Monteiro, S.T.[Sildomar Takahashi],
Minekawa, Y.[Yohei],
Kosugi, Y.[Yukio],
Akazawa, T.[Tsuneya],
Oda, K.[Kunio],
Prediction of sweetness and amino acid content in soybean crops from
hyperspectral imagery,
PandRS(62), No. 1, May 2007, pp. 2-12.
Elsevier DOI
0709
Agriculture; Hyperspectral image; Modeling; Neural networks; Spatial prediction
BibRef
Gusso, A.,
Ducati, J.R.,
Algorithm for Soybean Classification Using Medium Resolution Satellite
Images,
RS(4), No. 10, October 2012, pp. 3127-3142.
DOI Link
1210
BibRef
And:
Soybean Crop Area Estimation And Mapping In Mato Grosso State, Brazil,
AnnalsPRS(I-7), No. 2012, pp. 215-219.
DOI Link
1209
BibRef
Xin, Q.C.[Qin-Chuan],
Gong, P.[Peng],
Yu, C.Q.[Chao-Qing],
Yu, L.[Le],
Broich, M.[Mark],
Suyker, A.E.[Andrew E.],
Myneni, R.B.[Ranga B.],
A Production Efficiency Model-Based Method for Satellite Estimates of
Corn and Soybean Yields in the Midwestern US,
RS(5), No. 11, 2013, pp. 5926-5943.
DOI Link
1312
BibRef
Zhao, F.[Feng],
Huang, Y.B.[Yan-Bo],
Guo, Y.Q.[Yi-Qing],
Reddy, K.N.[Krishna N.],
Lee, M.A.[Matthew A.],
Fletcher, R.S.[Reginald S.],
Thomson, S.J.[Steven J.],
Early Detection of Crop Injury from Glyphosate on Soybean and Cotton
Using Plant Leaf Hyperspectral Data,
RS(6), No. 2, 2014, pp. 1538-1563.
DOI Link
1403
BibRef
Wagle, P.[Pradeep],
Xiao, X.M.[Xiang-Ming],
Suyker, A.E.[Andrew E.],
Estimation and analysis of gross primary production of soybean under
various management practices and drought conditions,
PandRS(99), No. 1, 2015, pp. 70-83.
Elsevier DOI
1502
Gross primary production
BibRef
Zhong, L.H.[Li-Heng],
Hu, L.[Lina],
Yu, L.[Le],
Gong, P.[Peng],
Biging, G.S.[Gregory S.],
Automated mapping of soybean and corn using phenology,
PandRS(119), No. 1, 2016, pp. 151-164.
Elsevier DOI
1610
Automated classification
BibRef
Peng, Y.[Yi],
Nguy-Robertson, A.[Anthony],
Arkebauer, T.[Timothy],
Gitelson, A.A.[Anatoly A.],
Assessment of Canopy Chlorophyll Content Retrieval in Maize and Soybean:
Implications of Hysteresis on the Development of Generic Algorithms,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Kira, O.[Oz],
Nguy-Robertson, A.L.[Anthony L.],
Arkebauer, T.J.[Timothy J.],
Linker, R.[Raphael],
Gitelson, A.A.[Anatoly A.],
Toward Generic Models for Green LAI Estimation in Maize and Soybean:
Satellite Observations,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Ren, J.[Jie],
Campbell, J.B.[James B.],
Shao, Y.[Yang],
Estimation of SOS and EOS for Midwestern US Corn and Soybean Crops,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Bajwa, S.G.[Sreekala G.],
Rupe, J.C.[John C.],
Mason, J.[Johnny],
Soybean Disease Monitoring with Leaf Reflectance,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Yuan, H.H.[Huan-Huan],
Yang, G.J.[Gui-Jun],
Li, C.C.[Chang-Chun],
Wang, Y.J.[Yan-Jie],
Liu, J.G.[Jian-Gang],
Yu, H.Y.[Hai-Yang],
Feng, H.K.[Hai-Kuan],
Xu, B.[Bo],
Zhao, X.Q.[Xiao-Qing],
Yang, X.D.[Xiao-Dong],
Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle
Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression
Models,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Kong, Q.M.[Qing-Ming],
Cui, G.[Guowen],
Yeo, S.S.[Sang-Soo],
Su, Z.B.[Zhong-Bin],
Wang, J.J.[Jing-Jing],
Hu, F.Z.[Feng-Zhu],
Shen, W.Z.[Wei-Zheng],
DBN wavelet transform denoising method in soybean straw composition
based on near-infrared rapid detection,
RealTimeIP(13), No. 3, September 2017, pp. 613-626.
