22.1.4.9 Soybean Crop Analysis, Production, Detection, Health, Change

Chapter Contents (Back)
Classification. Soybeans.

Monteiro, S.T.[Sildomar Takahashi], Minekawa, Y.[Yohei], Kosugi, Y.[Yukio], Akazawa, T.[Tsuneya], Oda, K.[Kunio],
Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery,
PandRS(62), No. 1, May 2007, pp. 2-12.
Elsevier DOI 0709
Agriculture; Hyperspectral image; Modeling; Neural networks; Spatial prediction BibRef

Gusso, A., Ducati, J.R.,
Algorithm for Soybean Classification Using Medium Resolution Satellite Images,
RS(4), No. 10, October 2012, pp. 3127-3142.
DOI Link 1210
BibRef
And:
Soybean Crop Area Estimation And Mapping In Mato Grosso State, Brazil,
AnnalsPRS(I-7), No. 2012, pp. 215-219.
HTML Version. 1209
BibRef

Xin, Q.C.[Qin-Chuan], Gong, P.[Peng], Yu, C.Q.[Chao-Qing], Yu, L.[Le], Broich, M.[Mark], Suyker, A.E.[Andrew E.], Myneni, R.B.[Ranga B.],
A Production Efficiency Model-Based Method for Satellite Estimates of Corn and Soybean Yields in the Midwestern US,
RS(5), No. 11, 2013, pp. 5926-5943.
DOI Link 1312
BibRef

Zhao, F.[Feng], Huang, Y.B.[Yan-Bo], Guo, Y.Q.[Yi-Qing], Reddy, K.N.[Krishna N.], Lee, M.A.[Matthew A.], Fletcher, R.S.[Reginald S.], Thomson, S.J.[Steven J.],
Early Detection of Crop Injury from Glyphosate on Soybean and Cotton Using Plant Leaf Hyperspectral Data,
RS(6), No. 2, 2014, pp. 1538-1563.
DOI Link 1403
BibRef

Wagle, P.[Pradeep], Xiao, X.[Xiangming], Suyker, A.E.[Andrew E.],
Estimation and analysis of gross primary production of soybean under various management practices and drought conditions,
PandRS(99), No. 1, 2015, pp. 70-83.
Elsevier DOI 1502
Gross primary production BibRef

Zhong, L.H.[Li-Heng], Hu, L.[Lina], Yu, L.[Le], Gong, P.[Peng], Biging, G.S.[Gregory S.],
Automated mapping of soybean and corn using phenology,
PandRS(119), No. 1, 2016, pp. 151-164.
Elsevier DOI 1610
Automated classification BibRef

Peng, Y.[Yi], Nguy-Robertson, A.[Anthony], Arkebauer, T.[Timothy], Gitelson, A.A.[Anatoly A.],
Assessment of Canopy Chlorophyll Content Retrieval in Maize and Soybean: Implications of Hysteresis on the Development of Generic Algorithms,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Kira, O.[Oz], Nguy-Robertson, A.L.[Anthony L.], Arkebauer, T.J.[Timothy J.], Linker, R.[Raphael], Gitelson, A.A.[Anatoly A.],
Toward Generic Models for Green LAI Estimation in Maize and Soybean: Satellite Observations,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link 1705
BibRef

Ren, J.[Jie], Campbell, J.B.[James B.], Shao, Y.[Yang],
Estimation of SOS and EOS for Midwestern US Corn and Soybean Crops,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Bajwa, S.G.[Sreekala G.], Rupe, J.C.[John C.], Mason, J.[Johnny],
Soybean Disease Monitoring with Leaf Reflectance,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link 1703
BibRef

Yuan, H.H.[Huan-Huan], Yang, G.J.[Gui-Jun], Li, C.C.[Chang-Chun], Wang, Y.J.[Yan-Jie], Liu, J.G.[Jian-Gang], Yu, H.Y.[Hai-Yang], Feng, H.[Haikuan], Xu, B.[Bo], Zhao, X.Q.[Xiao-Qing], Yang, X.D.[Xiao-Dong],
Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link 1705
BibRef

