Song, S.[Shalei],
Gong, W.[Wei],
Zhu, B.[Bo],
Huang, X.[Xin],
Wavelength selection and spectral discrimination for paddy rice, with
laboratory measurements of hyperspectral leaf reflectance,
PandRS(66), No. 5, September 2011, pp. 672-682.
Elsevier DOI
1110
Hyperspectral data; Wavelength selection; Spectral discrimination; Rice
BibRef
Sakamoto, T.[Toshihiro],
Shibayama, M.[Michio],
Kimura, A.[Akihiko],
Takada, E.[Eiji],
Assessment of digital camera-derived vegetation indices in quantitative
monitoring of seasonal rice growth,
PandRS(66), No. 6, November 2011, pp. 872-882.
Elsevier DOI
1112
Crop phenology; Active sensing; Flashlight
BibRef
Lopez-Sanchez, J.M.,
Cloude, S.R.,
Ballester-Berman, J.D.,
Rice Phenology Monitoring by Means of SAR Polarimetry at X-Band,
GeoRS(50), No. 7, July 2012, pp. 2695-2709.
IEEE DOI
1208
BibRef
Hosoi, F.[Fumiki],
Omasa, K.[Kenji],
Estimation of vertical plant area density profiles in a rice canopy at
different growth stages by high-resolution portable scanning lidar with
a lightweight mirror,
PandRS(74), No. 1, November 2012, pp. 11-19.
Elsevier DOI
1212
BibRef
Earlier:
Estimating Vertical Leaf Area Density Profiles of Tree Canopies Using
Three-Dimensional Portable Lidar Imaging,
Laser09(152).
0909
Laser beam coverage index; Plant area density; Portable scanning lidar;
Rice; Three-dimensional imaging; Voxel-based canopy profiling
BibRef
Gnyp, M.L.[Martin Leon],
Yu, K.[Kang],
Aasen, H.[Helge],
Yao, Y.K.[Yin-Kun],
Huang, S.Y.[Shan-Yu],
Miao, Y.X.[Yu-Xin],
Bareth, G.[Georg],
Analysis of Crop Reflectance for Estimating Biomass in Rice Canopies at
Different Phenological Stages,
PFG(2013), No. 4, 2013, pp. 351-365.
DOI Link
1309
BibRef
Gnyp, M.L.,
Yao, Y.K.,
Yu, K.,
Huang, S.Y.,
Aasen, H.,
Lenz-Wiedemann, V.I.S.,
Miao, Y.X.,
Bareth, G.,
Hyperspectral Analysis Of Rice Phenological Stages In Northeast China,
AnnalsPRS(I-7), No. 2012, pp. 77-82.
DOI Link
1209
BibRef
Son, N.T.,
Chen, C.F.,
Chen, C.R.,
Chang, L.Y.,
Satellite-based investigation of flood-affected rice cultivation
areas in Chao Phraya River Delta, Thailand,
PandRS(86), No. 1, 2013, pp. 77-88.
Elsevier DOI
1312
MODIS
BibRef
Son, N.T.[Nguyen-Thanh],
Chen, C.F.[Chi-Farn],
Chen, C.R.[Cheng-Ru],
Duc, H.N.[Huynh-Ngoc],
Chang, L.Y.[Ly-Yu],
A Phenology-Based Classification of Time-Series MODIS Data for Rice
Crop Monitoring in Mekong Delta, Vietnam,
RS(6), No. 1, 2013, pp. 135-156.
DOI Link
1402
BibRef
Maki, M.[Masayasu],
Homma, K.[Koki],
Empirical Regression Models for Estimating Multiyear Leaf Area Index
of Rice from Several Vegetation Indices at the Field Scale,
RS(6), No. 6, 2014, pp. 4764-4779.
DOI Link
1407
BibRef
Mosleh, M.K.[Mostafa K.],
Hassan, Q.K.[Quazi K.],
Development of a Remote Sensing-Based 'Boro' Rice Mapping System,
RS(6), No. 3, 2014, pp. 1938-1953.
DOI Link
1404
BibRef
Karila, K.[Kirsi],
Nevalainen, O.[Olli],
Krooks, A.[Anssi],
Karjalainen, M.[Mika],
Kaasalainen, S.[Sanna],
Monitoring Changes in Rice Cultivated Area from SAR and Optical
Satellite Images in Ben Tre and Tra Vinh Provinces in Mekong Delta,
Vietnam,
RS(6), No. 5, 2014, pp. 4090-4108.