Springer DOI
1710
BibRef
Maimaitijiang, M.[Maitiniyazi],
Ghulam, A.[Abduwasit],
Sidike, P.[Paheding],
Hartling, S.[Sean],
Maimaitiyiming, M.[Matthew],
Peterson, K.[Kyle],
Shavers, E.[Ethan],
Fishman, J.[Jack],
Peterson, J.[Jim],
Kadam, S.[Suhas],
Burken, J.[Joel],
Fritschi, F.[Felix],
Unmanned Aerial System (UAS)-based phenotyping of soybean using
multi-sensor data fusion and extreme learning machine,
PandRS(134), No. Supplement C, 2017, pp. 43-58.
Elsevier DOI
1712
Remote sensing, Unmanned Aerial System (UAS), Phenotyping,
Data Fusion, Extreme Learning Machine (ELM), Extreme Learning Machine based Regression (ELR)
BibRef
Clemente, A.M.[Augusto Monso],
de Carvalho Júnior, O.A.[Osmar Abílio],
Guimarães, R.F.[Renato Fontes],
McManus, C.[Concepta],
Turazi, C.M.V.[Caroline Machado Vasconcelos],
Hermuche, P.M.[Potira Meirelles],
Spatial-Temporal Patterns of Bean Crop in Brazil over the Period
1990-2013,
IJGI(6), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Ovando, G.[Gustavo],
Sayago, S.[Silvina],
Bocco, M.[Mónica],
Evaluating accuracy of DSSAT model for soybean yield estimation using
satellite weather data,
PandRS(138), 2018, pp. 208-217.
Elsevier DOI
1804
CERES, TRMM, Crop models, Argentina
BibRef
Herrmann, I.[Ittai],
Vosberg, S.K.[Steven K.],
Ravindran, P.[Prabu],
Singh, A.[Aditya],
Chang, H.X.[Hao-Xun],
Chilvers, M.I.[Martin I.],
Conley, S.P.[Shawn P.],
Townsend, P.A.[Philip A.],
Leaf and Canopy Level Detection of Fusarium Virguliforme (Sudden
Death Syndrome) in Soybean,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Sagan, V.[Vasit],
Maimaitiyiming, M.[Matthew],
Fishman, J.[Jack],
Effects of Ambient Ozone on Soybean Biophysical Variables and Mineral
Nutrient Accumulation,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Hu, Q.[Qiong],
Ma, Y.X.[Ya-Xiong],
Xu, B.D.[Bao-Dong],
Song, Q.[Qian],
Tang, H.J.[Hua-Jun],
Wu, W.B.[Wen-Bin],
Estimating Sub-Pixel Soybean Fraction from Time-Series MODIS Data
Using an Optimized Geographically Weighted Regression Model,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Kaur, S.[Sukhvir],
Pandey, S.[Shreelekha],
Goel, S.[Shivani],
Semi-automatic leaf disease detection and classification system for
soybean culture,
IET-IPR(12), No. 6, June 2018, pp. 1038-1048.
