21.10.3 Angiography using MRI

Chapter Contents (Back)
Angiography. Heart. MRI. MRI Angiography.

Vandermeulen, D., Verbeeck, R., Berben, L., Delaere, D., Suetens, P., Marchal, G.,
Continuous Voxel Classification by Stochastic Relaxation - Theory and Application to MR-Imaging and MR-Angiography,
IVC(12), No. 9, November 1994, pp. 559-572.
Elsevier DOI BibRef 9411

Venkatesan, R., Haacke, E.M.,
Role of High-Resolution in Magnetic-Resonance (MR) Imaging: Applications to MR-Angiography, Intracranial T-1-Weighted Imaging, and Image Interpolation,
IJIST(8), No. 6, 1997, pp. 529-543. 9712
BibRef

Frangi, A.F., Niessen, W.J., Hoogeveen, R.M., van Walsum, T., Viergever, M.A.,
Model-based quantitation of 3-D magnetic resonance angiographic images,
MedImg(18), No. 10, October 1999, pp. 946-956.
IEEE Top Reference. 0110
BibRef

Yim, P.J., Choyke, P.L., Summers, R.M.,
Gray-scale skeletonization of small vessels in magnetic resonance angiography,
MedImg(19), No. 6, June 2000, pp. 568-576.
IEEE Top Reference. 0110
BibRef

Sun, Y.[Yi], Parker, D.,
Small vessel enhancement in MRA images using local maximum mean processing,
IP(10), No. 11, November 2001, pp. 1687-1699.
IEEE DOI 0201
BibRef

Kobashi, S., Kamiura, N., Hata, Y., Miyawaki, F.,
Volume-Quantization-Based Neural Network Approach to 3D MR Angiography Image Segmentation,
IVC(19), No. 4, March 2001, pp. 185-193.
Elsevier DOI 0102
BibRef

Rice, Jr., B.L.[Bowen L.], Udupa, J.K.[Jayaram K.],
Clutter-free volume rendering for magnetic resonance angiography using fuzzy connectedness,
IJIST(11), No. 1, 2000, pp. 62-70. 0005
BibRef

Bentoutou, Y., Taleb, N., El Mezouar, M.C.[M. Chikr], Taleb, M., Jetto, L.,
An invariant approach for image registration in digital subtraction angiography,
PR(35), No. 12, December 2002, pp. 2853-2865.
Elsevier DOI 0209
BibRef

Bentoutou, Y., Taleb, N.,
A 3-D space-time motion detection for an invariant image registration approach in digital subtraction angiography,
CVIU(97), No. 1, January 2005, pp. 30-50.
Elsevier DOI 0412
BibRef

Manke, D., Rosch, P., Nehrke, K., Bornert, P., Dossel, O.,
Model evaluation and calibration for prospective respiratory motion correction in coronary MR angiography based on 3-D image registration,
MedImg(21), No. 9, September 2002, pp. 1132-1141.
IEEE Top Reference. 0301
BibRef

Antiga, L., Ene-Iordache, B., Remuzzi, A.,
Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography,
MedImg(22), No. 5, May 2003, pp. 674-684.
IEEE Abstract. 0307
BibRef

Shechter, G., Ozturk, C., Resar, J.R., McVeigh, E.R.,
Respiratory Motion of the Heart From Free Breathing Coronary Angiograms,
MedImg(23), No. 8, August 2004, pp. 1046-1056.
IEEE Abstract. 0409
BibRef

Shechter, G., Resar, J.R., McVeigh, E.R.,
Displacement and velocity of the coronary arteries: cardiac and respiratory motion,
MedImg(25), No. 3, March 2006, pp. 369-375.
IEEE DOI 0604
BibRef

Hansis, E., Schafer, D., Dossel, O., Grass, M.,
Evaluation of Iterative Sparse Object Reconstruction From Few Projections for 3-D Rotational Coronary Angiography,
MedImg(27), No. 11, November 2008, pp. 1548-1555.
IEEE DOI 0811
BibRef

Liu, J., Redmond, M.J., Brodsky, E.K., Alexander, A.L., Lu, A., Thornton, F.J., Schulte, M.J., Grist, T.M., Pipe, J.G., Block, W.F.,
Generation and Visualization of Four-Dimensional MR Angiography Data Using an Undersampled 3-D Projection Trajectory,
MedImg(25), No. 2, February 2006, pp. 148-157.
IEEE DOI 0602
BibRef

Nemitz, O.[Oliver], Rumpf, M.[Martin], Tasdizen, T.[Tolga], Whitaker, R.T.[Ross T.],
Anisotropic Curvature Motion for Structure Enhancing Smoothing of 3D MR Angiography Data,
JMIV(27), No. 3, April 2007, pp. 217-229.
Springer DOI 0704
BibRef

