Pfrommer, J.,
Warrington, J.,
Schildbach, G.,
Morari, M.,
Dynamic Vehicle Redistribution and Online Price Incentives in Shared
Mobility Systems,
ITS(15), No. 4, August 2014, pp. 1567-1578.
IEEE DOI
1410
bicycles
BibRef
Leu, J.S.[Jenq-Shiou],
Zhu, Z.Y.[Zhe-Yi],
Regression-based parking space availability prediction for the Ubike
system,
IET-ITS(9), No. 3, 2015, pp. 323-332.
DOI Link
1506
bicycles
BibRef
Corno, M.,
Berretta, D.,
Savaresi, S.M.,
An IMU-Driven Rider-on-Saddle Detection System for
Electric-Power-Assisted Bicycles,
ITS(17), No. 11, November 2016, pp. 3184-3193.
IEEE DOI
1609
Bicycles
BibRef
Kiefer, C.,
Behrendt, F.,
Smart e-bike monitoring system: real-time open source and open
hardware GPS assistance and sensor data for electrically-assisted
bicycles,
IET-ITS(10), No. 2, 2016, pp. 79-88.
DOI Link
1602
Global Positioning System
BibRef
Schweizer, J.,
Bernardi, S.,
Rupi, F.,
Map-matching algorithm applied to bicycle global positioning system
traces in Bologna,
IET-ITS(10), No. 4, 2016, pp. 244-250.
DOI Link
1606
Global Positioning System
BibRef
Schlote, A.,
Chen, B.,
Shorten, R.,
On Closed-Loop Bicycle Availability Prediction,
ITS(16), No. 3, June 2015, pp. 1449-1455.
IEEE DOI
1506
Availability
BibRef
Lopez, A.J.[Angel J.],
Astegiano, P.[Paola],
Gautama, S.[Sidharta],
Ochoa, D.[Daniel],
Tampčre, C.M.J.[Chris M. J.],
Beckx, C.[Carolien],
Unveiling E-Bike Potential for Commuting Trips from GPS Traces,
IJGI(6), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Hrncír, J.,
ilecký, P.,
Song, Q.,
Jakob, M.,
Practical Multicriteria Urban Bicycle Routing,
ITS(18), No. 3, March 2017, pp. 493-504.
IEEE DOI
1703
Approximation algorithms
BibRef
Liu, D.X.[Dong-Xu],
Dong, H.Z.[Hong-Zhao],
Li, T.B.[Tie-Bei],
Corcoran, J.[Jonathan],
Ji, S.M.[Shi-Ming],
Vehicle scheduling approach and its practice to optimise public bicycle
redistribution in Hangzhou,
IET-ITS(12), No. 8, October 2018, pp. 976-985.
DOI Link
1809
BibRef
Mao, D.H.[Dian-Hui],
Hao, Z.H.[Zhi-Hao],
Wang, Y.[Yalei],
Fu, S.T.[Shu-Ting],
A Novel Dynamic Dispatching Method for Bicycle-Sharing System,
IJGI(8), No. 3, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Pajarito, D.[Diego],
Gould, M.[Michael],
Mapping Frictions Inhibiting Bicycle Commuting,
IJGI(7), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Tang, G.,
Keshav, S.,
Golab, L.,
Wu, K.,
Bikeshare Pool Sizing for Bike-and-Ride Multimodal Transit,
ITS(19), No. 7, July 2018, pp. 2279-2289.
IEEE DOI
1807
Bicycles, Employment, Public transportation, Rail transportation,
Schedules, Sociology, Statistics, Bikeshare pool sizing, multimodal transit
BibRef
He, B.[Biao],
Zhang, Y.[Yan],
Chen, Y.[Yu],
Gu, Z.H.[Zhi-Hui],
A Simple Line Clustering Method for Spatial Analysis with
Origin-Destination Data and Its Application to Bike-Sharing Movement
Data,
IJGI(7), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Jing, W.P.[Wei-Peng],
Kang, J.[Jian],
Liu, M.L.[Mei-Ling],
Mining taxi trajectories for most suitable stations of sharing bikes to
ease traffic congestion,
IET-ITS(12), No. 7, September 2018, pp. 586-593.