DOI Link
1805
BibRef
Chaves, M.E.D.[Michel Eustáquio Dantas],
de Carvalho Alves, M.[Marcelo],
de Oliveira, M.S.[Marcelo Silva],
Sáfadi, T.[Thelma],
A Geostatistical Approach for Modeling Soybean Crop Area and Yield
Based on Census and Remote Sensing Data,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Guan, H.[Haiou],
Liu, M.[Meng],
Ma, X.D.[Xiao-Dan],
Yu, S.[Song],
Three-Dimensional Reconstruction of Soybean Canopies Using
Multisource Imaging for Phenotyping Analysis,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Gao, F.[Feng],
Anderson, M.[Martha],
Daughtry, C.[Craig],
Johnson, D.[David],
Assessing the Variability of Corn and Soybean Yields in Central Iowa
Using High Spatiotemporal Resolution Multi-Satellite Imagery,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
de la Casa, A.,
Ovando, G.,
Bressanini, L.,
Martínez, J.,
Díaz, G.,
Miranda, C.,
Soybean crop coverage estimation from NDVI images with different
spatial resolution to evaluate yield variability in a plot,
PandRS(146), 2018, pp. 531-547.
Elsevier DOI
1812
Precision agriculture, Remote sensing, Biomass, Soil water,
Yield gap, NDVI
BibRef
Maimaitijiang, M.[Maitiniyazi],
Sagan, V.[Vasit],
Sidike, P.[Paheding],
Maimaitiyiming, M.[Matthew],
Hartling, S.[Sean],
Peterson, K.T.[Kyle T.],
Maw, M.J.W.[Michael J.W.],
Shakoor, N.[Nadia],
Mockler, T.[Todd],
Fritschi, F.B.[Felix B.],
Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean
biomass estimation from Unmanned Aerial System-based RGB imagery,
PandRS(151), 2019, pp. 27-41.
Elsevier DOI
1904
Canopy volume model (CVM),
Vegetation index weighted canopy volume model (CVM),
Photogrammetric point clouds
BibRef
Ma, X.D.[Xiao-Dan],
Zhu, K.[Kexin],
Guan, H.[Haiou],
Feng, J.R.[Jia-Rui],
Yu, S.[Song],
Liu, G.[Gang],
High-Throughput Phenotyping Analysis of Potted Soybean Plants Using
Colorized Depth Images Based on A Proximal Platform,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Dold, C.[Christian],
Hatfield, J.L.[Jerry L.],
Prueger, J.H.[John H.],
Moorman, T.B.[Tom B.],
Sauer, T.J.[Tom J.],
Cosh, M.H.[Michael H.],
Drewry, D.T.[Darren T.],
Wacha, K.M.[Ken M.],
Upscaling Gross Primary Production in Corn-Soybean Rotation Systems
in the Midwest,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Zhou, J.[Jing],
Yungbluth, D.[Dennis],
Vong, C.N.[Chin Nee],
Scaboo, A.[Andrew],
Zhou, J.F.[Jian-Feng],
Estimation of the Maturity Date of Soybean Breeding Lines Using
UAV-Based Multispectral Imagery,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Zhang, X.Y.[Xiao-Yan],
Zhao, J.M.[Jin-Ming],
Yang, G.J.[Gui-Jun],
Liu, J.G.[Jian-Gang],
Cao, J.Q.[Ji-Qiu],
Li, C.Y.[Chun-Yan],
Zhao, X.Q.[Xiao-Qing],
Gai, J.[Junyi],
Establishment of Plot-Yield Prediction Models in Soybean Breeding
Programs Using UAV-Based Hyperspectral Remote Sensing,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Gosselin, N.[Nichole],
Sagan, V.[Vasit],
Maimaitiyiming, M.[Matthew],
Fishman, J.[Jack],
Belina, K.[Kelley],
Podleski, A.[Ann],
Maimaitijiang, M.[Maitiniyazi],
Bashir, A.[Anbreen],
Balakrishna, J.[Jayashree],
Dixon, A.[Austin],
Using Visual Ozone Damage Scores and Spectroscopy to Quantify Soybean
Responses to Background Ozone,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Shawon, A.R.[Ashifur Rahman],
Ko, J.[Jonghan],
Ha, B.[Bokeun],
Jeong, S.[Seungtaek],
