Fukuda, S.,
Hirosawa, H.,
A Wavelet-Based Texture Feature Set Applied to Classification of
Multifrequency Polarimetric SAR Images,
GeoRS(37), No. 5, September 1999, pp. 2282.
IEEE Top Reference.
BibRef
9909
Lardeux, C.,
Frison, P.L.,
Tison, C.,
Souyris, J.C.,
Stoll, B.,
Fruneau, B.,
Rudant, J.P.,
Support Vector Machine for Multifrequency SAR Polarimetric Data
Classification,
GeoRS(47), No. 12, December 2009, pp. 4143-4152.
IEEE DOI
0912
BibRef
Margarit, G.,
Mallorqui, J.J.,
Rius, J.M.,
Sanz-Marcos, J.,
On the Usage of GRECOSAR, an Orbital Polarimetric SAR Simulator of
Complex Targets, to Vessel Classification Studies,
GeoRS(44), No. 12, December 2006, pp. 3517-3526.
IEEE DOI
0701
BibRef
Margarit, G.,
Mallorqui, J.J.,
Fabregas, X.,
Single-Pass Polarimetric SAR Interferometry for Vessel Classification,
GeoRS(45), No. 11, November 2007, pp. 3494-3502.
IEEE DOI
0709
BibRef
Anfinsen, S.N.,
Doulgeris, A.P.[Anthony P.],
Eltoft, T.[Torbjørn],
Estimation of the Equivalent Number of Looks in Polarimetric Synthetic
Aperture Radar Imagery,
GeoRS(47), No. 11, November 2009, pp. 3795-3809.
IEEE DOI
0911
BibRef
Doulgeris, A.P.[Anthony P.],
Anfinsen, S.N.,
Eltoft, T.[Torbjørn],
Classification With a Non-Gaussian Model for PolSAR Data,
GeoRS(46), No. 10, October 2008, pp. 2999-3009.
IEEE DOI
0810
BibRef
Cristea, A.[Anca],
Doulgeris, A.P.[Anthony P.],
Eltoft, T.[Torbjørn],
A Noncentral and Non-Gaussian Probability Model for SAR Data,
SCIA17(II: 159-168).
Springer DOI
1706
BibRef
Eltoft, T.[Torbjørn],
Anfinsen, S.N.,
Doulgeris, A.P.[Anthony P.],
A Multitexture Model for Multilook Polarimetric Synthetic Aperture
Radar Data,
GeoRS(52), No. 5, May 2014, pp. 2910-2919.
IEEE DOI
1403
Analytical models
BibRef
Quigley, C.[Cornelius],
Brekke, C.[Camilla],
Eltoft, T.[Torbjørn],
Comparison Between Dielectric Inversion Results From Synthetic
Aperture Radar Co- and Quad-Polarimetric Data via a Polarimetric
Two-Scale Model,
GeoRS(60), 2022, pp. 1-18.
IEEE DOI
2112
Oils, Synthetic aperture radar, Sea surface, Scattering,
Spaceborne radar, Radar polarimetry, Permittivity,
synthetic aperture radar (SAR)
BibRef
McNairn, H.,
Shang, J.,
Jiao, X.,
Champagne, C.,
The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data
to Crop Classification,
GeoRS(47), No. 12, December 2009, pp. 3981-3992.
IEEE DOI
0912
BibRef
Thilak Krishna, T.V.,
Creusere, C.D.[Charles D.],
Voelz, D.G.[David G.],
Passive Polarimetric Imagery-Based Material Classification Robust to
Illumination Source Position and Viewpoint,
IP(20), No. 1, January 2011, pp. 288-292.
IEEE DOI
1101
BibRef
Thilak, V.[Vimal],
Creusere, C.D.[Charles D.],
Voelz, D.G.[David G.],
Passive Polarimetric Imagery Based Material Classification For Remote
Sensing Applications,
Southwest08(153-156).
IEEE DOI
0803
BibRef
Earlier:
Material Classification using Passive Polarimetric Imagery,
ICIP07(IV: 121-124).
IEEE DOI
0709
BibRef
Uhlmann, S.[Stefan],
Kiranyaz, S.[Serkan],
Classification of dual- and single polarized SAR images by
incorporating visual features,
PandRS(90), No. 1, 2014, pp. 10-22.
Elsevier DOI
1404
Synthetic aperture radar
BibRef
Shang, F.[Fang],
Hirose, A.,
Quaternion Neural-Network-Based PolSAR Land Classification in
Poincare-Sphere-Parameter Space,
GeoRS(52), No. 9, Sept 2014, pp. 5693-5703.
IEEE DOI
1407
Poincare mapping
BibRef
Shang, F.[Fang],
Hirose, A.,
Averaged Stokes Vector Based Polarimetric SAR Data Interpretation,
GeoRS(53), No. 8, August 2015, pp. 4536-4547.
IEEE DOI
1506
object detection
BibRef
Feng, J.[Jilan],
Cao, Z.[Zongjie],
Pi, Y.M.[Yi-Ming],
Polarimetric Contextual Classification of PolSAR Images Using Sparse
Representation and Superpixels,
RS(6), No. 8, 2014, pp. 7158-7181.
DOI Link
1410
BibRef
Plank, S.[Simon],
Mager, A.[Alexander],
Schoepfer, E.[Elisabeth],
Monitoring of Oil Exploitation Infrastructure by Combining
Unsupervised Pixel-Based Classification of Polarimetric SAR and
Object-Based Image Analysis,
RS(6), No. 12, 2014, pp. 11977-12004.
DOI Link
1412
BibRef
Deng, L.[Lei],
Yan, Y.N.[Ya-Nan],
Sun, C.[Chen],
Use of Sub-Aperture Decomposition for Supervised PolSAR
Classification in Urban Area,
RS(7), No. 2, 2015, pp. 1380-1396.
DOI Link
1503
BibRef
Deng, L.[Lei],
Yan, Y.N.[Ya-Nan],
Wang, C.Z.[Cui-Zhen],
Improved POLSAR Image Classification by the Use of Multi-Feature
Combination,
RS(7), No. 4, 2015, pp. 4157-4177.