DOI Link
1808
BibRef
Pritchard, R.[Ray],
Frřyen, Y.[Yngve],
Snizek, B.[Bernhard],
Bicycle Level of Service for Route Choice: A GIS Evaluation of Four
Existing Indicators with Empirical Data,
IJGI(8), No. 5, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Werner, C.[Christian],
Resch, B.[Bernd],
Loidl, M.[Martin],
Evaluating Urban Bicycle Infrastructures through Intersubjectivity of
Stress Sensations Derived from Physiological Measurements,
IJGI(8), No. 6, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Gu, Z.H.[Zhi-Hui],
Zhu, Y.[Yong],
Zhang, Y.[Yan],
Zhou, W.Y.[Wan-Yu],
Chen, Y.[Yu],
Heuristic Bike Optimization Algorithm to Improve Usage Efficiency of
the Station-Free Bike Sharing System in Shenzhen, China,
IJGI(8), No. 5, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Lee, J.S.[Jin-Shyan],
Jiang, J.W.[Jun-Wei],
Enhanced fuzzy-logic-based power-assisted control with user-adaptive
systems for human-electric bikes,
IET-ITS(13), No. 10, October 2019, pp. 1492-1498.
DOI Link
1909
BibRef
Sweeney, S.,
Ordóńez-Hurtado, R.,
Pilla, F.,
Russo, G.,
Timoney, D.,
Shorten, R.,
A Context-Aware E-Bike System to Reduce Pollution Inhalation While
Cycling,
ITS(20), No. 2, February 2019, pp. 704-715.
IEEE DOI
1902
Sensors, Electric motors, Air pollution, Automobiles, Batteries,
Urban areas, Cyber-physics, pollution mitigation, pedelecs,
man-machine interaction
BibRef
Huang, F.,
Qiao, S.,
Peng, J.,
Guo, B.,
A Bimodal Gaussian Inhomogeneous Poisson Algorithm for Bike Number
Prediction in a Bike-Sharing System,
ITS(20), No. 8, August 2019, pp. 2848-2857.
IEEE DOI
1908
Predictive models, Nonhomogeneous media, Meteorology,
Prediction algorithms, Public transportation, Neural networks,
time series prediction
BibRef
Cheng, X.Q.[Xiao-Qian],
Li, C.M.[Cheng-Ming],
Du, W.B.[Wei-Bing],
Shen, J.M.[Jian-Ming],
Dai, Z.X.[Zhao-Xin],
Trip Extraction of Shared Electric Bikes Based on
Multi-Rule-Constrained Homomorphic Linear Clustering Algorithm,
IJGI(8), No. 12, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Zhai, Y.[Yong],
Liu, J.[Jin],
Du, J.[Juan],
Wu, H.[Hao],
Fleet Size and Rebalancing Analysis of Dockless Bike-Sharing Stations
Based on Markov Chain,
IJGI(8), No. 8, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Dong, J.[Jian],
Chen, B.[Bin],
He, L.[Lingnan],
Ai, C.[Chuan],
Zhang, F.[Fang],
Guo, D.[Danhuai],
Qiu, X.G.[Xiao-Gang],
A Spatio-Temporal Flow Model of Urban Dockless Shared Bikes Based on
Points of Interest Clustering,
IJGI(8), No. 8, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Christian, K.[Kapuku],
Cho, S.H.[Shin-Hyung],
Kho, S.Y.[Seung-Young],
Kim, D.K.[Dong-Kyu],
Bayesian models with spatial autocorrelation for bike sharing ridership
variability based on revealed preference GPS trajectory data,
IET-ITS(13), No. 11, November 2019, pp. 1658-1667.
DOI Link
1911
BibRef
Cao, M.[Min],
Ma, S.J.[Shang-Jing],
Huang, M.X.[Meng-Xue],
Lü, G.N.[Guo-Nian],
Chen, M.[Min],
Effects of Free-Floating Shared Bicycles on Urban Public
Transportation,
IJGI(8), No. 8, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Zhao, X.F.[Xiao-Fei],
Hu, C.Y.[Cai-Yi],
Liu, Z.[Zhao],
Meng, Y.Y.[Yang-Yang],
Weighted Dynamic Time Warping for Grid-Based Travel-Demand-Pattern
Clustering: Case Study of Beijing Bicycle-Sharing System,
IJGI(8), No. 6, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Cao, M.[Min],
Cai, B.Q.[Bo-Qin],
Ma, S.J.[Shang-Jing],
Lü, G.N.[Guo-Nian],
Chen, M.[Min],
Analysis of the Cycling Flow Between Origin and Destination for
Dockless Shared Bicycles Based on Singular Value Decomposition,
IJGI(8), No. 12, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Yang, Z.,
Chen, J.,
Hu, J.,
Shu, Y.,
Cheng, P.,
Mobility Modeling and Data-Driven Closed-Loop Prediction in
Bike-Sharing Systems,
ITS(20), No. 12, December 2019, pp. 4488-4499.