Kim, D.K.[Dong Kwan],
Kim, H.Y.[Han-Yong],
Assessment of a Proximal Sensing-integrated Crop Model for Simulation
of Soybean Growth and Yield,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Radocaj, D.[Dorijan],
Jurišic, M.[Mladen],
Gašparovic, M.[Mateo],
Plašcak, I.[Ivan],
Optimal Soybean (Glycine max L.) Land Suitability Using GIS-Based
Multicriteria Analysis and Sentinel-2 Multitemporal Images,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Borra-Serrano, I.[Irene],
de Swaef, T.[Tom],
Quataert, P.[Paul],
Aper, J.[Jonas],
Saleem, A.[Aamir],
Saeys, W.[Wouter],
Somers, B.[Ben],
Roldán-Ruiz, I.[Isabel],
Lootens, P.[Peter],
Closing the Phenotyping Gap: High Resolution UAV Time Series for
Soybean Growth Analysis Provides Objective Data from Field Trials,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Parker, T.A.[Travis A.],
Palkovic, A.[Antonia],
Gepts, P.[Paul],
Determining the Genetic Control of Common Bean Early-Growth Rate
Using Unmanned Aerial Vehicles,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Stepanov, A.[Alexey],
Dubrovin, K.[Konstantin],
Sorokin, A.[Aleksei],
Aseeva, T.[Tatiana],
Predicting Soybean Yield at the Regional Scale Using Remote Sensing
and Climatic Data,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Kross, A.[Angela],
Znoj, E.[Evelyn],
Callegari, D.[Daihany],
Kaur, G.[Gurpreet],
Sunohara, M.[Mark],
Lapen, D.R.[David R.],
McNairn, H.[Heather],
Using Artificial Neural Networks and Remotely Sensed Data to Evaluate
the Relative Importance of Variables for Prediction of Within-Field
Corn and Soybean Yields,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Dado, W.T.[Walter T.],
Deines, J.M.[Jillian M.],
Patel, R.[Rinkal],
Liang, S.Z.[Sang-Zi],
Lobell, D.B.[David B.],
High-Resolution Soybean Yield Mapping Across the US Midwest Using
Subfield Harvester Data,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Trevisan, R.[Rodrigo],
Pérez, O.[Osvaldo],
Schmitz, N.[Nathan],
Diers, B.[Brian],
Martin, N.[Nicolas],
High-Throughput Phenotyping of Soybean Maturity Using Time Series UAV
Imagery and Convolutional Neural Networks,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Bi, L.N.[Lu-Ning],
Hu, G.P.[Gui-Ping],
Raza, M.M.[Muhammad Mohsin],
Kandel, Y.[Yuba],
Leandro, L.[Leonor],
Mueller, D.[Daren],
A Gated Recurrent Units (GRU)-Based Model for Early Detection of
Soybean Sudden Death Syndrome through Time-Series Satellite Imagery,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Hassanzadeh, A.[Amirhossein],
Murphy, S.P.[Sean P.],
Pethybridge, S.J.[Sarah J.],
van Aardt, J.[Jan],
Growth Stage Classification and Harvest Scheduling of Snap Bean Using
Hyperspectral Sensing: A Greenhouse Study,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Hosseini, M.[Mehdi],
Kerner, H.R.[Hannah R.],
Sahajpal, R.[Ritvik],
Puricelli, E.[Estefania],
Lu, Y.H.[Yu-Hsiang],
Lawal, A.F.[Afolarin Fahd],
Humber, M.L.[Michael L.],
Mitkish, M.[Mary],
Meyer, S.[Seth],
Becker-Reshef, I.[Inbal],
Evaluating the Impact of the 2020 Iowa Derecho on Corn and Soybean
Fields Using Synthetic Aperture Radar,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Malek-Madani, G.[Gunnar],
Walter-Shea, E.A.[Elizabeth A.],
Nguy-Robertson, A.L.[Anthony L.],
Suyker, A.[Andrew],
Arkebauer, T.J.[Timothy J.],
Modeling Gross Primary Production of Midwestern US Maize and Soybean