DOI Link
1505
BibRef
Cheng, J.[Jian],
Ji, Y.Q.[Ya-Qi],
Liu, H.J.[Hai-Jun],
Segmentation-Based PolSAR Image Classification Using Visual Features:
RHLBP and Color Features,
RS(7), No. 5, 2015, pp. 6079-6106.
DOI Link
1506
BibRef
Yang, F.[Fan],
Gao, W.[Wei],
Xu, B.[Bin],
Yang, J.[Jian],
Multi-Frequency Polarimetric SAR Classification Based on Riemannian
Manifold and Simultaneous Sparse Representation,
RS(7), No. 7, 2015, pp. 8469.
DOI Link
1506
BibRef
Liu, C.[Chun],
Yin, J.J.[Jun-Jun],
Yang, J.[Jian],
Gao, W.[Wei],
Classification of Multi-Frequency Polarimetric SAR Images Based on
Multi-Linear Subspace Learning of Tensor Objects,
RS(7), No. 7, 2015, pp. 9253.
DOI Link
1506
BibRef
Fernández-Michelli, J.I.,
Hurtado, M.,
Areta, J.A.,
Muravchik, C.H.,
Unsupervised classification algorithm based on EM method for
polarimetric SAR images,
PandRS(117), No. 1, 2016, pp. 56-65.
Elsevier DOI
1605
SAR images
BibRef
Xu, Q.[Qiao],
Chen, Q.H.[Qi-Hao],
Yang, S.[Shuai],
Liu, X.[Xiuguo],
Superpixel-Based Classification Using K Distribution and Spatial
Context for Polarimetric SAR Images,
RS(8), No. 8, 2016, pp. 619.
DOI Link
1609
BibRef
Hou, B.[Biao],
Wu, Q.[Qian],
Wen, Z.D.[Zai-Dao],
Jiao, L.C.[Li-Cheng],
Robust Semisupervised Classification for PolSAR Image With Noisy
Labels,
GeoRS(55), No. 11, November 2017, pp. 6440-6455.
IEEE DOI
1711
Data models, Noise measurement,
Robustness, Speckle, Synthetic aperture radar,
BibRef
Zhao, J.Q.[Jin-Qi],
Yang, J.[Jie],
Lu, Z.[Zhong],
Li, P.X.[Ping-Xiang],
Liu, W.S.[Wen-Song],
Yang, L.[Le],
A Novel Method of Change Detection in Bi-Temporal PolSAR Data Using a
Joint-Classification Classifier Based on a Similarity Measure,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Liu, W.S.[Wen-Song],
Yang, J.[Jie],
Zhao, J.Q.[Jin-Qi],
Yang, L.[Le],
A Novel Method of Unsupervised Change Detection Using Multi-Temporal
PolSAR Images,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Zhao, L.[Lei],
Chen, E.[Erxue],
Li, Z.Y.[Zeng-Yuan],
Zhang, W.F.[Wang-Fei],
Gu, X.Z.[Xin-Zhi],
Three-Step Semi-Empirical Radiometric Terrain Correction Approach for
PolSAR Data Applied to Forested Areas,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Zhao, L.[Lei],
Chen, E.[Erxue],
Li, Z.Y.[Zeng-Yuan],
Fan, Y.X.[Ya-Xiong],
Xu, K.P.[Kun-Peng],
The Improved Three-Step Semi-Empirical Radiometric Terrain Correction
Approach for Supervised Classification of PolSAR Data,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
He, C.[Chu],
Han, G.[Gong],
Feng, D.[Di],
Du, J.[Juan],
Liao, M.S.[Ming-Sheng],
A Sparse Manifold Classification Method Based on a Multi-Dimensional
Descriptive Primitive of Polarimetric SAR Image Time Series,
IJGI(6), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Bi, H.,
Sun, J.,
Xu, Z.,
Unsupervised PolSAR Image Classification Using Discriminative
Clustering,
GeoRS(55), No. 6, June 2017, pp. 3531-3544.
IEEE DOI
1706
Algorithm design and analysis, Clustering algorithms,
Feature extraction, Optimization, Scattering,
Support vector machines, Training, Discriminative clustering,
Markov random field (MRF),
polarimetric synthetic aperture radar (PolSAR) image classification,
softmax, regression, (SR), model
BibRef
White, L.[Lori],
Millard, K.[Koreen],
Banks, S.[Sarah],
Richardson, M.[Murray],
Pasher, J.[Jon],
Duffe, J.[Jason],
Moving to the RADARSAT Constellation Mission: Comparing Synthesized
Compact Polarimetry and Dual Polarimetry Data with Fully Polarimetric
RADARSAT-2 Data for Image Classification of Peatlands,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Tao, C.S.[Chen-Song],
Chen, S.W.[Si-Wei],
Li, Y.Z.[Yong-Zhen],
Xiao, S.P.[Shun-Ping],
PolSAR Land Cover Classification Based on Roll-Invariant and Selected
Hidden Polarimetric Features in the Rotation Domain,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Dong, H.,
Xu, X.,
Sui, H.,
Xu, F.,
Liu, J.,
Copula-Based Joint Statistical Model for Polarimetric Features and
Its Application in PolSAR Image Classification,
GeoRS(55), No. 10, October 2017, pp. 5777-5789.
IEEE DOI
1710
geophysical techniques, CoAS, PolSAR
copula-based joint statistical model,
real-valued polarimetric features, Correlation,
Covariance matrices, Data models, Feature extraction, Scattering,
BibRef
Chen, Y.Q.[Yan-Qiao],
Jiao, L.C.[Li-Cheng],
Li, Y.Y.[Yang-Yang],
Zhao, J.[Jin],
Multilayer Projective Dictionary Pair Learning and Sparse Autoencoder
for PolSAR Image Classification,
GeoRS(55), No. 12, December 2017, pp. 6683-6694.