DOI Link
1407
BibRef
Gumma, M.K.[Murali Krishna],
Thenkabail, P.S.[Prasad S.],
Maunahan, A.[Aileen],
Islam, S.[Saidul],
Nelson, A.[Andrew],
Mapping seasonal rice cropland extent and area in the high cropping
intensity environment of Bangladesh using MODIS 500 mu-m data for the
year 2010,
PandRS(91), No. 1, 2014, pp. 98-113.
Elsevier DOI
1404
Seasonal rice mapping
BibRef
Lopez-Sanchez, J.M.,
Vicente-Guijalba, F.,
Ballester-Berman, J.D.,
Cloude, S.R.,
Polarimetric Response of Rice Fields at C-Band:
Analysis and Phenology Retrieval,
GeoRS(52), No. 5, May 2014, pp. 2977-2993.
IEEE DOI
1403
Backscatter
BibRef
Inoue, Y.[Yoshio],
Sakaiya, E.[Eiji],
Wang, C.Z.[Cui-Zhen],
Potential of X-Band Images from High-Resolution Satellite SAR Sensors
to Assess Growth and Yield in Paddy Rice,
RS(6), No. 7, 2014, pp. 5995-6019.
DOI Link
1408
BibRef
Zhou, K.[Kai],
Guo, Y.J.[Yong-Jiu],
Geng, Y.[Yanan],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Tian, Y.C.[Yong-Chao],
Development of a Novel Bidirectional Canopy Reflectance Model for
Row-Planted Rice and Wheat,
RS(6), No. 8, 2014, pp. 7632-7659.
DOI Link
1410
BibRef
Rossi, C.,
Erten, E.,
Paddy-Rice Monitoring Using TanDEM-X,
GeoRS(53), No. 2, February 2015, pp. 900-910.
IEEE DOI
1411
crops
BibRef
Nelson, A.[Andrew],
Setiyono, T.[Tri],
Rala, A.B.[Arnel B.],
Quicho, E.D.[Emma D.],
Raviz, J.V.[Jeny V.],
Abonete, P.J.[Prosperidad J.],
Maunahan, A.A.[Aileen A.],
Garcia, C.A.[Cornelia A.],
Bhatti, H.Z.M.[Hannah Zarah M.],
Villano, L.S.[Lorena S.],
Thongbai, P.[Pongmanee],
Holecz, F.[Francesco],
Barbieri, M.[Massimo],
Collivignarelli, F.[Francesco],
Gatti, L.[Luca],
Quilang, E.J.P.[Eduardo Jimmy P.],
Mabalay, M.R.O.[Mary Rose O.],
Mabalot, P.E.[Pristine E.],
Barroga, M.I.[Mabel I.],
Bacong, A.P.[Alfie P.],
Detoito, N.T.[Norlyn T.],
Berja, G.B.[Glorie Belle],
Varquez, F.[Frenciso],
Wahyunto,
Kuntjoro, D.[Dwi],
Murdiyati, S.R.[Sri Retno],
Pazhanivelan, S.[Sellaperumal],
Kannan, P.[Pandian],
Mary, P.C.N.[Petchimuthu Christy Nirmala],
Subramanian, E.[Elangovan],
Rakwatin, P.[Preesan],
Intrman, A.[Amornrat],
Setapayak, T.[Thana],
Lertna, S.[Sommai],
Minh, V.Q.[Vo Quang],
Tuan, V.Q.[Vo Quoc],
Duong, T.H.[Trinh Hoang],
Quyen, N.H.[Nguyen Huu],
Kham, D.V.[Duong Van],
Hin, S.[Sarith],
Veasna, T.[Touch],
Yadav, M.[Manoj],
Chin, C.[Chharom],
Ninh, N.H.[Nguyen Hong],
Towards an Operational SAR-Based Rice Monitoring System in Asia:
Examples from 13 Demonstration Sites across Asia in the RIICE Project,
RS(6), No. 11, 2014, pp. 10773-10812.
DOI Link
1412
BibRef
Asilo, S.[Sonia],
de Bie, K.[Kees],
Skidmore, A.[Andrew],
Nelson, A.[Andrew],
Barbieri, M.[Massimo],
Maunahan, A.[Aileen],
Complementarity of Two Rice Mapping Approaches: Characterizing Strata
Mapped by Hypertemporal MODIS and Rice Paddy Identification Using
Multitemporal SAR,
RS(6), No. 12, 2014, pp. 12789-12814.