IEEE DOI
2001
Predictive models, Bicycles, Urban areas, Optimization, Meteorology,
Probabilistic logic, Bike-sharing, mobility modeling,
Monte Carlo simulation
BibRef
Bao, J.[Jie],
Yu, H.[Hao],
Wu, J.M.[Jia-Ming],
Short-term FFBS demand prediction with multi-source data in a hybrid
deep learning framework,
IET-ITS(13), No. 9, September 2019, pp. 1340-1347.
DOI Link
1908
Short-term demand of free-floating bike sharing.
BibRef
Wang, S.F.[Shuo-Feng],
Li, Z.H.[Zhi-Heng],
Gu, R.[Ruochen],
Xie, N.[Na],
Placement optimisation for station-free bicycle-sharing under 1D
distribution assumption,
IET-ITS(14), No. 9, September 2020, pp. 1079-1086.
DOI Link
2008
BibRef
Ren, Y.,
Zhao, F.,
Jin, H.,
Jiao, Z.,
Meng, L.,
Zhang, C.,
Sutherland, J.W.,
Rebalancing Bike Sharing Systems for Minimizing Depot Inventory and
Traveling Costs,
ITS(21), No. 9, September 2020, pp. 3871-3882.
IEEE DOI
2008
Bicycles, Routing, Mathematical model, Vehicle dynamics,
Mathematical programming, Biological system modeling,
mathematical programming
BibRef
Chen, P.C.[Po-Chuan],
Hsieh, H.Y.[He-Yen],
Su, K.W.[Kuan-Wu],
Sigalingging, X.K.[Xanno Kharis],
Chen, Y.R.[Yan-Ru],
Leu, J.S.[Jenq-Shiou],
Predicting station level demand in a bike-sharing system using
recurrent neural networks,
IET-ITS(14), No. 6, June 2020, pp. 554-561.
DOI Link
2005
BibRef
Ye, M.[Mao],
Zeng, S.[Simeng],
Yang, G.X.[Gui-Xin],
Chen, Y.J.[Ya-Jing],
Identification of contributing factors on travel mode choice among
different resident types with bike-sharing as an alternative,
IET-ITS(14), No. 7, July 2020, pp. 639-646.
DOI Link
2006
BibRef
Hua, M.Z.[Ming-Zhuang],
Chen, J.X.[Jing-Xu],
Chen, X.W.[Xue-Wu],
Gan, Z.X.[Zuo-Xian],
Wang, P.F.[Peng-Fei],
Zhao, D.[De],
Forecasting usage and bike distribution of dockless bike-sharing using
journey data,
IET-ITS(14), No. 12, December 2020, pp. 1647-1656.
DOI Link
2011
BibRef
Jin, X.T.[Xue-Ting],
Tong, D.Q.[Dao-Qin],
Station-Free Bike Rebalancing Analysis: Scale, Modeling, and
Computational Challenges,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Cheng, X.Q.[Xiao-Qian],
Du, W.B.[Wei-Bing],
Li, C.M.[Cheng-Ming],
Yang, L.K.[Lei-Ku],
Xu, L.J.[Lin-Juan],
Exploring the Attractiveness of Residential Areas for Human
Activities Based on Shared E-Bike Trajectory Data,
IJGI(9), No. 12, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Sathishkumar, V.E.,
Park, J.[Jangwoo],
Cho, Y.Y.[Yong-Yun],
Seoul bike trip duration prediction using data mining techniques,
IET-ITS(14), No. 11, November 2020, pp. 1465-1474.
DOI Link
2010
BibRef
Albuquerque, V.[Vitória],
Dias, M.S.[Miguel Sales],
Bacao, F.[Fernando],
Machine Learning Approaches to Bike-Sharing Systems:
A Systematic Literature Review,
IJGI(10), No. 2, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Gao, F.[Feng],
Li, S.Y.[Shao-Ying],
Tan, Z.Z.[Zhang-Zhi],
Zhang, X.M.[Xiao-Ming],
Lai, Z.P.[Zhi-Peng],
Tan, Z.[Ziling],
How Is Urban Greenness Spatially Associated with Dockless Bike
Sharing Usage on Weekdays, Weekends, and Holidays?,
IJGI(10), No. 4, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Fan, R.N.[Rui-Na],
Ma, F.Q.[Fan-Qi],
Bike-sharing systems with a dual selection mechanism and a dynamic
double-threshold repositioning policy,
IET-ITS(15), No. 5, 2021, pp. 712-725.
DOI Link
2106
BibRef
Wang, W.[Wei],
Zhao, X.F.[Xiao-Feng],
Gong, Z.G.[Zhi-Guo],
Chen, Z.K.[Zhi-Kui],
Zhang, N.[Ning],
Wei, W.[Wei],
An Attention-Based Deep Learning Framework for Trip Destination
Prediction of Sharing Bike,
ITS(22), No. 7, July 2021, pp. 4601-4610.