IEEE DOI
1712
Dictionaries, Encoding, Feature extraction, Machine learning,
Nonhomogeneous media, Scattering,
sparse representation
BibRef
Zhang, F.[Fan],
Ni, J.[Jun],
Yin, Q.A.[Qi-Ang],
Li, W.[Wei],
Li, Z.[Zheng],
Liu, Y.F.[Yi-Fan],
Hong, W.[Wen],
Nearest-Regularized Subspace Classification for PolSAR Imagery Using
Polarimetric Feature Vector and Spatial Information,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Ni, J.[Jun],
Zhang, F.[Fan],
Yin, Q.A.[Qi-Ang],
Li, H.C.[Heng-Chao],
Robust Weighting Nearest Regularized Subspace Classifier for PolSAR
Imagery,
SPLetters(26), No. 10, October 2019, pp. 1496-1500.
IEEE DOI
1909
Training, Synthetic aperture radar, Feature extraction,
Data mining, Scattering, Distance measurement, Polarimetric SAR,
robust statistics
BibRef
Chen, S.W.,
Polarimetric Coherence Pattern: A Visualization and Characterization
Tool for PolSAR Data Investigation,
GeoRS(56), No. 1, January 2018, pp. 286-297.
IEEE DOI
1801
Coherence, Data visualization, Decorrelation, Radar polarimetry,
Tools, Land cover classification, orientation diversity,
synthetic aperture radar (SAR)
BibRef
Song, W.,
Li, M.,
Zhang, P.,
Wu, Y.,
Tan, X.,
An, L.,
Mixture WG Gamma-MRF Model for PolSAR Image Classification,
GeoRS(56), No. 2, February 2018, pp. 905-920.
IEEE DOI
1802
Correlation, Covariance matrices, Data models,
Image edge detection, Image segmentation, Mixture models,
spatial-contextual information
BibRef
Gou, S.P.[Shui-Ping],
Qiao, X.[Xin],
Zhang, X.R.[Xiang-Rong],
Wang, W.F.[Wei-Fang],
Du, F.F.[Fang-Fang],
Eigenvalue Analysis-Based Approach for POL-SAR Image Classification,
GeoRS(52), No. 2, February 2014, pp. 805-818.
IEEE DOI
1402
eigenvalues and eigenfunctions
BibRef
Chen, W.S.[Wen-Shuai],
Gou, S.P.[Shui-Ping],
Wang, X.L.[Xin-Lin],
Li, X.F.[Xiao-Feng],
Jiao, L.C.[Li-Cheng],
Classification of PolSAR Images Using Multilayer Autoencoders and a
Self-Paced Learning Approach,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Jiao, C.Z.[Chang-Zhe],
Wang, X.L.[Xin-Lin],
Gou, S.P.[Shui-Ping],
Chen, W.S.[Wen-Shuai],
Li, D.[Debo],
Chen, C.[Chao],
Li, X.F.[Xiao-Feng],
Self-Paced Convolutional Neural Network for PolSAR Images
Classification,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Atwood, D.K.,
Thirion-Lefevre, L.,
Polarimetric Phase and Implications for Urban Classification,
GeoRS(56), No. 3, March 2018, pp. 1278-1289.
IEEE DOI
1804
Backscatter, Buildings, Radar polarimetry, Scattering,
Synthetic aperture radar, Urban areas, Earth observing system,
urban areas
BibRef
Ren, B.[Bo],
Hou, B.[Biao],
Zhao, J.[Jin],
Jiao, L.C.[Li-Cheng],
Sparse Subspace Clustering-Based Feature Extraction for PolSAR
Imagery Classification,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Wang, Y.[Yan],
He, C.[Chu],
Liu, X.L.[Xin-Long],
Liao, M.S.[Ming-Sheng],
A Hierarchical Fully Convolutional Network Integrated with Sparse and
Low-Rank Subspace Representations for PolSAR Imagery Classification,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
He, C.[Chu],
Tu, M.X.[Ming-Xia],
Xiong, D.[Dehui],
Liao, M.S.[Ming-Sheng],
Nonlinear Manifold Learning Integrated with Fully Convolutional
Networks for PolSAR Image Classification,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
He, C.[Chu],
He, B.[Bokun],
Tu, M.X.[Ming-Xia],
Wang, Y.[Yan],
Qu, T.[Tao],
Wang, D.W.[Ding-Wen],
Liao, M.S.[Ming-Sheng],
Fully Convolutional Networks and a Manifold Graph Embedding-Based
Algorithm for PolSAR Image Classification,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Huang, X.Y.[Xia-Yuan],
Qiao, H.[Hong],
Zhang, B.[Bo],
Nie, X.L.[Xiang-Li],
Supervised Polarimetric SAR Image Classification Using Tensor Local
Discriminant Embedding,
IP(27), No. 6, June 2018, pp. 2966-2979.
IEEE DOI
1804
Covariance matrices, Dimensionality reduction,
Feature extraction, Matrix decomposition, Speckle,
tensor local discriminant embedding
BibRef
Huang, X.Y.[Xia-Yuan],
PolSAR Image Classification Based-On Semi-Supervised Polarimetric
Feature Selection,
ICIP23(196-200)
IEEE DOI
2312
BibRef
Huang, X.Y.[Xia-Yuan],
Nie, X.L.[Xiang-Li],
Multi-View Feature Selection for PolSAR Image Classification via L_2,1
Sparsity Regularization and Manifold Regularization,
IP(30), 2021, pp. 8607-8618.
IEEE DOI
2110
Feature extraction, Manifolds, Correlation, Optimization,
Synthetic aperture radar, Scattering, Matrix decomposition,
manifold regularization
BibRef
Hänsch, R.[Ronny],
Hellwich, O.[Olaf],
Skipping the real world: Classification of PolSAR images without
explicit feature extraction,
PandRS(140), 2018, pp. 122-132.
Elsevier DOI
1805
Random Forest, PolSAR, Classification, Feature learning
BibRef
Liu, W.S.[Wen-Song],
Yang, J.[Jie],
Li, P.X.[Ping-Xiang],
Han, Y.[Yue],
Zhao, J.[Jinqi],
Shi, H.T.[Hong-Tao],
A Novel Object-Based Supervised Classification Method with Active
Learning and Random Forest for PolSAR Imagery,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Liu, C.,
Liao, W.,
Li, H.,
Fu, K.,
Philips, W.,
Unsupervised Classification of Multilook Polarimetric SAR Data Using
Spatially Variant Wishart Mixture Model with Double Constraints,
GeoRS(56), No. 10, October 2018, pp. 5600-5613.