Law, M.W.K.[Max W. K.], Chung, A.C.S.[Albert C. S.],
Weighted Local Variance-Based Edge Detection and Its Application to Vascular Segmentation in Magnetic Resonance Angiography,
MedImg(26), No. 9, September 2007, pp. 1224-1241.
IEEE DOI 0710
BibRef

Law, M.W.K.[Max W. K.], Chung, A.C.S.[Albert C. S.],
Efficient Implementation for Spherical Flux Computation and Its Application to Vascular Segmentation,
IP(18), No. 3, March 2009, pp. 596-612.
IEEE DOI 0903
BibRef

He, Z.Y.[Zhen-Yu], Chung, A.C.S.[Albert C. S.],
3-D B-spline Wavelet-Based Local Standard Deviation (BWLSD): Its Application to Edge Detection and Vascular Segmentation in Magnetic Resonance Angiography,
IJCV(87), No. 3, May 2010, pp. xx-yy.
Springer DOI 1003

See also Vascular segmentation of phase contrast magnetic resonance angiograms based on statistical mixture modeling and local phase coherence. BibRef

Chung, A.C.S., Noble, J.A., Summers, P.,
Vascular segmentation of phase contrast magnetic resonance angiograms based on statistical mixture modeling and local phase coherence,
MedImg(23), No. 12, December 2004, pp. 1490-1507.
IEEE Abstract. 0412

See also 3-D B-spline Wavelet-Based Local Standard Deviation (BWLSD): Its Application to Edge Detection and Vascular Segmentation in Magnetic Resonance Angiography. BibRef

Wong, W.C.K.[Wilbur C.K.], Chung, A.C.S.[Albert C.S.],
Augmented Vessels for Quantitative Analysis of Vascular Abnormalities and Endovascular Treatment Planning,
MedImg(25), No. 6, June 2006, pp. 665-684.
IEEE DOI 0606
BibRef

Wong, W.C.K.[Wilbur C.K.], Chung, A.C.S.[Albert C.S.], Yu, S.C.H.[Simon C.H.],
Local Orientation Smoothness Prior for Vascular Segmentation of Angiography,
ECCV04(Vol II: 353-365).
Springer DOI 0405
BibRef

Chung, A.C.S.[Albert C.S.],
Image Segmentation Methods for Detecting Blood Vessels in Angiography,
ICARCV06(1-6).
IEEE DOI 0612
BibRef

Subhash, H.M., Davila, V., Sun, H., Nguyen-Huynh, A.T., Shi, X., Nuttall, A.L., Wang, R.K.,
Volumetric In Vivo Imaging of Microvascular Perfusion Within the Intact Cochlea in Mice Using Ultra-High Sensitive Optical Microangiography,
MedImg(30), No. 2, February 2011, pp. 224-230.
IEEE DOI 1102
BibRef

Cukur, T., Lustig, M., Saritas, E.U., Nishimura, D.G.,
Signal Compensation and Compressed Sensing for Magnetization-Prepared MR Angiography,
MedImg(30), No. 5, May 2011, pp. 1017-1027.
IEEE DOI 1105
BibRef

Mehrabian, H., Chopra, R., Martel, A.L.,
Calculation of Intravascular Signal in Dynamic Contrast Enhanced-MRI Using Adaptive Complex Independent Component Analysis,
MedImg(32), No. 4, April 2013, pp. 699-710.
IEEE DOI 1304
BibRef

Jurczuk, K., Kretowski, M., Eliat, P.A., Saint-Jalmes, H., Bezy-Wendling, J.,
In Silico Modeling of Magnetic Resonance Flow Imaging in Complex Vascular Networks,
MedImg(33), No. 11, November 2014, pp. 2191-2209.
IEEE DOI 1411
biomedical MRI BibRef

Lee, D.H.[Dong-Hoon], Hong, C.P.[Cheol-Pyo], Lee, M.W.[Man-Woo], Han, B.S.[Bong-Soo],
Keyhole-3D phase contrast magnetic resonance angiography: A time-resolved reconstruction method,
IJIST(24), No. 1, 2014, pp. 1-7.
DOI Link 1403
3D phase contrast magnetic resonance angiography (3D PCMRA) BibRef

Dehkordi, M.T., Hoseini, A.M.D., Sadri, S., Soltanianzadeh, H.,
Local feature fitting active contour for segmenting vessels in angiograms,
IET-CV(8), No. 3, June 2014, pp. 161-170.
DOI Link 1407
BibRef