IEEE DOI
2107
Machine learning, Task analysis, Neural networks, Smart cities,
Convolution, Predictive models, Internet of Things,
attention model
BibRef
Borowska-Stefanska, M.[Marta],
Mikusova, M.[Miroslava],
Kowalski, M.[Michal],
Kurzyk, P.[Paulina],
Wisniewski, S.[Szymon],
Changes in Urban Mobility Related to the Public Bike System with
Regard to Weather Conditions and Statutory Retail Restrictions,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Bahadori, M.S.[Mohammad Sadegh],
Gonçalves, A.B.[Alexandre B.],
Moura, F.[Filipe],
A Systematic Review of Station Location Techniques for
Bicycle-Sharing Systems Planning and Operation,
IJGI(10), No. 8, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Zhang, X.Y.[Xiao-Yi],
Chen, Y.R.[Yu-Rong],
Zhong, Y.[Yang],
Spatial and Temporal Characteristic Analysis of Imbalance Usage in
the Hangzhou Public Bicycle System,
IJGI(10), No. 10, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Chen, L.J.[Li-Jun],
Zhang, H.P.[Hai-Ping],
Wang, H.R.[Hao-Ran],
Wu, P.[Peng],
Understanding Plum Rain's Effects on Urban Public Bicycle
Unavailability Considering Both Place Semantics and Riding Distance,
IJGI(10), No. 10, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Lee, J.[Jiwon],
Yu, K.[Kiyun],
Kim, J.Y.[Ji-Young],
Public Bike Trip Purpose Inference Using Point-of-Interest Data,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Jiang, G.Y.[Guan-Ying],
Zhang, R.H.[Rong-Hui],
Qu, X.B.[Xiao-Bo],
Zhao, D.Z.[De-Zong],
A Dynamic Model Averaging for the Discovery of Time-Varying
Weather-Cycling Patterns,
ITS(22), No. 5, May 2021, pp. 2786-2796.
IEEE DOI
2105
Weather impacts cyclists. Scheduling bike trips.
Predictive models, Production, Weather forecasting, Urban areas,
Wind speed, Intelligent transportation systems.
BibRef
Capodici, A.E.[Alessandro Emilio],
d'Orso, G.[Gabriele],
Migliore, M.[Marco],
A GIS-Based Methodology for Evaluating the Increase in Multimodal
Transport between Bicycle and Rail Transport Systems. A Case Study in
Palermo,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Phithakkitnukooon, S.[Santi],
Patanukhom, K.[Karn],
Demissie, M.G.[Merkebe Getachew],
Predicting Spatiotemporal Demand of Dockless E-Scooter Sharing
Services with a Masked Fully Convolutional Network,
IJGI(10), No. 11, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Chen, L.J.[Li-Jun],
Jiang, S.J.[Shang-Jing],
Spatiotemporal Polyrhythm Characteristics of Public Bicycle Mobility
in Urban Chronotopes Context,
IJGI(11), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Lock, O.[Oliver],
Pettit, C.[Christopher],
Developing Participatory Analytics Techniques to Inform the
Prioritisation of Cycling Infrastructure,
IJGI(11), No. 2, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Jiang, M.[Mingda],
Li, C.[Chao],
Li, K.[Kehan],
Liu, H.[Hao],
Destination Prediction Based on Virtual POI Docks in Dockless
Bike-Sharing System,
ITS(23), No. 3, March 2022, pp. 2457-2470.
IEEE DOI
2203
Legged locomotion, Probabilistic logic, Roads,
Global Positioning System, Feature extraction, Buildings,
virtual dock
BibRef
Walker, J.[Jeremy],
Poliziani, C.[Cristian],
Tortora, C.[Cristina],
Schweizer, J.[Joerg],
Rupi, F.[Federico],
Nonparametric Regression Analysis of Cyclist Waiting Times across
Three Behavioral Typologies,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Chen, X.[Xian],
Jiang, H.[Hai],
Detecting the Demand Changes of Bike Sharing:
A Bayesian Hierarchical Approach,
ITS(23), No. 5, May 2022, pp. 3969-3984.
IEEE DOI
2205
Hidden Markov models, Bayes methods, Linear regression,
Numerical models, Indexes, Data models, Timing,
Bayesian hierarchical models
BibRef
Kondor, D.[Dániel],
Zhang, X.[Xiaohu],
Meghjani, M.[Malika],
Santi, P.[Paolo],
Zhao, J.H.[Jin-Hua],
Ratti, C.[Carlo],
Estimating the Potential for Shared Autonomous Scooters,
ITS(23), No. 5, May 2022, pp. 4651-4662.