IEEE DOI
1810
Mixture models, Covariance matrices, Data models,
Synthetic aperture radar, Correlation, Scattering, Task analysis,
Wishart mixture model (WMM)
BibRef
Wu, W.,
Li, H.,
Zhang, L.,
Li, X.,
Guo, H.,
High-Resolution PolSAR Scene Classification With Pretrained Deep
Convnets and Manifold Polarimetric Parameters,
GeoRS(56), No. 10, October 2018, pp. 6159-6168.
IEEE DOI
1810
Data models, Backscatter, Synthetic aperture radar, Remote sensing,
Image color analysis, Training, Optical sensors,
synthetic aperture radar (SAR)
BibRef
Li, D.,
Zhang, Y.,
Adaptive Model-Based Classification of PolSAR Data,
GeoRS(56), No. 12, December 2018, pp. 6940-6955.
IEEE DOI
1812
Scattering, Adaptation models, Silicon, Data models, Entropy,
Radar polarimetry, Radar polarimetry, scattering model,
unsupervised classification
BibRef
Wu, Q.,
Hou, B.,
Wen, Z.,
Jiao, L.,
Variational Learning of Mixture Wishart Model for PolSAR Image
Classification,
GeoRS(57), No. 1, January 2019, pp. 141-154.
IEEE DOI
1901
Data models, Computational modeling,
Maximum likelihood estimation, Scattering, Training, Task analysis,
variational Bayesian
BibRef
Pallotta, L.,
de Maio, A.,
Orlando, D.,
A Robust Framework for Covariance Classification in Heterogeneous
Polarimetric SAR Images and Its Application to L-Band Data,
GeoRS(57), No. 1, January 2019, pp. 104-119.
IEEE DOI
1901
Synthetic aperture radar, Covariance matrices,
Symmetric matrices, Robustness, Data mining, Radar polarimetry,
symmetry classification
BibRef
Chen, Y.Q.[Yan-Qiao],
Li, Y.Y.[Yang-Yang],
Jiao, L.C.[Li-Cheng],
Peng, C.[Cheng],
Zhang, X.R.[Xiang-Rong],
Shang, R.H.[Rong-Hua],
Adversarial Reconstruction-Classification Networks for PolSAR Image
Classification,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Shang, R.H.[Rong-Hua],
Wang, G.G.[Guang-Guang],
Okoth, M.A.[Michael A.],
Jiao, L.C.[Li-Cheng],
Complex-Valued Convolutional Autoencoder and Spatial Pixel-Squares
Refinement for Polarimetric SAR Image Classification,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Chen, Y.,
Jiao, L.,
Li, Y.,
Li, L.,
Zhang, D.,
Ren, B.,
Marturi, N.,
A Novel Semicoupled Projective Dictionary Pair Learning Method for
PolSAR Image Classification,
GeoRS(57), No. 4, April 2019, pp. 2407-2418.
IEEE DOI
1904
image classification, image representation,
learning (artificial intelligence), radar imaging,
stacked auto-encoder (SAE)
BibRef
Wang, R.C.[Rui-Chuan],
Wang, Y.F.[Yan-Fei],
Classification of PolSAR Image Using Neural Nonlocal Stacked Sparse
Autoencoders with Virtual Adversarial Regularization,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
West, R.D.,
Riley, R.M.,
Polarimetric Interferometric SAR Change Detection Discrimination,
GeoRS(57), No. 6, June 2019, pp. 3091-3104.
IEEE DOI
1906
Synthetic aperture radar, Charge coupled devices, Coherence,
Matrix decomposition, Radar cross-sections, Laboratories,
probabilistic feature fusion (PFF) model
BibRef
Koch, M.W.,
West, R.D.,
Riley, R.M.,
Quach, T.,
Polarimetric Synthetic-Aperture-Radar Change-Type Classification with
a Hyperparameter-Free Open-Set Classifier,
PBVS18(1320-1327)
IEEE DOI
1812
Synthetic aperture radar, Coherence, Charge coupled devices,
Radar tracking, Matrix decomposition, Vegetation
BibRef
Zhang, X.Z.[Xin-Zheng],
Xia, J.[Jili],
Tan, X.H.[Xiao-Heng],
Zhou, X.C.[Xi-Chuan],
Wang, T.[Tao],
PolSAR Image Classification via Learned Superpixels and QCNN
Integrating Color Features,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Li, Y.Y.[Yang-Yang],
Xing, R.T.[Ruo-Ting],
Jiao, L.C.[Li-Cheng],
Chen, Y.Q.[Yan-Qiao],
Chai, Y.T.[Ying-Te],
Marturi, N.[Naresh],
Shang, R.H.[Rong-Hua],
Semi-Supervised PolSAR Image Classification Based on Self-Training
and Superpixels,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Jiao, L.C.[Li-Cheng],
Liu, F.[Fang],
Wishart Deep Stacking Network for Fast POLSAR Image Classification,
IP(25), No. 7, July 2016, pp. 3273-3286.
IEEE DOI
1606
image classification
BibRef
Li, Y.Y.[Yang-Yang],
Chen, Y.Q.[Yan-Qiao],
Liu, G.Y.[Guang-Yuan],
Jiao, L.C.[Li-Cheng],
A Novel Deep Fully Convolutional Network for PolSAR Image
Classification,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Xie, W.[Wen],
Jiao, L.C.[Li-Cheng],
Hua, W.Q.[Wen-Qiang],
Complex-Valued Multi-Scale Fully Convolutional Network with
Stacked-Dilated Convolution for PolSAR Image Classification,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Hua, W.Q.[Wen-Qiang],
Wang, Y.[Yi],
Yang, S.[Sijia],
Jin, X.M.[Xiao-Min],
PolSAR Image Classification Based on Multi-Modal Contrastive Fully
Convolutional Network,
RS(16), No. 2, 2024, pp. 296.