Cetin, S., Unal, G.,
A Higher-Order Tensor Vessel Tractography for Segmentation of Vascular Structures,
MedImg(34), No. 10, October 2015, pp. 2172-2185.
IEEE DOI 1511
biomedical MRI BibRef

Park, S., Kim, E.Y., Sohn, C.H., Park, J.,
Dynamic Contrast-Enhanced MR Angiography Exploiting Subspace Projection for Robust Angiogram Separation,
MedImg(36), No. 2, February 2017, pp. 584-595.
IEEE DOI 1702
Dynamics BibRef

Ohnishi, T.[Takashi], Takano, Y.Y.[Yu-Ya], Kato, H.[Hideyuki], Ooka, Y.[Yoshihiko], Haneishi, H.[Hideaki],
Respiratory-synchronized digital subtraction angiography based on a respiratory phase matching method,
SIViP(12), No. 3, March 2018, pp. 539-547.
Springer DOI 1804
BibRef

Do, W., Choi, S.H., Park, S.,
Simultaneous Variable-Slab Dual-Echo TOF MR Angiography and Susceptibility-Weighted Imaging,
MedImg(37), No. 7, July 2018, pp. 1632-1640.
IEEE DOI 1808
biomedical MRI, blood vessels, medical image processing, simultaneous variable-slab dual-echo TOF MR angiography, slab boundary artifact BibRef

Zhang, J.H.[Jian-Hua], Teng, Z.Z.[Zhong-Zhao], Guan, Q.[Qiu], He, J.L.[Jun-Li], Abutaleb, W.[Wafa], Patterson, A.J.[Andrew J.], Graves, M.J.[Martin J.], Gillard, J.[Jonathan], Chen, S.Y.[Sheng-Yong],
Automatic segmentation of MR depicted carotid arterial boundary based on local priors and constrained global optimisation,
IET-IPR(13), No. 3, February 2019, pp. 506-514.
DOI Link 1903
BibRef

Madhusoodhanan, S.[Sreekanth], Kesavadas, C.[Chandrasekharan], Paul, J.S.[Joseph S.],
SWI post processing using granularity controlled edge-preserved denoising of multichannel GRE images,
IJIST(29), No. 3, September 2019, pp. 311-322.
DOI Link 1908
background suppressed phase of susceptibility-weighted images. Susceptibility-weighted angiogram (SWAN). BibRef

Cha, E.[Eunju], Chung, H.J.[Hyung-Jin], Kim, E.Y.[Eung Yeop], Ye, J.C.[Jong Chul],
Unpaired Training of Deep Learning tMRA for Flexible Spatio-Temporal Resolution,
MedImg(40), No. 1, January 2021, pp. 166-179.
IEEE DOI 2012
Time-resolved MR angiography. Spatial resolution, Training, Image reconstruction, Generators, Machine learning, Neural networks, Time-resolved MRA, optimal transport BibRef

Park, J.S.[Joon Sik], Choi, S.H.[Seung-Hong], Sohn, C.H.[Chul-Ho], Park, J.[Jaeseok],
Joint Reconstruction of Vascular Structure and Function Maps in Dynamic Contrast Enhanced MRI Using Vascular Heterogeneity Priors,
MedImg(41), No. 1, January 2022, pp. 52-62.
IEEE DOI 2201
Magnetic resonance imaging, Arteries, Image reconstruction, Pathology, Veins, Tumors, Time series analysis, compressed sensing BibRef

Guo, Q.[Qing], Song, H.[Hong], Fan, J.[Jingfan], Ai, D.[Danni], Gao, Y.J.[Yuan-Jin], Yu, X.L.[Xiao-Ling], Yang, J.[Jian],
Portal Vein and Hepatic Vein Segmentation in Multi-Phase MR Images Using Flow-Guided Change Detection,
IP(31), 2022, pp. 2503-2517.
IEEE DOI 2204
Image segmentation, Portals, Veins, Liver, Magnetic resonance imaging, Computed tomography, multi-phase MR images BibRef

Li, M.[Mucong], Beaumont, N.[Nathan], Ma, C.[Chenshuo], Rojas, J.[Juan], Vu, T.[Tri], Harlacher, M.[Max], O'Connell, G.[Graeme], Gessner, R.C.[Ryan C.], Kilian, H.[Hailey], Kasatkina, L.A.[Ludmila A.], Chen, Y.[Yong], Huang, Q.[Qiang], Shen, X.[Xiling], Lovell, J.F.[Jonathan F.], Verkhusha, V.V.[Vladislav V.], Czernuszewicz, T.[Tomek], Yao, J.J.[Jun-Jie],
Three-Dimensional Deep-Tissue Functional and Molecular Imaging by Integrated Photoacoustic, Ultrasound, and Angiographic Tomography (PAUSAT),
MedImg(41), No. 10, October 2022, pp. 2704-2714.
IEEE DOI 2210
Imaging, Ultrasonic imaging, Optical imaging, Animals, Biomedical optical imaging, Spatial resolution, Acoustics, photoswitchable protein BibRef