IEEE DOI
2205
Motorcycles, Transportation, Bicycles, Urban areas,
Autonomous vehicles, Uncertainty, Propulsion, Autonomous vehicles,
first- and last-mile transportation
BibRef
Kim, K.[Kyoungok],
Spatial Contiguity-Constrained Hierarchical Clustering for Traffic
Prediction in Bike Sharing Systems,
ITS(23), No. 6, June 2022, pp. 5754-5764.
IEEE DOI
2206
Clustering algorithms, Prediction algorithms, Predictive models,
Heuristic algorithms, Convergence, Clustering methods,
random forest
BibRef
Li, X.Y.[Xin-Yu],
Xu, Y.[Yang],
Chen, Q.[Qi],
Wang, L.[Lei],
Zhang, X.[Xiaohu],
Shi, W.Z.[Wen-Zhong],
Short-Term Forecast of Bicycle Usage in Bike Sharing Systems: A
Spatial-Temporal Memory Network,
ITS(23), No. 8, August 2022, pp. 10923-10934.
IEEE DOI
2208
Bicycles, Deep learning, Predictive models, Urban areas,
Feature extraction, Convolution, Task analysis, Bike sharing,
shared mobility
BibRef
Wang, J.[Junheng],
Li, F.[Fan],
Yang, S.[Song],
Li, Y.Q.[You-Qi],
Wang, Y.[Yu],
A Real-Time Bike Trip Planning Policy With Self-Organizing Bike
Redistribution,
ITS(23), No. 8, August 2022, pp. 10646-10661.
IEEE DOI
2208
Real-time systems, Planning, Routing, Prediction methods,
Optimization, Legged locomotion, Fans, Bike trip planning,
queueing
BibRef
Xiao, X.[Xiao],
Zhang, Y.L.[Yun-Long],
Yang, S.[Shu],
Kong, X.Q.[Xiao-Qiang],
Efficient Missing Counts Imputation of a Bike-Sharing System by
Generative Adversarial Network,
ITS(23), No. 8, August 2022, pp. 13443-13451.
IEEE DOI
2208
Generative adversarial networks, Transportation, Neural networks,
Training, Planning, Traffic control, Memory, Traffic data imputation,
generative adversarial network
BibRef
Ashqar, H.I.[Huthaifa I.],
Elhenawy, M.[Mohammed],
Rakha, H.A.[Hesham A.],
House, L.[Leanna],
Quality of Service Measure for Bike Sharing Systems,
ITS(23), No. 9, September 2022, pp. 15841-15849.
IEEE DOI
2209
Quality of service, Pollution measurement, Bicycles,
Area measurement, Sociology, Stochastic processes,
urban computing
BibRef
Hu, L.[Lujin],
Wen, Z.[Zheng],
Wang, J.[Jian],
Hu, J.[Jing],
Spatial Interaction Analysis of Shared Bicycles Mobility Regularity
and Determinants: A Case Study of Six Main Districts, Beijing,
IJGI(11), No. 9, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Chen, X.[Xian],
Huang, K.[Kun],
Jiang, H.[Hai],
Detecting Changes in the Spatiotemporal Pattern of Bike Sharing: A
Change-Point Topic Model,
ITS(23), No. 10, October 2022, pp. 18361-18377.
IEEE DOI
2210
Spatiotemporal phenomena, Hidden Markov models,
Transportation, Time series analysis, Tensors, topic models
BibRef
Zhang, J.H.[Jian-Hui],
Zhang, W.Q.[Wan-Qing],
Wang, J.C.[Jia-Cheng],
Feng, J.W.[Jian-Wen],
Gao, Z.G.[Zhi-Gang],
Zheng, S.[Siwen],
Rechargeable Battery Cabinet Deployment for Public Bike System,
ITS(23), No. 11, November 2022, pp. 20309-20322.
IEEE DOI
2212
Urban areas, Batteries, Feature extraction, Quality of service,
Public transportation, Genetic algorithms, Mathematical models,
city voronoi diagram
BibRef
Zhu, Z.[Zheng],
Xu, M.[Meng],
Di, Y.[Yining],
Yang, H.[Hai],
Fitting Spatial-Temporal Data via a Physics Regularized Multi-Output
Grid Gaussian Process: Case Studies of a Bike-Sharing System,
ITS(23), No. 11, November 2022, pp. 21090-21101.