Croplands with Satellite and Gridded Weather Data,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Hassanijalilian, O.[Oveis],
Igathinathane, C.,
Bajwa, S.[Sreekala],
Nowatzki, J.[John],
Rating Iron Deficiency in Soybean Using Image Processing and
Decision-Tree Based Models,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Crusiol, L.G.T.[Luis Guilherme Teixeira],
Nanni, M.R.[Marcos Rafael],
Furlanetto, R.H.[Renato Herrig],
Sibaldelli, R.N.R.[Rubson Natal Ribeiro],
Cezar, E.[Everson],
Sun, L.[Liang],
Foloni, J.S.S.[José Salvador Simonetto],
Mertz-Henning, L.M.[Liliane Marcia],
Nepomuceno, A.L.[Alexandre Lima],
Neumaier, N.[Norman],
Farias, J.R.B.[José Renato Bouças],
Classification of Soybean Genotypes Assessed Under Different Water
Availability and at Different Phenological Stages Using Leaf-Based
Hyperspectral Reflectance,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Crusiol, L.G.T.[Luís Guilherme Teixeira],
Nanni, M.R.[Marcos Rafael],
Furlanetto, R.H.[Renato Herrig],
Sibaldelli, R.N.R.[Rubson Natal Ribeiro],
Cezar, E.[Everson],
Sun, L.[Liang],
Foloni, J.S.S.[José Salvador Simonetto],
Mertz-Henning, L.M.[Liliane Marcia],
Nepomuceno, A.L.[Alexandre Lima],
Neumaier, N.[Norman],
Farias, J.R.B.[José Renato Bouças],
Yield Prediction in Soybean Crop Grown under Different Levels of
Water Availability Using Reflectance Spectroscopy and Partial Least
Squares Regression,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Habibi, L.N.[Luthfan Nur],
Watanabe, T.[Tomoya],
Matsui, T.[Tsutomu],
Tanaka, T.S.T.[Takashi S. T.],
Machine Learning Techniques to Predict Soybean Plant Density Using
UAV and Satellite-Based Remote Sensing,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Yoosefzadeh-Najafabadi, M.[Mohsen],
Tulpan, D.[Dan],
Eskandari, M.[Milad],
Using Hybrid Artificial Intelligence and Evolutionary Optimization
Algorithms for Estimating Soybean Yield and Fresh Biomass Using
Hyperspectral Vegetation Indices,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Smith, S.D.[Stuart D.],
Bowling, L.C.[Laura C.],
Rainey, K.M.[Katy M.],
Cherkauer, K.A.[Keith A.],
Quantifying Effects of Excess Water Stress at Early Soybean Growth
Stages Using Unmanned Aerial Systems,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Hassanzadeh, A.[Amirhossein],
Zhang, F.[Fei],
van Aardt, J.[Jan],
Murphy, S.P.[Sean P.],
Pethybridge, S.J.[Sarah J.],
Broadacre Crop Yield Estimation Using Imaging Spectroscopy from
Unmanned Aerial Systems (UAS): A Field-Based Case Study with Snap
Bean,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Schmitz, P.K.[Peder K.],
Kandel, H.J.[Hans J.],
Using Canopy Measurements to Predict Soybean Seed Yield,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Oseland, E.[Eric],
Shannon, K.[Kent],
Zhou, J.F.[Jian-Feng],
Fritschi, F.[Felix],
Bish, M.D.[Mandy D.],
Bradley, K.W.[Kevin W.],
Evaluating the Spectral Response and Yield of Soybean Following
Exposure to Sublethal Rates of 2,4-D and Dicamba at Vegetative and
Reproductive Growth Stages,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Shen, Y.[Yu],
Zhang, X.Y.[Xiao-Yang],
Yang, Z.W.[Zheng-Wei],
Mapping corn and soybean phenometrics at field scales over the United
States Corn Belt by fusing time series of Landsat 8 and Sentinel-2
data with VIIRS data,
PandRS(186), 2022, pp. 55-69.