Kong, Q.M.[Qing-Ming], Cui, G.[Guowen], Yeo, S.S.[Sang-Soo], Su, Z.B.[Zhong-Bin], Wang, J.J.[Jing-Jing], Hu, F.Z.[Feng-Zhu], Shen, W.Z.[Wei-Zheng],
DBN wavelet transform denoising method in soybean straw composition based on near-infrared rapid detection,
RealTimeIP(13), No. 3, September 2017, pp. 613-626.
Springer DOI 1710
BibRef

Maimaitijiang, M.[Maitiniyazi], Ghulam, A.[Abduwasit], Sidike, P.[Paheding], Hartling, S.[Sean], Maimaitiyiming, M.[Matthew], Peterson, K.[Kyle], Shavers, E.[Ethan], Fishman, J.[Jack], Peterson, J.[Jim], Kadam, S.[Suhas], Burken, J.[Joel], Fritschi, F.[Felix],
Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine,
PandRS(134), No. Supplement C, 2017, pp. 43-58.
Elsevier DOI 1712
Remote sensing, Unmanned Aerial System (UAS), Phenotyping, Data Fusion, Extreme Learning Machine (ELM), Extreme Learning Machine based Regression (ELR) BibRef

Clemente, A.M.[Augusto Monso], de Carvalho Júnior, O.A.[Osmar Abílio], Guimarães, R.F.[Renato Fontes], McManus, C.[Concepta], Turazi, C.M.V.[Caroline Machado Vasconcelos], Hermuche, P.M.[Potira Meirelles],
Spatial-Temporal Patterns of Bean Crop in Brazil over the Period 1990-2013,
IJGI(6), No. 4, 2017, pp. xx-yy.
DOI Link 1705
BibRef

Ovando, G.[Gustavo], Sayago, S.[Silvina], Bocco, M.[Mónica],
Evaluating accuracy of DSSAT model for soybean yield estimation using satellite weather data,
PandRS(138), 2018, pp. 208-217.
Elsevier DOI 1804
CERES, TRMM, Crop models, Argentina BibRef

Herrmann, I.[Ittai], Vosberg, S.K.[Steven K.], Ravindran, P.[Prabu], Singh, A.[Aditya], Chang, H.X.[Hao-Xun], Chilvers, M.I.[Martin I.], Conley, S.P.[Shawn P.], Townsend, P.A.[Philip A.],
Leaf and Canopy Level Detection of Fusarium Virguliforme (Sudden Death Syndrome) in Soybean,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Sagan, V.[Vasit], Maimaitiyiming, M.[Matthew], Fishman, J.[Jack],
Effects of Ambient Ozone on Soybean Biophysical Variables and Mineral Nutrient Accumulation,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Hu, Q.[Qiong], Ma, Y.X.[Ya-Xiong], Xu, B.D.[Bao-Dong], Song, Q.[Qian], Tang, H.J.[Hua-Jun], Wu, W.B.[Wen-Bin],
Estimating Sub-Pixel Soybean Fraction from Time-Series MODIS Data Using an Optimized Geographically Weighted Regression Model,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Kaur, S.[Sukhvir], Pandey, S.[Shreelekha], Goel, S.[Shivani],
Semi-automatic leaf disease detection and classification system for soybean culture,
IET-IPR(12), No. 6, June 2018, pp. 1038-1048.
DOI Link 1805
BibRef

Chaves, M.E.D.[Michel Eustáquio Dantas], de Carvalho Alves, M.[Marcelo], de Oliveira, M.S.[Marcelo Silva], Sáfadi, T.[Thelma],
A Geostatistical Approach for Modeling Soybean Crop Area and Yield Based on Census and Remote Sensing Data,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef


Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Rice Crop Analysis, Production, Detection, Health, Change .


Last update:Jun 14, 2018 at 16:13:32