IEEE DOI
2212
Transportation, Computational modeling, Predictive models, Physics,
Data models, Task analysis, Deep learning,
bike-sharing
BibRef
Chao, S.[Sun],
Jian, L.[Lu],
Modelling Bottlenecks of Bike-Sharing Travel Using the Distinction
between Endogenous and Exogenous Demand: A Case Study in Beijing,
IJGI(11), No. 11, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Li, X.Y.[Xiang-Yu],
Sinniah, G.K.[Gobi Krishna],
Li, R.[Ruiwei],
Li, X.Q.[Xiao-Qing],
Correlation between Land Use Pattern and Urban Rail Ridership Based
on Bicycle-Sharing Trajectory,
IJGI(11), No. 12, 2022, pp. xx-yy.
DOI Link
2301
BibRef
Xin, R.[Rui],
Ding, L.F.[Lin-Fang],
Ai, B.[Bo],
Yang, M.[Min],
Zhu, R.X.[Ruo-Xin],
Cao, B.[Bin],
Meng, L.Q.[Li-Qiu],
Geospatial Network Analysis and Origin-Destination Clustering of
Bike-Sharing Activities during the COVID-19 Pandemic,
IJGI(12), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Monteiro, J.[Joăo],
Sousa, N.[Nuno],
Natividade-Jesus, E.[Eduardo],
Coutinho-Rodrigues, J.[Joăo],
The Potential Impact of Cycling on Urban Transport Energy and Modal
Share: A GIS-Based Methodology,
IJGI(12), No. 2, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Lee, S.H.[Shih-Hsiung],
Ku, H.C.[Hsuan-Chih],
A Dual Attention-Based Recurrent Neural Network for Short-Term Bike
Sharing Usage Demand Prediction,
ITS(24), No. 4, April 2023, pp. 4621-4630.
IEEE DOI
2304
Bicycles, Trajectory, Predictive models, Feature extraction,
Correlation, Time series analysis,
short-term bike sharing usage demand prediction
BibRef
Wu, H.[Hao],
Wang, Y.H.[Yan-Hui],
Sun, Y.Q.[Yu-Qing],
Yin, D.D.[Duo-Duo],
Li, Z.X.[Zhan-Xing],
Luo, X.Y.[Xiao-Yue],
Identification and Spatiotemporal Analysis of Bikesharing-Metro
Integration Cycling,
IJGI(12), No. 4, 2023, pp. 166.
DOI Link
2305
BibRef
Li, L.Q.[Ling-Qiao],
Wang, X.[Xiangkai],
Yang, M.Y.[Meng-Yu],
Zhang, H.W.[Hong-Wei],
An accurate shared bicycle detection network based on faster R-CNN,
IET-IPR(17), No. 6, 2023, pp. 1919-1930.
DOI Link
2305
deformable convolution, feature fusion,
object detection application, shared bicycle management
BibRef
Wei, Z.H.[Zhong-Hua],
Wang, M.Q.[Ming-Qian],
Wang, S.[Shaofan],
A worker-and-system trade-off model for rebalancing free-float bike
sharing systems: A mixed rebalancing strategy,
IET-ITS(17), No. 5, 2023, pp. 1037-1050.
DOI Link
2305
augmented Lagrange method, bike sharing system,
Bureau of Public Roads function, rebalancing problem
BibRef
Chai, J.[Jun],
Song, J.[Jun],
Fan, H.W.[Hong-Wei],
Xu, Y.[Yibo],
Zhang, L.[Le],
Guo, B.[Bing],
Xu, Y.W.[Ya-Wen],
ST-Bikes: Predicting Travel-Behaviors of Sharing-Bikes Exploiting
Urban Big Data,
ITS(24), No. 7, July 2023, pp. 7676-7686.
IEEE DOI
2307
Predictive models, Data models, Roads, Urban areas,
Time series analysis, Meteorology, Public transportation,
travel-behaviors 4G/5G/6G communication
BibRef
Wei, B.[Baohua],
Zhu, L.[Lei],
Exploring the Impact of Built Environment Factors on the
Relationships between Bike Sharing and Public Transportation:
A Case Study of New York,
IJGI(12), No. 7, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Xu, Y.M.[Yi-Ming],
Zhao, X.[Xilei],
Zhang, X.J.[Xiao-Jian],
Paliwal, M.[Mudit],
Real-Time Forecasting of Dockless Scooter-Sharing Demand:
A Spatio-Temporal Multi-Graph Transformer Approach,
ITS(24), No. 8, August 2023, pp. 8507-8518.
IEEE DOI
2308
Predictive models, Meteorology, Transportation, Transformers,
Spatiotemporal phenomena, Real-time systems, Motorcycles,
shared micromobility
BibRef
Shi, Y.[Yan],
Wang, D.[Da],
Wang, X.L.[Xiao-Long],
Chen, B.[Bingrong],
Ding, C.[Chen],
Gao, S.[Shijuan],
Sensing Travel Source-Sink Spatiotemporal Ranges Using Dockless
Bicycle Trajectory via Density-Based Adaptive Clustering,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Suárez-Vega, R.[Rafael],
Santana-Jiménez, Y.[Yolanda],
Hernández, J.M.[Juan M.],
Santana-Figueroa, J.J.[José Juan],
Assessment of the Bike-Sharing Socioeconomic Equity in the Use of
Routes,
IJGI(12), No. 8, 2023, pp. 320.