Jeyaraj, P.R.[Pandia Rajan], Nadar, E.R.S.[Edward Rajan Samuel],
MR image restoration and segmentation via denoising deep adversarial network for blood vessels accurate diagnosis,
SP:IC(117), 2023, pp. 117013.
Elsevier DOI 2308
Deep adversarial learning, Multiphase MRI, Image restoration, Segmentation, Interclass decision making BibRef


Martens, J.[Johannes], Panzer, S.[Sabine], van den Wijngaard, J.P.H.M.[Jeroen P. H. M.], Siebes, M.[Maria], Schreiber, L.M.[Laura M.],
Development of a Computational Fluid Dynamics (CFD)-Model of the Arterial Epicardial Vasculature,
FIMH19(219-229).
Springer DOI 1906
BibRef
Earlier:
Analysis of Coronary Contrast Agent Transport in Bolus-Based Quantitative Myocardial Perfusion MRI Measurements with Computational Fluid Dynamics Simulations,
FIMH17(369-380).
Springer DOI 1706
BibRef

Smith, J.P.[Jordan P.], Shehata, M.[Mohamed], Powell, R.G.[Ramsey G.], McGuire, P.F.[Peter F.], Smith, A.J.[Andrew J.],
Physiological Features of the Internal Jugular Vein from B-Mode Ultrasound Imagery,
ISVC16(II: 312-319).
Springer DOI 1701
BibRef

Zhang, J.[Jun], Gao, Y.Z.[Yao-Zong], Park, S.H.[Sang Hyun], Zong, X.P.[Xiao-Peng], Lin, W.[Weili], Shen, D.G.[Ding-Gang],
Segmentation of Perivascular Spaces Using Vascular Features and Structured Random Forest from 7T MR Image,
MLMI16(61-68).
Springer DOI 1611
BibRef

Karim, R.[Rashed], Chubb, H.[Henry], Staab, W.[Wieland], Aziz, S.[Shadman], Housden, R.J.[R. James], O'Neill, M.[Mark], Razavi, R.[Reza], Rhode, K.[Kawal],
Left Atrial Segmentation from 3D Respiratory- and ECG-gated Magnetic Resonance Angiography,
FIMH15(155-163).
Springer DOI 1507
BibRef

Nguyen, T.A., Dufour, A., Tankyevych, O., Nakib, A., Petit, E., Talbot, H., Passat, N.,
Thin structure filtering framework with non-local means, Gaussian derivatives and spatially-variant mathematical morphology,
ICIP13(1237-1241)
IEEE DOI 1402
Angiography BibRef

Janiczek, R.L.[Robert L.], Epstein, F.H.[Frederick H.], Acton, S.T.[Scott T.],
Velocity guided segmentation of phase contrast magnetic resonance angiography,
ICIP08(2264-2267).
IEEE DOI 0810
BibRef

El-Baz, A., Farag, A., Gimel'farb, G.L., El-Ghar, M.A., Eldiasty, T.,
Fast Unsupervised Segmentation of 3D Magnetic Resonance Angiography,
ICIP06(93-96).
IEEE DOI 0610
BibRef

Condurache, A.P., Aach, T., Grzybowski, S., Machens, H.G.,
Imaging and Analysis of Angiogenesis for Skin Transplantation by Microangiography,
ICIP05(II: 1250-1253).
IEEE DOI 0512
BibRef

Taleb-Ahmed, A., Leclerc, X., Saint Michel, T.,
Semi-automatic Segmentation of Vessels By Mathematical Morphology: Application in MRI,
ICIP01(III: 1063-1066).
IEEE DOI 0108
BibRef

Xu, D., Hwang, J.N., Yuan, C.,
Atherosclerotic Blood Vessel Tracking and Lumen Segmentation in Topology Changes Situations of MR Image Sequences,
ICIP00(Vol I: 637-640).
IEEE DOI 0008
BibRef

Masutani, Y., Kurihara, T., Suzuki, M., Dohi, T.,
Quantitative Vascular Shape Analysis for 3D MR-Angiography Using Mathematical Morphology,
CVRMed95(XX-YY) BibRef 9500

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Heart, Cardiac, Angiography using CAT, CT, Tomography .


Last update:Mar 16, 2024 at 20:36:19