Elsevier DOI
2203
Field-scale crop phenometrics, VIIRS time series,
HLS time series, United States Corn Belt, NASS CP, PhenoCam observations
BibRef
Vieira, C.C.[Caio Canella],
Sarkar, S.[Shagor],
Tian, F.[Fengkai],
Zhou, J.[Jing],
Jarquin, D.[Diego],
Nguyen, H.T.[Henry T.],
Zhou, J.F.[Jian-Feng],
Chen, P.Y.[Peng-Yin],
Differentiate Soybean Response to Off-Target Dicamba Damage Based on
UAV Imagery and Machine Learning,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Guarenghi, M.M.[Marjorie Mendes],
Walter, A.[Arnaldo],
Seabra, J.E.A.[Joaquim E. A.],
Rocha, J.V.[Jansle Vieira],
Vieira, N.[Nathália],
Damame, D.[Desirée],
Santos, J.L.[João Luís],
Areas Available for the Potential Sustainable Expansion of Soy in
Brazil: A Geospatial Assessment Using the SAFmaps Database,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Lou, Z.H.[Zi-Hang],
Peng, D.L.[Dai-Liang],
Zhang, X.Y.[Xiao-Yang],
Yu, L.[Le],
Wang, F.M.[Fu-Min],
Pan, Y.H.[Yu-Hao],
Zheng, S.J.[Shi-Jun],
Hu, J.K.[Jin-Kang],
Yang, S.L.[Song-Lin],
Chen, Y.[Yue],
Liu, S.W.[Sheng-Wei],
Soybean EOS Spatiotemporal Characteristics and Their Climate Drivers
in Global Major Regions,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Pejak, B.[Branislav],
Lugonja, P.[Predrag],
Antic, A.[Aleksandar],
Panic, M.[Marko],
Pandžic, M.[Miloš],
Alexakis, E.[Emmanouil],
Mavrepis, P.[Philip],
Zhou, N.[Naweiluo],
Marko, O.[Oskar],
Crnojevic, V.[Vladimir],
Soya Yield Prediction on a Within-Field Scale Using Machine Learning
Models Trained on Sentinel-2 and Soil Data,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Parreiras, T.C.[Taya Cristo],
Bolfe, É.L.[Édson Luis],
Chaves, M.E.D.[Michel Eustáquio Dantas],
Sanches, I.D.[Ieda Del'Arco],
Sano, E.E.[Edson Eyji],
de Castro-Victoria, D.[Daniel],
Bettiol, G.M.[Giovana Maranhão],
Vicente, L.E.[Luiz Eduardo],
Hierarchical Classification of Soybean in the Brazilian Savanna Based
on Harmonized Landsat Sentinel Data,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhang, Y.[Yi],
Yang, Y.Z.[Yi-Zhe],
Zhang, Q.[Qinwei],
Duan, R.Q.[Run-Qing],
Liu, J.Q.[Jun-Qi],
Qin, Y.C.[Yu-Chu],
Wang, X.Z.[Xian-Zhi],
Toward Multi-Stage Phenotyping of Soybean with Multimodal UAV Sensor
Data: A Comparison of Machine Learning Approaches for Leaf Area Index
Estimation,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Cordeiro-Santana, D.[Dthenifer],
Teixeira-Filho, M.C.M.[Marcelo Carvalho Minhoto],
da Silva, M.R.[Marcelo Rinaldi],
Menezes+das Chagas, P.H.[Paulo Henrique],
de Oliveira, J.L.G.[João Lucas Gouveia],
Rojo-Baio, F.H.[Fábio Henrique],
Silva-Campos, C.N.[Cid Naudi],
Ribeiro-Teodoro, L.P.[Larissa Pereira],
da Silva Junior, C.A.[Carlos Antonio],
Teodoro, P.E.[Paulo Eduardo],
Shiratsuchi, L.S.[Luciano Shozo],
Machine Learning in the Classification of Soybean Genotypes for
Primary Macronutrients' Content Using UAV-Multispectral Sensor,
RS(15), No. 5, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Vásquez, R.A.R.[Roger A. Rojas],
Heenkenda, M.K.[Muditha K.],
Nelson, R.[Reg],
Serrano, L.S.[Laura Segura],
Developing a New Vegetation Index Using Cyan, Orange, and Near
Infrared Bands to Analyze Soybean Growth Dynamics,
RS(15), No. 11, 2023, pp. 2888.