DOI Link
1412
BibRef
Zhao, Q.Y.[Quan-Ying],
Lenz-Wiedemann, V.I.S.[Victoria I.S.],
Yuan, F.[Fei],
Jiang, R.F.[Rong-Feng],
Miao, Y.X.[Yu-Xin],
Zhang, F.[Fusuo],
Bareth, G.[Georg],
Investigating Within-Field Variability of Rice from High Resolution
Satellite Imagery in Qixing Farm County, Northeast China,
IJGI(4), No. 1, 2015, pp. 236-261.
DOI Link
1502
BibRef
Tornos, L.[Lucia],
Huesca, M.[Margarita],
Dominguez, J.A.[Jose Antonio],
Moyano, M.C.[Maria Carmen],
Cicuendez, V.[Victor],
Recuero, L.[Laura],
Palacios-Orueta, A.[Alicia],
Assessment of MODIS spectral indices for determining rice paddy
agricultural practices and hydroperiod,
PandRS(101), No. 1, 2015, pp. 110-124.
Elsevier DOI
1503
Agriculture
BibRef
Yu, K.[Kang],
Gnyp, M.L.[Martin Leon],
Gao, L.[Lei],
Miao, Y.X.[Yu-Xin],
Cheng, X.P.[Xin-Ping],
Bareth, G.[Georg],
Estimate Leaf Chlorophyll of Rice Using Reflectance Indices and Partial
Least Squares,
PFG(2015), No. 1, 2015, pp. 45-54.
DOI Link
1503
BibRef
Wang, J.[Jing],
Huang, J.F.[Jing-Feng],
Zhang, K.Y.[Kang-Yu],
Li, X.X.[Xin-Xing],
She, B.[Bao],
Wei, C.W.[Chuan-Wen],
Gao, J.[Jian],
Song, X.D.[Xiao-Dong],
Rice Fields Mapping in Fragmented Area Using Multi-Temporal HJ-1A/B
CCD Images,
RS(7), No. 4, 2015, pp. 3467-3488.
DOI Link
1505
BibRef
Qin, Y.W.[Yuan-Wei],
Xiao, X.M.[Xiang-Ming],
Dong, J.W.[Jin-Wei],
Zhou, Y.T.[Yu-Ting],
Zhu, Z.[Zhe],
Zhang, G.[Geli],
Du, G.M.[Guo-Ming],
Jin, C.[Cui],
Kou, W.L.[Wei-Li],
Wang, J.[Jie],
Li, X.P.[Xiang-Ping],
Mapping paddy rice planting area in cold temperate climate region
through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and
MODIS imagery,
PandRS(105), No. 1, 2015, pp. 220-233.
Elsevier DOI
1506
Rice paddy
BibRef
Zhang, G.[Geli],
Xiao, X.M.[Xiang-Ming],
Dong, J.W.[Jin-Wei],
Kou, W.L.[Wei-Li],
Jin, C.[Cui],
Qin, Y.W.[Yuan-Wei],
Zhou, Y.T.[Yu-Ting],
Wang, J.[Jie],
Menarguez, M.A.[Michael Angelo],
Biradar, C.[Chandrashekhar],
Mapping paddy rice planting areas through time series analysis of
MODIS land surface temperature and vegetation index data,
PandRS(106), No. 1, 2015, pp. 157-171.
Elsevier DOI
1507
Paddy rice fields
BibRef
Guo, Y.J.[Yong-Jiu],
Zhang, L.[Ling],
Qin, Y.[Yehui],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Tian, Y.C.[Yong-Chao],
Exploring the Vertical Distribution of Structural Parameters and
Light Radiation in Rice Canopies by the Coupling Model and Remote
Sensing,
RS(7), No. 5, 2015, pp. 5203-5221.
DOI Link
1506
BibRef
Boschetti, M.[Mirco],
Nelson, A.[Andrew],
Nutini, F.[Francesco],
Manfron, G.[Giacinto],
Busetto, L.[Lorenzo],
Barbieri, M.[Massimo],
Laborte, A.[Alice],
Raviz, J.[Jeny],
Holecz, F.[Francesco],
Mabalay, M.R.O.[Mary Rose O.],
Bacong, A.P.[Alfie P.],
Quilang, E.J.P.[Eduardo Jimmy P.],
Rapid Assessment of Crop Status: An Application of MODIS and SAR Data
to Rice Areas in Leyte, Philippines Affected by Typhoon Haiyan,
RS(7), No. 6, 2015, pp. 6535.
DOI Link
1507
BibRef
Teluguntla, P.[Pardhasaradhi],
Ryu, D.[Dongryeol],
George, B.[Biju],
Walker, J.P.[Jeffrey P.],
Malano, H.M.[Hector M.],
Mapping Flooded Rice Paddies Using Time Series of MODIS Imagery in
the Krishna River Basin, India,
RS(7), No. 7, 2015, pp. 8858.