DOI Link
2402
BibRef
Hua, W.Q.[Wen-Qiang],
Zhang, Y.R.[Yu-Rong],
Zhang, C.[Cong],
Jin, X.M.[Xiao-Min],
PolSAR Image Classification Based on Relation Network with SWANet,
RS(15), No. 8, 2023, pp. 2025.
DOI Link
2305
BibRef
Liu, X.[Xu],
Jiao, L.C.[Li-Cheng],
Tang, X.[Xu],
Sun, Q.G.[Qi-Gong],
Zhang, D.[Dan],
Polarimetric Convolutional Network for PolSAR Image Classification,
GeoRS(57), No. 5, May 2019, pp. 3040-3054.
IEEE DOI
1905
convolution, covariance matrices, image classification,
radar imaging, radar polarimetry, synthetic aperture radar,
polarimetric synthetic aperture radar (PolSAR)
BibRef
Liu, F.[Fang],
Jiao, L.C.[Li-Cheng],
Hou, B.[Biao],
Yang, S.Y.[Shu-Yuan],
POL-SAR Image Classification Based on Wishart DBN and Local Spatial
Information,
GeoRS(54), No. 6, June 2016, pp. 3292-3308.
IEEE DOI
1606
belief networks
BibRef
Hou, B.[Biao],
Wang, J.L.[Jian-Long],
Jiao, L.C.[Li-Cheng],
Wang, S.[Shuang],
Auto Encoder Feature Learning with Utilization of Local Spatial
Information and Data Distribution for Classification of PolSAR Image,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Guo, Y.W.[Yu-Wei],
Sun, Z.Z.[Zhuang-Zhuang],
Qu, R.[Rong],
Jiao, L.C.[Li-Cheng],
Liu, F.[Fang],
Zhang, X.R.[Xiang-Rong],
Fuzzy Superpixels Based Semi-Supervised Similarity-Constrained CNN
for PolSAR Image Classification,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Mohanty, S.,
Singh, G.,
Improved POLSAR Model-Based Decomposition Interpretation Under
Scintillation Conditions,
GeoRS(57), No. 10, October 2019, pp. 7567-7578.
IEEE DOI
1910
fast Fourier transforms, phased array radar, radar imaging,
radar polarimetry, radar receivers, remote sensing by radar,
supervised classification
BibRef
Yang, C.,
Hou, B.,
Ren, B.,
Hu, Y.,
Jiao, L.,
CNN-Based Polarimetric Decomposition Feature Selection for PolSAR
Image Classification,
GeoRS(57), No. 11, November 2019, pp. 8796-8812.
IEEE DOI
1911
Feature extraction, Scattering, Matrix decomposition,
Covariance matrices, Task analysis, Indexes, Data mining,
polarimetric target decomposition
BibRef
Wen, Z.,
Wu, Q.,
Liu, Z.,
Pan, Q.,
Polar-Spatial Feature Fusion Learning With Variational
Generative-Discriminative Network for PolSAR Classification,
GeoRS(57), No. 11, November 2019, pp. 8914-8927.
IEEE DOI
1911
Feature extraction, Data models, Scattering, Task analysis,
Covariance matrices, Adaptation models, Deep learning,
variational inference
BibRef
Bi, H.,
Xu, F.,
Wei, Z.,
Xue, Y.,
Xu, Z.,
An Active Deep Learning Approach for Minimally Supervised PolSAR
Image Classification,
GeoRS(57), No. 11, November 2019, pp. 9378-9395.
IEEE DOI
1911
Deep learning, Neural networks, Training, Synthetic aperture radar,
Remote sensing, Learning systems, Task analysis, Active learning,
polarimetric synthetic aperture radar (PolSAR) image classification
BibRef
Zhang, L.[Lamei],
Dong, H.W.[Hong-Wei],
Zou, B.[Bin],
Efficiently utilizing complex-valued PolSAR image data via a
multi-task deep learning framework,
PandRS(157), 2019, pp. 59-72.
Elsevier DOI
1911
Deep learning, Convolutional neural networks,
Polarimetric synthetic aperture radar (PolSAR) classification,
Depthwise separable convolutions
BibRef
Cao, Y.[Yice],
Wu, Y.[Yan],
Zhang, P.[Peng],
Liang, W.K.[Wen-Kai],
Li, M.[Ming],
Pixel-Wise PolSAR Image Classification via a Novel Complex-Valued
Deep Fully Convolutional Network,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Yin, J.,
Papathanassiou, K.P.,
Yang, J.,
Formalism of Compact Polarimetric Descriptors and Extension of the
Delta-alpha_B/alpha_B Method for General Compact-Pol SAR,
GeoRS(57), No. 12, December 2019, pp. 10322-10335.
IEEE DOI
1912
Scattering, Synthetic aperture radar, Backscatter, Standards,
Imaging, Radar imaging, Radar polarimetry, Classification,
target decomposition
BibRef
Gadhiya, T.,
Roy, A.K.,
Superpixel-Driven Optimized Wishart Network for Fast PolSAR Image
Classification Using Global k-Means Algorithm,
GeoRS(58), No. 1, January 2020, pp. 97-109.
IEEE DOI
2001
Matrix decomposition, Scattering, Synthetic aperture radar,
Microwave imaging, Microwave theory and techniques,
revised Wishart distance (RWD)
BibRef
Dong, H.W.[Hong-Wei],
Zhang, L.M.[La-Mei],
Zou, B.[Bin],
PolSAR Image Classification with Lightweight 3D Convolutional
Networks,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Wu, Q.[Qian],
Hou, B.[Biao],
Wen, Z.[Zaidao],
Ren, Z.L.[Zhong-Le],
Ren, B.[Bo],
Jiao, L.C.[Li-Cheng],
Structure Label Matrix Completion for PolSAR Image Classification,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Wang, J.,
Hou, B.,
Jiao, L.,
Wang, S.,
POL-SAR Image Classification Based on Modified Stacked Autoencoder
Network and Data Distribution,
GeoRS(58), No. 3, March 2020, pp. 1678-1695.