DOI Link
2309
BibRef
Wang, J.B.[Jian-Biao],
Miwa, T.[Tomio],
Morikawa, T.[Takayuki],
A Demand Truncation and Migration Poisson Model for Real Demand
Inference in Free-Floating Bike-Sharing System,
ITS(24), No. 10, October 2023, pp. 10525-10536.
IEEE DOI
2310
BibRef
Wang, J.B.[Jian-Biao],
Miwa, T.[Tomio],
Ma, X.W.[Xin-Wei],
Li, D.W.[Da-Wei],
Morikawa, T.[Takayuki],
Recovering Real Demand for Free-Floating Bike-Sharing System
Considering Demand Truncation, Migration, and Spatial Correlation,
ITS(25), No. 5, May 2024, pp. 4675-4691.
IEEE DOI
2405
Correlation, Public transportation, Urban areas, Surveys,
Shared transport, Estimation, Planning, Demand correlation,
real demand recovery
BibRef
Ebnealipour, S.[Sohrab],
Masih-Tehrani, M.[Masoud],
Nazemian, H.[Hossein],
A novel e-bike energy management for improvement of the rider
metabolism,
IET-ITS(17), No. 10, 2023, pp. 1964-1978.
DOI Link
2310
automotive electrics, bicycles, electric vehicles,
energy management systems, optimisation
BibRef
Chen, D.W.[Da-Wei],
Chen, Q.[Qun],
Imdahl, C.[Christina],
van Woensel, T.[Tom],
A Rolling-Horizon Strategy for Dynamic Rebalancing of Free-Floating
Bike-Sharing Systems,
ITS(24), No. 11, November 2023, pp. 12123-12140.
IEEE DOI
2311
BibRef
Zhang, Z.Q.[Zun-Qian],
Wang, L.[Liya],
Liu, Y.K.[Yi-Kai],
Li, H.[Hao],
Li, J.[Jie],
Yang, A.[Aimin],
A GAN-Based Ensemble Model for Predicting the Demand of Shared Bikes
in 5G Networks,
ITS(25), No. 3, March 2024, pp. 2869-2879.
IEEE DOI
2405
Predictive models, Data models, 5G mobile communication, Training,
Generative adversarial networks, Training data,
5G networks
BibRef
Zhang, H.[Hui],
Cui, Y.[Yu],
Liu, Y.J.[Yan-Jun],
Jia, J.M.[Jian-Min],
Shi, B.[Baiying],
Yu, X.H.[Xiao-Hua],
Exploring Travel Mobility in Integrated Usage of Dockless
Bike-Sharing and the Metro Based on Multisource Data,
IJGI(13), No. 4, 2024, pp. 108.
DOI Link
2405
BibRef
Yue, J.W.[Jian-Wei],
Long, Y.Q.[Ying-Qiu],
Wang, S.H.[Shao-Hua],
Liang, H.J.[Hao-Jian],
Optimization of Shared Electric Scooter Deployment Stations Based on
Distance Tolerance,
IJGI(13), No. 5, 2024, pp. 147.
DOI Link
2405
BibRef
Liang, Y.B.[Yue-Bing],
Huang, G.[Guan],
Zhao, Z.[Zhan],
Cross-Mode Knowledge Adaptation for Bike Sharing Demand Prediction
Using Domain-Adversarial Graph Neural Networks,
ITS(25), No. 5, May 2024, pp. 3642-3653.
IEEE DOI
2405
Shared transport, Adaptation models, Public transportation,
Graph neural networks, Spatiotemporal phenomena,
adversarial learning
BibRef
Alfasly, S.[Saghir],
Al-Huda, Z.[Zaid],
Bello, S.A.[Saifullahi Aminu],
Elazab, A.[Ahmed],
Lu, J.[Jian],
Xu, C.[Chen],
OSRE: Object-to-Spot Rotation Estimation for Bike Parking Assessment,
ITS(25), No. 6, June 2024, pp. 6013-6022.
IEEE DOI Code:
WWW Link.