DOI Link
1506
BibRef
Shi, J.J.[Jing-Jing],
Huang, J.F.[Jing-Feng],
Monitoring Spatio-Temporal Distribution of Rice Planting Area in the
Yangtze River Delta Region Using MODIS Images,
RS(7), No. 7, 2015, pp. 8883.
DOI Link
1506
BibRef
Yeom, J.M.[Jong-Min],
Kim, H.O.[Hyun-Ok],
Comparison of NDVIs from GOCI and MODIS Data towards Improved
Assessment of Crop Temporal Dynamics in the Case of Paddy Rice,
RS(7), No. 9, 2015, pp. 11326.
DOI Link
1511
BibRef
Nguyen, D.B.[Duy Ba],
Clauss, K.[Kersten],
Cao, S.M.[Sen-Mao],
Naeimi, V.[Vahid],
Kuenzer, C.[Claudia],
Wagner, W.[Wolfgang],
Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat
ASAR WSM Data,
RS(7), No. 12, 2015, pp. 15808.
DOI Link
1601
BibRef
Kwak, Y.J.[Young-Joo],
Arifuzzanman, B.[Bhuyan],
Iwami, Y.[Yoichi],
Prompt Proxy Mapping of Flood Damaged Rice Fields Using MODIS-Derived
Indices,
RS(7), No. 12, 2015, pp. 15805.
DOI Link
1601
BibRef
Guan, X.D.[Xu-Dong],
Huang, C.[Chong],
Liu, G.[Gaohuan],
Meng, X.L.[Xue-Lian],
Liu, Q.S.[Qing-Sheng],
Mapping Rice Cropping Systems in Vietnam Using an NDVI-Based
Time-Series Similarity Measurement Based on DTW Distance,
RS(8), No. 1, 2016, pp. 19.
DOI Link
1602
BibRef
Campos-Taberner, M.[Manuel],
García-Haro, F.J.[Franciso Javier],
Confalonieri, R.[Roberto],
Martínez, B.[Beatriz],
Moreno, Á.[Álvaro],
Sánchez-Ruiz, S.[Sergio],
Gilabert, M.A.[María Amparo],
Camacho, F.[Fernando],
Boschetti, M.[Mirco],
Busetto, L.[Lorenzo],
Multitemporal Monitoring of Plant Area Index in the Valencia Rice
District with PocketLAI,
RS(8), No. 3, 2016, pp. 202.
DOI Link
1604
BibRef
Clauss, K.[Kersten],
Yan, H.M.[Hui-Min],
Kuenzer, C.[Claudia],
Mapping Paddy Rice in China in 2002, 2005, 2010 and 2014 with MODIS
Time Series,
RS(8), No. 5, 2016, pp. 434.
DOI Link
1606
BibRef
Singha, M.[Mrinal],
Wu, B.F.[Bing-Fang],
Zhang, M.[Miao],
An Object-Based Paddy Rice Classification Using Multi-Spectral Data
and Crop Phenology in Assam, Northeast India,
RS(8), No. 6, 2016, pp. 479.
DOI Link
1608
BibRef
Liu, Y.,
Chen, K.S.,
Xu, P.,
Li, Z.L.,
Modeling and Characteristics of Microwave Backscattering From Rice
Canopy Over Growth Stages,
GeoRS(54), No. 11, November 2016, pp. 6757-6770.
IEEE DOI
1610
Agriculture
BibRef
Dong, J.W.[Jin-Wei],
Xiao, X.M.[Xiang-Ming],
Evolution of regional to global paddy rice mapping methods: A review,
PandRS(119), No. 1, 2016, pp. 214-227.
Elsevier DOI
1610
Paddy rice mapping
BibRef
Yang, Z.[Zhi],
Li, K.[Kun],
Shao, Y.[Yun],
Brisco, B.[Brian],
Liu, L.[Long],
Estimation of Paddy Rice Variables with a Modified Water Cloud Model
and Improved Polarimetric Decomposition Using Multi-Temporal
RADARSAT-2 Images,
RS(8), No. 10, 2016, pp. 878.
DOI Link
1609
BibRef
Wang, J.[Jing],
Huang, J.F.[Jing-Feng],
Gao, P.[Ping],
Wei, C.[Chuanwen],
Mansaray, L.R.[Lamin R.],
Dynamic Mapping of Rice Growth Parameters Using HJ-1 CCD Time Series
Data,
RS(8), No. 11, 2016, pp. 931.