IEEE DOI
2003
Autoencoder (AE) network, classification network,
coherency matrix, image classification, Wishart distribution
BibRef
Li, L.,
Zeng, J.,
Jiao, L.,
Liang, P.,
Liu, F.,
Yang, S.,
Online Active Extreme Learning Machine With Discrepancy Sampling for
PolSAR Classification,
GeoRS(58), No. 3, March 2020, pp. 2027-2041.
IEEE DOI
2003
Extreme learning machine (ELM), margin sampling (MS),
online active extreme learning machine (OA-ELM) algorithm,
polarimetric synthetic aperture radar (PolSAR) classification
BibRef
Yin, J.J.[Jun-Jun],
Liu, X.Y.[Xi-Yun],
Yang, J.[Jian],
Chu, C.Y.[Chih-Yuan],
Chang, Y.L.[Yang-Lang],
PolSAR Image Classification Based on Statistical Distribution and MRF,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Li, L.L.[Ling-Ling],
Ma, L.Y.[Li-Yuan],
Jiao, L.C.[Li-Cheng],
Liu, F.[Fang],
Sun, Q.[Qigong],
Zhao, J.[Jin],
Complex Contourlet-CNN for polarimetric SAR image classification,
PR(100), 2020, pp. 107110.
Elsevier DOI
2005
Complex Contourlet-CNN,
Multiscale deep Contourlet filter banks, Polarimetric SARimage classification
BibRef
Liu, H.Y.[Hong-Ying],
Luo, R.[Ruyi],
Shang, F.[Fanhua],
Meng, X.C.[Xue-Chun],
Gou, S.P.[Shui-Ping],
Hou, B.[Biao],
Semi-Supervised Deep Metric Learning Networks for Classification of
Polarimetric SAR Data,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Wang, S.,
Guo, Y.,
Hua, W.,
Liu, X.,
Song, G.,
Hou, B.,
Jiao, L.,
Semi-Supervised PolSAR Image Classification Based on Improved
Tri-Training With a Minimum Spanning Tree,
GeoRS(58), No. 12, December 2020, pp. 8583-8597.
IEEE DOI
2012
Reliability, Training, Matrix decomposition, Scattering,
Clustering algorithms, Lead, Image color analysis, Tri-training
BibRef
Wang, L.[Lei],
Xu, X.[Xin],
Gui, R.[Rong],
Yang, R.[Rui],
Pu, F.L.[Fang-Ling],
Learning Rotation Domain Deep Mutual Information Using Convolutional
LSTM for Unsupervised PolSAR Image Classification,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Cao, Y.[Yice],
Wu, Y.[Yan],
Li, M.[Ming],
Liang, W.K.[Wen-Kai],
Zhang, P.[Peng],
PolSAR Image Classification Using a Superpixel-Based Composite Kernel
and Elastic Net,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Zhang, Y.C.[Ya-Chao],
Lai, X.[Xuan],
Xie, Y.[Yuan],
Qu, Y.Y.[Yan-Yun],
Li, C.H.[Cui-Hua],
Geometry-Aware Discriminative Dictionary Learning for PolSAR Image
Classification,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Wang, J.L.[Jian-Long],
Hou, B.[Biao],
Jiao, L.C.[Li-Cheng],
Wang, S.[Shuang],
Representative Learning via Span-Based Mutual Information for PolSAR
Image Classification,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Wu, Q.[Qian],
Hou, B.[Biao],
Wen, Z.D.[Zai-Dao],
Ren, Z.L.[Zhong-Le],
Jiao, L.C.[Li-Cheng],
Cost-Sensitive Latent Space Learning for Imbalanced PolSAR Image
Classification,
GeoRS(59), No. 6, June 2021, pp. 4802-4817.
IEEE DOI
2106
Task analysis, Scattering, Feature extraction, Matrix converters,
Polarimetric synthetic aperture radar, Support vector machines,
multi-task learning
BibRef
Ren, B.[Bo],
Zhao, Y.Y.[Yang-Yang],
Hou, B.[Biao],
Chanussot, J.[Jocelyn],
Jiao, L.C.[Li-Cheng],
A Mutual Information-Based Self-Supervised Learning Model for PolSAR
Land Cover Classification,
GeoRS(59), No. 11, November 2021, pp. 9224-9237.
IEEE DOI
2111
Feature extraction, Task analysis, Data models, Data mining,
Scattering, Mutual information, Covariance matrices,
self-supervised learning (SSL)
BibRef
Gui, R.[Rong],
Xu, X.[Xin],
Yang, R.[Rui],
Wang, L.[Lei],
Pu, F.L.[Fang-Ling],
Statistical Scattering Component-Based Subspace Alignment for
Unsupervised Cross-Domain PolSAR Image Classification,
GeoRS(59), No. 7, July 2021, pp. 5449-5463.
IEEE DOI
2106
Scattering, Synthetic aperture radar, Sensors, Radar imaging,
Image sensors, Remote sensing, Land-cover classification,
unsupervised domain adaptation (DA)
BibRef
Ni, J.[Jun],
Zhang, F.[Fan],
Yin, Q.[Qiang],
Zhou, Y.S.[Yong-Sheng],
Li, H.C.[Heng-Chao],
Hong, W.[Wen],
Random Neighbor Pixel-Block-Based Deep Recurrent Learning for
Polarimetric SAR Image Classification,
GeoRS(59), No. 9, September 2021, pp. 7557-7569.
IEEE DOI
2109
Feature extraction, Training, Covariance matrices,
Matrix decomposition, Data mining, Scattering, Training data,
polarimetric synthetic aperture radar (PolSAR)
BibRef
Tan, X.F.[Xiao-Feng],
Li, M.[Ming],
Zhang, P.[Peng],
Wu, Y.[Yan],
Song, W.Y.[Wan-Ying],
Deep Triplet Complex-Valued Network for PolSAR Image Classification,
GeoRS(59), No. 12, December 2021, pp. 10179-10196.