2406
Detectors, Estimation, Synthetic data, Feature extraction, Visualization,
Computational modeling, Bike rotation estimation, 3D graphics
BibRef
Díaz, J.J.V.[Juan José Vinagre],
Pozo, R.F.[Rubén Fernández],
González, A.B.R.[Ana Belén Rodríguez],
Wilby, M.R.[Mark Richard],
Time-Based Utilization Rate of the Fleet: Measuring Deep
Inefficiencies in E-Scooter Services in Atlanta and Rome,
ITS(25), No. 6, June 2024, pp. 4987-4997.
IEEE DOI
2406
Urban areas, Measurement, Shared transport, Motorcycles,
Profitability, Costs, Automobiles, Shared mobility,
efficiency
BibRef
Zhao, J.N.[Jian-Nan],
Yuan, C.W.[Chang-Wei],
Mao, X.H.[Xin-Hua],
Ma, N.[Ningyuan],
Duan, Y.X.[Ya-Xin],
Zhu, J.[Jinrui],
Wang, H.J.[Hu-Jun],
Tian, B.[Beisi],
Identifying the Nonlinear Impacts of Road Network Topology and Built
Environment on the Potential Greenhouse Gas Emission Reduction of
Dockless Bike-Sharing Trips: A Case Study of Shenzhen, China,
IJGI(13), No. 8, 2024, pp. 287.
DOI Link
2408
BibRef
Shi, Y.[Yi],
Zhang, Z.[Zhonghu],
Zhou, C.Y.[Chun-Yu],
Bai, R.[Ruxia],
Li, C.[Chen],
A Study on the Spatiotemporal Distribution and Usage Pattern of
Dockless Shared Bicycles: The Case of Nanjing,
IJGI(13), No. 9, 2024, pp. 301.
DOI Link
2410
BibRef
Sun, H.[Heli],
Tang, Z.[Zunye],
Cao, M.T.[Meng-Ting],
Wang, Y.[Yu],
Yang, Z.[Zhou],
Xue, H.[Haokun],
Xue, R.R.[Rui-Rui],
He, L.[Liang],
Xiong, H.[Hui],
Public Bike Scheduling Strategy Based on Demand Prediction for
Unbalanced Life-Value Distribution,
ITS(25), No. 10, October 2024, pp. 13546-13559.
IEEE DOI Code:
WWW Link.
2410
Correlation, Urban areas, Throughput, Sun, Predictive models,
Uncertainty, Load modeling, Public bike scheduling,
life-value distribution
BibRef
Ni, Y.[Ying],
Wang, S.[Shihan],
Chen, J.Q.[Jia-Qi],
Feng, B.[Bufan],
Yu, R.J.[Rong-Jie],
Cai, Y.L.[Yi-Lin],
Evaluation of large-scale cycling environment by using the trajectory
data of dockless shared bicycles: A data-driven approach,
IET-ITS(18), No. 10, 2024, pp. 1943-1961.
DOI Link
2411
bicycles, environmental evaluation
BibRef
Gao, T.[Ting],
Daamen, W.[Winnie],
Krishnakumari, P.[Panchamy],
Hoogendoorn, S.[Serge],
Map-matching for cycling travel data in urban area,
IET-ITS(18), No. 11, 2024, pp. 2178-2203.
DOI Link
2411
bicycles, data analysis, map-matching
BibRef
Feng, J.[Jiahui],
Liu, H.[Hefu],
An Adaptive Spatial-Temporal Method Capturing for Short-Term
Bike-Sharing Prediction,
ITS(25), No. 11, November 2024, pp. 16761-16774.
IEEE DOI
2411
Urban areas, Adaptive systems, Transmission line matrix methods,
Deep learning, Adaptation models, Roads, Predictive models,
built environment feature
BibRef
Liu, Z.H.[Zi-Heng],
Gokon, H.[Hideomi],
Sekimoto, Y.[Yoshihide],
Long-Term Demand Prediction for Public Bicycle Sharing System: A
Spatio-Temporal Attentional Graph Convolution Networks Approach,
ITS(25), No. 12, December 2024, pp. 21515-21527.
IEEE DOI
2412
Predictive models, Feature extraction, Convolution, Data models,
Computational modeling, Correlation, Deep learning,
demand prediction
BibRef
Wang, X.[Xin],
Xue, R.[Rui],
Lu, M.[Ming],
Wu, J.Y.[Jiang-Yue],
Riders Under the Heat: Exploring the Impact of Extreme Heat on the
Integration of Bike-Sharing and Public Transportation in Shenzhen,
China,
IJGI(13), No. 12, 2024, pp. 438.
DOI Link
2501
BibRef
Kaya, Ö.[Ömer],
Footprints of the Future: Cleaner and Faster Transportation with
Shared E-Scooter Operational Models,
IJGI(14), No. 1, 2025, pp. 16.
DOI Link
2501
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Transit Traffic Analysis, Ridership, Public Transit, Bus .