DOI Link
1612
BibRef
And:
Correction:
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Lee, B.[Bora],
Kwon, H.[Hyojung],
Miyata, A.[Akira],
Lindner, S.[Steve],
Tenhunen, J.[John],
Evaluation of a Phenology-Dependent Response Method for Estimating
Leaf Area Index of Rice Across Climate Gradients,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Naito, H.[Hiroki],
Ogawa, S.[Satoshi],
Valencia, M.O.[Milton Orlando],
Mohri, H.[Hiroki],
Urano, Y.[Yutaka],
Hosoi, F.[Fumiki],
Shimizu, Y.[Yo],
Chavez, A.L.[Alba Lucia],
Ishitani, M.[Manabu],
Selvaraj, M.G.[Michael Gomez],
Omasa, K.[Kenji],
Estimating rice yield related traits and quantitative trait loci
analysis under different nitrogen treatments using a simple
tower-based field phenotyping system with modified single-lens reflex
cameras,
PandRS(125), No. 1, 2017, pp. 50-62.
Elsevier DOI
1703
Breeding
BibRef
Torbick, N.[Nathan],
Chowdhury, D.[Diya],
Salas, W.[William],
Qi, J.G.[Jia-Guo],
Monitoring Rice Agriculture across Myanmar Using Time Series
Sentinel-1 Assisted by Landsat-8 and PALSAR-2,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Cheng, T.[Tao],
Song, R.Z.[Ren-Zhong],
Li, D.[Dong],
Zhou, K.[Kai],
Zheng, H.B.[Heng-Biao],
Yao, X.[Xia],
Tian, Y.C.[Yong-Chao],
Cao, W.X.[Wei-Xing],
Zhu, Y.[Yan],
Spectroscopic Estimation of Biomass in Canopy Components of Paddy
Rice Using Dry Matter and Chlorophyll Indices,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Campos-Taberner, M.[Manuel],
García-Haro, F.J.[Francisco Javier],
Camps-Valls, G.[Gustau],
Grau-Muedra, G.[Gonçal],
Nutini, F.[Francesco],
Busetto, L.[Lorenzo],
Katsantonis, D.[Dimitrios],
Stavrakoudis, D.[Dimitris],
Minakou, C.[Chara],
Gatti, L.[Luca],
Barbieri, M.[Massimo],
Holecz, F.[Francesco],
Stroppiana, D.[Daniela],
Boschetti, M.[Mirco],
Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and
Estimate Seasonal Dynamics of Leaf Area Index,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Mansaray, L.R.[Lamin R.],
Huang, W.J.[Wei-Jiao],
Zhang, D.D.[Dong-Dong],
Huang, J.F.[Jing-Feng],
Li, J.[Jun],
Mapping Rice Fields in Urban Shanghai, Southeast China, Using
Sentinel-1A and Landsat 8 Datasets,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Arii, M.,
Yamada, H.,
Kobayashi, T.,
Kojima, S.,
Umehara, T.,
Komatsu, T.,
Nishimura, T.,
Theoretical Characterization of X-Band Multiincidence Angle and
Multipolarimetric SAR Data From Rice Paddies at Late Vegetative Stage,
GeoRS(55), No. 5, May 2017, pp. 2706-2715.
IEEE DOI
1705
geophysical techniques, radar polarimetry,
synthetic aperture radar, vegetation, Japan, MIMP SAR observation,
Niigata City, Pi-SAR2, SAR, X-band multiincidence angle,
X-band polarimetric-interferometric SAR 2,
discrete scatterer model, late vegetative stage,
multiincidence angle-multipolarimetric,
multipolarimetric SAR data,
polarimetric decomposition techniques, radar backscatter,
rice paddies, scattering mechanism, synthetic aperture radar,
BibRef
Arii, M.,
Yamada, H.,
Ohki, M.,
Characterization of L-Band MIMP SAR Data From Rice Paddies at Late
Vegetative Stage,
GeoRS(56), No. 7, July 2018, pp. 3852-3860.
IEEE DOI
1807
Backscatter, Data models, L-band, Radar polarimetry, Scattering,
Synthetic aperture radar, Discrete scatterer model (DSM),
rice paddies
BibRef
Arii, M.,
Yamada, H.,
Kojima, S.,
Ohki, M.,
Sensitivity Analysis of Multifrequency MIMP SAR Data From Rice
Paddies,
GeoRS(57), No. 6, June 2019, pp. 3543-3551.