IEEE DOI
2112
Feature extraction, Synthetic aperture radar,
Covariance matrices, Neural networks, Measurement,
polarimetric synthetic aperture radar (PolSAR)
BibRef
Jafarzadeh, H.[Hamid],
Mahdianpari, M.[Masoud],
Gill, E.[Eric],
Mohammadimanesh, F.[Fariba],
Homayouni, S.[Saeid],
Bagging and Boosting Ensemble Classifiers for Classification of
Multispectral, Hyperspectral and PolSAR Data: A Comparative
Evaluation,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Qin, X.X.[Xian-Xiang],
Zou, H.X.[Huan-Xin],
Yu, W.[Wangsheng],
Wang, P.[Peng],
Superpixel-Oriented Classification of PolSAR Images Using
Complex-Valued Convolutional Neural Network Driven by Hybrid Data,
GeoRS(59), No. 12, December 2021, pp. 10094-10111.
IEEE DOI
2112
Feature extraction, Training, Task analysis, Data models,
Data mining, Radar polarimetry,
superpixel regularization
BibRef
Wang, J.L.[Jian-Long],
Hou, B.[Biao],
Ren, B.[Bo],
Zhang, Y.[Yake],
Yang, M.J.[Mei-Juan],
Wang, S.[Shuang],
Jiao, L.C.[Li-Cheng],
Parameter selection of Touzi decomposition and a distribution
improved autoencoder for PolSAR image classification,
PandRS(186), 2022, pp. 246-266.
Elsevier DOI
2203
Polarization decomposition, Data distribution,
Touzi decomposition, Parameter selection, Feature extraction,
Autoencoder network
BibRef
Cui, Y.H.[Yuan-Hao],
Liu, F.[Fang],
Liu, X.[Xu],
Li, L.L.[Ling-Ling],
Qian, X.X.[Xiao-Xue],
TCSPANet: Two-Staged Contrastive Learning and Sub-Patch Attention
Based Network for PolSAR Image Classification,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Ren, B.[Bo],
Chen, M.Q.[Meng-Qian],
Hou, B.[Biao],
Hong, D.F.[Dan-Feng],
Ma, S.B.[Shi-Bin],
Chanussot, J.[Jocelyn],
Jiao, L.C.[Li-Cheng],
PolSAR Scene Classification via Low-Rank Constrained Multimodal
Tensor Representation,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Han, B.B.[Bin-Bin],
Han, P.[Ping],
Cheng, Z.[Zheng],
Object-Oriented Unsupervised Classification of PolSAR Images Based on
Image Block,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Sun, J.[Jili],
Geng, L.[Lingdong],
Wang, Y.Z.[Yi-Ze],
A Hybrid Model Based on Superpixel Entropy Discrimination for PolSAR
Image Classification,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Imani, M.[Maryam],
Polarimetric SAR image classification using binary coding-based
polarimetric-morphological features,
IET-IPR(16), No. 14, 2022, pp. 3715-3736.
DOI Link
2212
BibRef
Yao, H.[Hang],
Fu, B.[Bolin],
Zhang, Y.[Ya],
Li, S.Z.[Sun-Zhe],
Xie, S.Y.[Shu-Yu],
Qin, J.L.[Jiao-Ling],
Fan, D.L.[Dong-Lin],
Gao, E.[Ertao],
Combination of Hyperspectral and Quad-Polarization SAR Images to
Classify Marsh Vegetation Using Stacking Ensemble Learning Algorithm,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Liu, M.L.[Ming-Liang],
Deng, Y.K.[Yun-Kai],
Han, C.Z.[Chuan-Zhao],
Hou, W.T.[Wen-Tao],
Gao, Y.[Yao],
Wang, C.L.[Chun-Le],
Liu, X.Q.[Xiu-Qing],
An Innovative Supervised Classification Algorithm for PolSAR Image
Based on Mixture Model and MRF,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Tang, R.[Rui],
Pu, F.L.[Fang-Ling],
Yang, R.[Rui],
Xu, Z.Z.[Zhao-Zhuo],
Xu, X.[Xin],
Multi-Domain Fusion Graph Network for Semi-Supervised PolSAR Image
Classification,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Radman, A.[Ali],
Mahdianpari, M.[Masoud],
Brisco, B.[Brian],
Salehi, B.[Bahram],
Mohammadimanesh, F.[Fariba],
Dual-Branch Fusion of Convolutional Neural Network and Graph
Convolutional Network for PolSAR Image Classification,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Zhang, C.[Chuang],
Mu, Y.X.[Ya-Xin],
Xia, Z.H.[Zheng-Huan],
Jin, S.C.[Shi-Chao],
Yue, F.Z.[Fu-Zhan],
Liu, X.[Xin],
Zhang, L.Q.[Lan-Qing],
Tian, Z.X.[Zhi-Xin],
Liu, Z.Q.[Zong-Qiang],
Zhang, Y.[Yao],
Gao, W.N.[Wen-Ning],
Zhang, T.[Tao],
Zhao, Z.L.[Zhi-Long],
Zhang, Y.[Ying],
Feature Extraction for Moving Targets Based on the Statistical
Characteristics of Echo Amplitude with the L-Band Fully Polarimetric
Radar,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Fang, Z.[Zheng],
Zhang, G.[Gong],
Dai, Q.J.[Qi-Jun],
Xue, B.[Biao],
Wang, P.[Peng],
Hybrid Attention-Based Encoder-Decoder Fully Convolutional
Network for PolSAR Image Classification,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Li, Z.C.[Ze-Chen],
Li, H.C.[Heng-Chao],
Gao, G.[Gui],
Hua, Z.X.[Ze-Xi],
Zhang, F.[Fan],
Hong, W.[Wen],
Unsupervised classification of polarimetric SAR images via SVGp0MM
with extended variational inference,
PandRS(196), 2023, pp. 256-269.
Elsevier DOI
2302
Polarimetric synthetic aperture radar,
Unsupervised classification, Variational inference, Remote sensing
BibRef
Dong, H.W.[Hong-Wei],
Si, L.Y.[Ling-Yu],
Qiang, W.W.[Wen-Wen],
Miao, W.[Wuxia],
Zheng, C.[Changwen],
Wu, Y.[Yuquan],
Zhang, L.[Lamei],
A Polarimetric Scattering Characteristics-Guided Adversarial Learning
Approach for Unsupervised PolSAR Image Classification,
RS(15), No. 7, 2023, pp. 1782.