DOI Link
2306
BibRef
Konno, T.[Tomohiro],
Homma, K.[Koki],
Prediction of Areal Soybean Lodging Using a Main Stem Elongation
Model and a Soil-Adjusted Vegetation Index That Accounts for the
Ratio of Vegetation Cover,
RS(15), No. 13, 2023, pp. 3446.
DOI Link
2307
BibRef
Sarkar, S.[Supria],
Sagan, V.[Vasit],
Bhadra, S.[Sourav],
Rhodes, K.[Kristen],
Pokharel, M.[Meghnath],
Fritschi, F.B.[Felix B.],
Soybean seed composition prediction from standing crops using
PlanetScope satellite imagery and machine learning,
PandRS(204), 2023, pp. 257-274.
Elsevier DOI
2310
Artificial intelligence, Computer vision,
Geographic information system, Precision agriculture, Remote sensing
BibRef
Ren, P.T.[Peng-Ting],
Li, H.[Heli],
Han, S.Y.[Shao-Yu],
Chen, R.Q.[Ri-Qiang],
Yang, G.J.[Gui-Jun],
Yang, H.[Hao],
Feng, H.K.[Hai-Kuan],
Zhao, C.J.[Chun-Jiang],
Estimation of Soybean Yield by Combining Maturity Group Information
and Unmanned Aerial Vehicle Multi-Sensor Data Using Machine Learning,
RS(15), No. 17, 2023, pp. 4286.
DOI Link
2310
BibRef
Huang, L.X.[Ling-Xiao],
Liu, M.[Meng],
Yao, N.[Na],
Evaluation of Ecosystem Water Use Efficiency Based on Coupled and
Uncoupled Remote Sensing Products for Maize and Soybean,
RS(15), No. 20, 2023, pp. 4922.
DOI Link
2310
BibRef
Zhang, C.[Chishan],
Diao, C.Y.[Chun-Yuan],
A Phenology-guided Bayesian-CNN (PB-CNN) framework for soybean yield
estimation and uncertainty analysis,
PandRS(205), 2023, pp. 50-73.
Elsevier DOI
2311
Crop yield, Uncertainty, Phenology, Agriculture, Deep learning
BibRef
Pan, D.[Di],
Li, C.C.[Chang-Chun],
Yang, G.J.[Gui-Jun],
Ren, P.[Pengting],
Ma, Y.Y.[Yuan-Yuan],
Chen, W.N.[Wei-Nan],
Feng, H.K.[Hai-Kuan],
Chen, R.[Riqiang],
Chen, X.[Xin],
Li, H.[Heli],
Identification of the Initial Anthesis of Soybean Varieties Based on
UAV Multispectral Time-Series Images,
RS(15), No. 22, 2023, pp. 5413.
DOI Link
2311
BibRef
Fathi, M.[Mahdiyeh],
Shah-Hosseini, R.[Reza],
Moghimi, A.[Armin],
3D-ResNet-BiLSTM Model: A Deep Learning Model for County-Level
Soybean Yield Prediction with Time-Series Sentinel-1, Sentinel-2
Imagery, and Daymet Data,
RS(15), No. 23, 2023, pp. 5551.
