Pyramid Network Guided by
Game-Theoretic Interactions for Medical Image Segmentation,
MedImg(41), No. 6, June 2022, pp. 1482-1496.
IEEE DOI
2206
Image segmentation, Task analysis, Biomedical imaging,
Feature extraction, Training, Lesions, Medical diagnostic imaging,
branch layer fusion module
BibRef
Zheng, Y.P.[Yun-Ping],
Wen, D.[Dilong],
Sarem, M.[Mudar],
A novel NAM-based image segmentation using hierarchical density-based
spatial clustering,
IET-IPR(18), No. 5, 2024, pp. 1245-1257.
DOI Link
2404
image processing, image representation
BibRef
Lu, Y.,
Wan, Y.,
Li, G.,
Scale-constrained unsupervised evaluation method for multi-scale
image segmentation,
ICIP16(2559-2563)
IEEE DOI
1610
Decision support systems
BibRef
Kheddam, R.,
Belhadj-Aissa, A.,
Classification of remotely sensed images using clonal selection
theory of Artificial Immune System,
IPTA14(1-6)
IEEE DOI
1503
artificial immune systems method. Remote Sensing images.
BibRef
Malik, R.,
Kheddam, R.,
Belhadj-Aissa, A.,
Multi-scale segmentation for remote sensing imagery based on minimum
heterogeneity rule,
IPTA14(1-5)
IEEE DOI
1503
feature extraction
BibRef
Marcotegui, B.[Beatriz],
Residual approach on a hierarchical segmentation,
ICIP14(4353-4357)
IEEE DOI
1502
Earth
BibRef
Yildirim, G.[Gokhan],
Shaji, A.[Appu],
Susstrunk, S.[Sabine],
Saliency Detection using regression trees on hierarchical image
segments,
ICIP14(3302-3306)
IEEE DOI
1502
Feature extraction
BibRef
Kim, H.[Hyojin],
Thiagarajan, J.J.[Jayaraman J.],
Bremer, P.T.[Peer-Timo],
Image segmentation using consensus from hierarchical segmentation
ensembles,
ICIP14(3272-3276)
IEEE DOI
1502
Accuracy
BibRef
Sun, L.J.[Lin-Jia],
Liang, X.H.[Xiao-Hui],
Unsupervised image segmentation using global spatial constraint and
multi-scale representation on multiple segmentation proposals,
ICIP13(2704-2707)
IEEE DOI
1402
Unsupervised segmentation
BibRef
Graf, F.[Franz],
Kriegel, H.P.[Hans-Peter],
Weiler, M.[Michael],
Robust segmentation of relevant regions in low depth of field images,
ICIP11(2861-2864).
IEEE DOI
1201
BibRef
Concepcion Morales, E.R.[Eduardo R.],
Mendizabal, Y.Y.[Yosu Yurramendi],
Contiguity-constrained hierarchical clustering for image segmentation,
IPTA10(279-283).
IEEE DOI
1007
BibRef
Hong, B.W.[Byung-Woo],
Ni, K.Y.[Kang-Yu],
Soatto, S.[Stefano],
Entropy-Scale Profiles for Texture Segmentation,
SSVM11(243-254).
Springer DOI
1201
BibRef
Hong, B.W.[Byung-Woo],
Soatto, S.[Stefano],
Ni, K.Y.[Kang-Yu],
Chan, T.F.[Tony F.],
The scale of a texture and its application to segmentation,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Pérez, C.B.[Cynthia Beatriz],
Olague, G.[Gustavo],
Unsupervised Evolutionary Segmentation Algorithm Based on Texture
Analysis,
EvoIASP07(407-414).
Springer DOI
0704
BibRef
Olague, G.[Gustavo],
Romero, E.[Eva],
Trujillo, L.[Leonardo],
Bhanu, B.[Bir],
Multiclass Object Recognition Based on Texture Linear Genetic
Programming,
EvoIASP07(291-300).
Springer DOI
0704
BibRef
Jagannaffian, A.,
Miller, E.,
A graph-theoretic approach to miultiscale texture segmentation,
ICIP02(II: 777-780).
IEEE DOI
0210
BibRef
Lakshmanan, V.,
DeBrunner, V.E.,
Rabin, R.,
Nested partitions using texture segmentation,
Southwest02(153-157).
IEEE Top Reference.
0208
BibRef
Wan, Y.,
Nowak, R.D.,
A New Multiscale Bayesian Model Averaging Framework for Texture
Segmentation,
ICIP00(Vol I: 509-512).
IEEE DOI
0008
BibRef
Petrosino, A.[Alfredo],
Ceccarelli, M.[Michele],
Unsupervised Texture Discrimination Based on Rough Fuzzy Sets and
Parallel Hierarchical Clustering,
ICPR00(Vol III: 1088-1091).
IEEE DOI
0009
BibRef
Boukerroui, D.[Djamal],
Basset, O.[Olivier],
Baskurt, A.[Atilla],
Multiresolution Adaptive Image Segmentation based on Global and Local
Statistics,
ICIP99(I:358-361).
IEEE DOI
BibRef
9900
Schmid, V.,
Maher, M.,
Lueder, E.,
Spatio-spectral dissimilarity algorithm for multiresolution texture
segmentation,
ICIP98(III: 795-798).
IEEE DOI
9810
BibRef
Henkel, R.D.[Rolf D.],
Segmentation in scale space,
CAIP95(41-48).
Springer DOI
9509
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Noise Models in Segmentation .