DOI Link
2304
BibRef
Wang, W.K.[Wen-Ke],
Wang, J.L.[Jian-Long],
Lu, B.[Bibo],
Liu, B.[Boyuan],
Zhang, Y.[Yake],
Wang, C.Y.[Chun-Yang],
MCPT: Mixed Convolutional Parallel Transformer for Polarimetric SAR
Image Classification,
RS(15), No. 11, 2023, pp. 2936.
DOI Link
2306
BibRef
Han, W.T.[Wen-Tao],
Fu, H.Q.[Hai-Qiang],
Zhu, J.J.[Jian-Jun],
Zhang, S.[Shurong],
Xie, Q.H.[Qing-Hua],
Hu, J.[Jun],
A polarimetric projection-based scattering characteristics extraction
tool and its application to PolSAR image classification,
PandRS(202), 2023, pp. 314-333.
Elsevier DOI
2308
Polarimetric projection,
Scattering characteristics extraction, Polarimetric SAR
BibRef
Shi, J.F.[Jun-Fei],
Nie, M.M.[Meng-Meng],
Ji, S.S.[Shan-Shan],
Shi, C.[Cheng],
Liu, H.Y.[Hong-Ying],
Jin, H.Y.[Hai-Yan],
Polarimetric Synthetic Aperture Radar Image Classification Based on
Double-Channel Convolution Network and Edge-Preserving Markov Random
Field,
RS(15), No. 23, 2023, pp. 5458.
DOI Link
2312
BibRef
Wang, Z.[Zehua],
Wang, Z.Z.[Ze-Zhong],
Qiu, X.L.[Xiao-Lan],
Zhang, Z.[Zhe],
Global Polarimetric Synthetic Aperture Radar Image Segmentation with
Data Augmentation and Hybrid Architecture Model,
RS(16), No. 2, 2024, pp. 380.
DOI Link
2402
BibRef
Wang, T.T.[Ting-Ting],
Suo, Z.Y.[Zhi-Yong],
Ti, J.J.[Jing-Jing],
Yan, B.[Boya],
Xiang, H.L.[Hong-Li],
Xi, J.[Jiabao],
A Unitary Transformation Extension of PolSAR Four-Component Target
Decomposition,
RS(16), No. 6, 2024, pp. 1067.
DOI Link
2403
BibRef
Ren, S.J.[Shi-Jie],
Zhou, F.[Feng],
Bruzzone, L.[Lorenzo],
Transfer-Aware Graph U-Net with Cross-Level Interactions for PolSAR
Image Semantic Segmentation,
RS(16), No. 8, 2024, pp. 1428.
DOI Link
2405
BibRef
Zhang, S.Y.[Shuai-Ying],
Cui, L.Z.[Li-Zhen],
Dong, Z.[Zhen],
An, W.T.[Wen-Tao],
A Deep Learning Classification Scheme for PolSAR Image Based on
Polarimetric Features,
RS(16), No. 10, 2024, pp. 1676.
DOI Link
2405
BibRef
Zhang, S.Y.[Shuai-Ying],
Cui, L.Z.[Li-Zhen],
Zhang, Y.[Yue],
Xia, T.[Tian],
Dong, Z.[Zhen],
An, W.T.[Wen-Tao],
Research on Input Schemes for Polarimetric SAR Classification Using
Deep Learning,
RS(16), No. 11, 2024, pp. 1826.
DOI Link
2406
BibRef
Löw, J.[Johannes],
Hill, S.[Steven],
Otte, I.[Insa],
Thiel, M.[Michael],
Ullmann, T.[Tobias],
Conrad, C.[Christopher],
How Phenology Shapes Crop-Specific Sentinel-1 PolSAR Features and
InSAR Coherence across Multiple Years and Orbits,
RS(16), No. 15, 2024, pp. 2791.
DOI Link
2408
BibRef
Nie, X.,
Luo, Y.,
Qiao, H.,
Zhang, B.,
Jiang, Z.,
An Incremental Multi-view Active Learning Algorithm for PolSAR Data
Classification,
ICPR18(2251-2255)
IEEE DOI
1812
Heuristic algorithms, Prediction algorithms, Task analysis,
Data models, Feature extraction, Learning systems, Polarimetric synthetic aperture radar
BibRef
Nie, X.,
Ding, S.,
Zhang, B.,
Qiao, H.,
Huang, X.,
Polsar data online classification based on multi-view learning,
ICIP17(2354-2358)
IEEE DOI
1803
Feature extraction, Image color analysis, Optimization,
Polarimetric synthetic aperture radar, Prediction algorithms,
polarimetric synthetic aperture radar (PolSAR)
BibRef
Rouabah, S.,
Ouarzeddine, M.,
Azmedroub, B.,
Polarimetric SAR Data GMM Classification Based On Improved Freeman
Incoherent Decomposition,
ISPRS16(B7: 341-345).
DOI Link
1610
BibRef
Liu, F.[Fang],
Shi, J.F.[Jun-Fei],
Jiao, L.C.[Li-Cheng],
Liu, H.Y.[Hong-Ying],
Yang, S.Y.[Shu-Yuan],
Wu, J.[Jie],
Hao, H.X.[Hong-Xia],
Yuan, J.L.[Jia-Ling],
Hierarchical semantic model and scattering mechanism based PolSAR
image classification,
PR(59), No. 1, 2016, pp. 325-342.
Elsevier DOI
1609
Hierarchical semantic model
BibRef
Wang, X.J.[Xiao-Jun],
Li, H.[Hao],
Wu, Y.H.[Yong-Hui],
Yan, S.S.[Shu-Sheng],
Li, L.H.[Lian-Hua],
Parameters analysis for polarimetric SAR Based on classification
accuracy,
IASP10(268-271).
IEEE DOI
1004
BibRef
Cai, A.[Aimin],
Shao, Y.[Yun],
Gong, H.[Huaze],
Parameters extraction of crop based on PolSAR Data,
IASP10(12-15).
IEEE DOI
1004
BibRef
Hansch, R.[Ronny],
Hellwich, O.[Olaf],
Classification of Polarimetric SAR Data by Complex Valued Neural
Networks,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Motion Compensation for Radar .