IEEE DOI
1906
Synthetic aperture radar, Scattering, L-band, Backscatter,
Data models, Sensitivity analysis, rice paddies
BibRef
Yuzugullu, O.[Onur],
Marelli, S.[Stefano],
Erten, E.[Esra],
Sudret, B.[Bruno],
Hajnsek, I.[Irena],
Determining Rice Growth Stage with X-Band SAR:
A Metamodel Based Inversion,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Zhou, G.X.[Gao-Xiang],
Liu, X.N.[Xiang-Nan],
Liu, M.[Ming],
Assimilating Remote Sensing Phenological Information into the WOFOST
Model for Rice Growth Simulation,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Yang, M.D.[Ming-Der],
Huang, K.S.[Kai-Siang],
Kuo, Y.H.[Yi-Hsuan],
Tsai, H.P.[Hui Ping],
Lin, L.M.[Liang-Mao],
Spatial and Spectral Hybrid Image Classification for Rice Lodging
Assessment through UAV Imagery,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Zhou, X.,
Zheng, H.B.,
Xu, X.Q.,
He, J.Y.,
Ge, X.K.,
Yao, X.,
Cheng, T.,
Zhu, Y.,
Cao, W.X.,
Tian, Y.C.,
Predicting grain yield in rice using multi-temporal vegetation
indices from UAV-based multispectral and digital imagery,
PandRS(130), No. 1, 2017, pp. 246-255.
Elsevier DOI
1708
UAVs
BibRef
Granell, C.[Carlos],
Miralles, I.[Ignacio],
Rodríguez-Pupo, L.E.[Luis E.],
González-Pérez, A.[Alberto],
Casteleyn, S.[Sven],
Busetto, L.[Lorenzo],
Pepe, M.[Monica],
Boschetti, M.[Mirco],
Huerta, J.[Joaquín],
Conceptual Architecture and Service-Oriented Implementation of a
Regional Geoportal for Rice Monitoring,
IJGI(6), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Liu, L.,
Shao, Y.,
Pinel, N.,
Li, K.,
Yang, Z.,
Gong, H.,
Wang, Y.,
Modeling Microwave Backscattering From Parabolic Rice Leaves,
GeoRS(55), No. 11, November 2017, pp. 6044-6053.
IEEE DOI
1711
Computational modeling, Mathematical model,
Microwave FET integrated circuits,
Spaceborne radar, Discrete dipole approximation (DDA),
BibRef
He, Z.[Ze],
Li, S.H.[Shi-Hua],
Wang, Y.[Yong],
Dai, L.Y.[Lei-Yu],
Lin, S.[Sen],
Monitoring Rice Phenology Based on Backscattering Characteristics of
Multi-Temporal RADARSAT-2 Datasets,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Ranghetti, L.[Luigi],
Cardarelli, E.[Elisa],
Boschetti, M.[Mirco],
Busetto, L.[Lorenzo],
Fasola, M.[Mauro],
Assessment of Water Management Changes in the Italian Rice Paddies
from 2000 to 2016 Using Satellite Data: A Contribution to
Agro-Ecological Studies,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Park, S.[Seonyoung],
Im, J.[Jungho],
Park, S.[Seohui],
Yoo, C.[Cheolhee],
Han, H.S.[Hyang-Sun],
Rhee, J.Y.[Jin-Young],
Classification and Mapping of Paddy Rice by Combining Landsat and SAR
Time Series Data,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Setiyono, T.D.[Tri D.],
Quicho, E.D.[Emma D.],
Gatti, L.[Luca],
Campos-Taberner, M.[Manuel],
Busetto, L.[Lorenzo],
Collivignarelli, F.[Francesco],
García-Haro, F.J.[Francisco Javier],
Boschetti, M.[Mirco],
Khan, N.I.[Nasreen Islam],
Holecz, F.[Francesco],
Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data
and ORYZA Crop Growth Model,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Zampieri, M.[Matteo],
Garcia, G.C.[Gema Carmona],
Dentener, F.[Frank],
Gumma, M.K.[Murali Krishna],
Salamon, P.[Peter],
Seguini, L.[Lorenzo],
Toreti, A.[Andrea],
Surface Freshwater Limitation Explains Worst Rice Production Anomaly
in India in 2002,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Xu, X.J.[Xin-Jie],
Ji, X.S.[Xu-Sheng],
Jiang, J.[Jiale],
Yao, X.[Xia],
Tian, Y.C.[Yong-Chao],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Cao, Q.A.[Qi-Ang],
Yang, H.J.[Hong-Jian],
Shi, Z.K.[Zhong-Kui],
Cheng, T.[Tao],
Evaluation of One-Class Support Vector Classification for Mapping the
Paddy Rice Planting Area in Jiangsu Province of China from Landsat 8
OLI Imagery,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Campos-Taberner, M.[Manuel],
García-Haro, F.J.[Francisco Javier],
Busetto, L.[Lorenzo],
Ranghetti, L.[Luigi],
Martínez, B.[Beatriz],
Gilabert, M.A.[María Amparo],
Camps-Valls, G.[Gustau],
Camacho, F.[Fernando],
Boschetti, M.[Mirco],
A Critical Comparison of Remote Sensing Leaf Area Index Estimates
over Rice-Cultivated Areas: From Sentinel-2 and Landsat-7/8 to MODIS,
GEOV1 and EUMETSAT Polar System,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Liu, M.X.[Meng-Xue],