DOI Link
2312
BibRef
Niu, Z.Z.[Zhong-Zhong],
Young, J.[Julie],
Johnson, W.G.[William G.],
Young, B.[Bryan],
Wei, X.[Xing],
Jin, J.[Jian],
Early Detection of Dicamba and 2,4-D Herbicide Drifting Injuries on
Soybean with a New Spatial-Spectral Algorithm Based on LeafSpec, an
Accurate Touch-Based Hyperspectral Leaf Scanner,
RS(15), No. 24, 2023, pp. 5771.
DOI Link
2401
BibRef
Skobalski, J.[Juan],
Sagan, V.[Vasit],
Alifu, H.[Haireti],
Al Akkad, O.[Omar],
Lopes, F.A.[Felipe A.],
Grignola, F.[Fernando],
Bridging the gap between crop breeding and GeoAI: Soybean yield
prediction from multispectral UAV images with transfer learning,
PandRS(210), 2024, pp. 260-281.
Elsevier DOI
2404
Remote Sensing, Plant Breeding, Soybean Yield Prediction,
Multispectral Imagery, Machine Learning, Transfer Learning
BibRef
Ubben, N.[Niklas],
Pukrop, M.[Maren],
Jarmer, T.[Thomas],
Spatial Resolution as a Factor for Efficient UAV-Based Weed Mapping:
A Soybean Field Case Study,
RS(16), No. 10, 2024, pp. 1778.
DOI Link
2405
BibRef
Liang, H.[Heng],
Zhou, Y.G.[Yong-Gang],
Lu, Y.W.[Yu-Wei],
Pei, S.K.[Shuang-Kang],
Xu, D.[Dong],
Lu, Z.[Zhen],
Yao, W.B.[Wen-Bo],
Liu, Q.[Qian],
Yu, L.[Lejun],
Li, H.Y.[Hai-Yan],
Evaluation of Soybean Drought Tolerance Using Multimodal Data from an
Unmanned Aerial Vehicle and Machine Learning,
RS(16), No. 11, 2024, pp. 2043.
DOI Link
2406
BibRef
Furlanetto, R.H.[Renato Herrig],
Crusiol, L.G.T.[Luís Guilherme Teixeira],
Nanni, M.R.[Marcos Rafael],
de Oliveira Junior, A.[Adilson],
Sibaldelli, R.N.R.[Rubson Natal Ribeiro],
Hyperspectral Data for Early Identification and Classification of
Potassium Deficiency in Soybean Plants (Glycine max (L.) Merrill),
RS(16), No. 11, 2024, pp. 1900.
DOI Link
2406
BibRef
Carneiro-de Santana, C.T.[Cleverton Tiago],
Sanches, I.D.[Ieda Del'Arco],
Caldas, M.M.[Marcellus Marques],
Adami, M.[Marcos],
A Method for Estimating Soybean Sowing, Beginning Seed, and
Harvesting Dates in Brazil Using NDVI-MODIS Data,
RS(16), No. 14, 2024, pp. 2520.
DOI Link
2408
BibRef
Chen, J.[Jidai],
Shi, J.[Jiasong],
Improving Soybean Gross Primary Productivity Modeling Using
Solar-Induced Chlorophyll Fluorescence and the Photochemical
Reflectance Index by Accounting for the Clearness Index,
RS(16), No. 16, 2024, pp. 2874.
DOI Link
2408
BibRef
Xiao, G.L.[Gui-Long],
Huang, J.X.[Jian-Xi],
Song, J.J.[Jian-Jian],
Li, X.C.[Xue-Cao],
Du, K.Q.[Kai-Qi],
Huang, H.[Hai],
Su, W.[Wei],
Miao, S.X.[Shuang-Xi],
A novel soybean mapping index within the global optimal time window,
PandRS(217), 2024, pp. 120-133.
Elsevier DOI
2409
Soybean, Sentinel-2, Global Optimal Time Window,
Spectral dynamics, Class separability
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Rice Crop Analysis, Production, Detection, Health, Change .