Liu, X.N.[Xiang-Nan],
Wu, L.[Ling],
Zou, X.Y.[Xin-Yu],
Jiang, T.[Tian],
Zhao, B.Y.[Bing-Yu],
A Modified Spatiotemporal Fusion Algorithm Using Phenological
Information for Predicting Reflectance of Paddy Rice in Southern
China,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Sianturi, R.[Riswan],
Jetten, V.G.[Victor G.],
Ettema, J.[Janneke],
Sartohadi, J.[Junun],
Distinguishing between Hazardous Flooding and Non-Hazardous Agronomic
Inundation in Irrigated Rice Fields: A Case Study from West Java,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Zhang, X.[Xin],
Wu, B.F.[Bing-Fang],
Ponce-Campos, G.E.[Guillermo E.],
Zhang, M.[Miao],
Chang, S.[Sheng],
Tian, F.[Fuyou],
Mapping up-to-Date Paddy Rice Extent at 10 M Resolution in China
through the Integration of Optical and Synthetic Aperture Radar
Images,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Song, P.L.[Pei-Lin],
Mansaray, L.R.[Lamin R.],
Huang, J.F.[Jing-Feng],
Huang, W.J.[Wen-Jiang],
Mapping paddy rice agriculture over China using AMSR-E time series
data,
PandRS(144), 2018, pp. 469-482.
Elsevier DOI
1809
Passive microwave, Whittaker smoother (WS), MODIS data,
Surface soil moisture (SSM), Paddy rice mapping
BibRef
Kawamura, K.[Kensuke],
Ikeura, H.[Hiroshi],
Phongchanmaixay, S.[Sengthong],
Khanthavong, P.[Phanthasin],
Canopy Hyperspectral Sensing of Paddy Fields at the Booting Stage and
PLS Regression can Assess Grain Yield,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Ndikumana, E.[Emile],
Minh, D.H.T.[Dinh Ho Tong],
Nguyen, H.T.D.[Hai Thu Dang],
Baghdadi, N.[Nicolas],
Courault, D.[Dominique],
Hossard, L.[Laure],
El Moussawi, I.[Ibrahim],
Estimation of Rice Height and Biomass Using Multitemporal SAR
Sentinel-1 for Camargue, Southern France,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Jeong, S.[Seungtaek],
Ko, J.[Jonghan],
Yeom, J.M.[Jong-Min],
Nationwide Projection of Rice Yield Using a Crop Model Integrated
with Geostationary Satellite Imagery: A Case Study in South Korea,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Lee, S.K.[Seung-Kuk],
Yoon, S.Y.[Sun Yong],
Won, J.S.[Joong-Sun],
Vegetation Height Estimate in Rice Fields Using Single Polarization
TanDEM-X Science Phase Data,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Zhang, M.[Meng],
Lin, H.[Hui],
Wang, G.X.[Guang-Xing],
Sun, H.[Hua],
Fu, J.[Jing],
Mapping Paddy Rice Using a Convolutional Neural Network (CNN) with
Landsat 8 Datasets in the Dongting Lake Area, China,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Jiang, T.[Tian],
Liu, X.N.[Xiang-Nan],
Wu, L.[Ling],
Method for Mapping Rice Fields in Complex Landscape Areas Based on
Pre-Trained Convolutional Neural Network from HJ-1 A/B Data,
IJGI(7), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Moreno-García, B.[Beatriz],
Casterad, M.A.[M. Auxiliadora],
Guillén, M.[Mónica],
Quílez, D.[Dolores],
Agronomic and Economic Potential of Vegetation Indices for Rice
Recommendations under Organic and Mineral Fertilization in
Mediterranean Regions,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Jiang, M.[Min],
Xin, L.J.[Liang-Jie],
Li, X.B.[Xiu-Bin],
Tan, M.H.[Ming-Hong],
Wang, R.J.[Ren-Jing],
Decreasing Rice Cropping Intensity in Southern China from 1990 to
2015,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Wang, L.[Li],
Chang, Q.R.[Qing-Rui],
Li, F.L.[Fen-Ling],
Yan, L.[Lin],
Huang, Y.[Yong],
Wang, Q.[Qi],
Luo, L.[Lili],
Effects of Growth Stage Development on Paddy Rice Leaf Area Index
Prediction Models,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Sousa, D.[Daniel],
Small, C.[Christopher],
Mapping and Monitoring Rice Agriculture with Multisensor Temporal
Mixture Models,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Shiu, Y.S.[Yi-Shiang],
Chuang, Y.C.[Yung-Chung],
Yield Estimation of Paddy Rice Based on Satellite Imagery: Comparison
of Global and Local Regression Models,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Xu, X.Q.,
Lu, J.S.,
Zhang, N.,
Yang, T.C.,
He, J.Y.,
Yao, X.,
Cheng, T.,
Zhu, Y.,
Cao, W.X.,
Tian, Y.C.,
Inversion of rice canopy chlorophyll content and leaf area index
based on coupling of radiative transfer and Bayesian network models,
PandRS(150), 2019, pp. 185-196.
Elsevier DOI
1903
UAV-multispectral image, Rice, Radiative transfer model,
Bayesian network, Leaf area index, Canopy chlorophyll content
BibRef
Zhang, K.[Ke],
Ge, X.K.[Xiao-Kang],
Shen, P.C.[Peng-Cheng],
Li, W.Y.[Wan-Yu],
Liu, X.J.[Xiao-Jun],
Cao, Q.A.[Qi-Ang],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Tian, Y.C.[Yong-Chao],
Predicting Rice Grain Yield Based on Dynamic Changes in Vegetation
Indexes during Early to Mid-Growth Stages,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Kawamura, K.[Kensuke],
Tsujimoto, Y.[Yasuhiro],
Nishigaki, T.[Tomohiro],
Andriamananjara, A.[Andry],
Rabenarivo, M.[Michel],
Asai, H.[Hidetoshi],
Rakotoson, T.[Tovohery],
Razafimbelo, T.[Tantely],
Laboratory Visible and Near-Infrared Spectroscopy with Genetic
Algorithm-Based Partial Least Squares Regression for Assessing the
Soil Phosphorus Content of Upland and Lowland Rice Fields in
Madagascar,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Stavrakoudis, D.[Dimitris],
Katsantonis, D.[Dimitrios],
Kadoglidou, K.[Kalliopi],
Kalaitzidis, A.[Argyris],
Gitas, I.Z.[Ioannis Z.],
Estimating Rice Agronomic Traits Using Drone-Collected Multispectral
Imagery,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Wu, J.T.[Jin-Tao],
Yang, G.J.[Gui-Jun],
Yang, X.D.[Xiao-Dong],
Xu, B.[Bo],
Han, L.[Liang],
Zhu, Y.H.[Yao-Hui],
Automatic Counting of in situ Rice Seedlings from UAV Images Based on
a Deep Fully Convolutional Neural Network,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Bazzi, H.[Hassan],
Baghdadi, N.[Nicolas],
El Hajj, M.[Mohammad],
Zribi, M.[Mehrez],
Minh, D.H.T.[Dinh Ho Tong],
Ndikumana, E.[Emile],
Courault, D.[Dominique],
Belhouchette, H.[Hatem],
Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue,
France,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Jiang, Q.[Qi],
Fang, S.H.[Sheng-Hui],
Peng, Y.[Yi],
Gong, Y.[Yan],
Zhu, R.S.[Ren-Shan],
Wu, X.T.[Xian-Ting],
Ma, Y.[Yi],
Duan, B.[Bo],
Liu, J.[Jian],
UAV-Based Biomass Estimation for Rice-Combining Spectral, TIN-Based
Structural and Meteorological Features,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Shew, A.M.[Aaron M.],
Ghosh, A.[Aniruddha],
Identifying Dry-Season Rice-Planting Patterns in Bangladesh Using the
Landsat Archive,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Minh, H.V.T.[Huynh Vuong Thu],
Avtar, R.[Ram],
Mohan, G.[Geetha],
Misra, P.[Prakhar],
Kurasaki, M.[Masaaki],
Monitoring and Mapping of Rice Cropping Pattern in Flooding Area in
the Vietnamese Mekong Delta Using Sentinel-1A Data: A Case of An
Giang Province,
IJGI(8), No. 5, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Wang, Y.Y.[Yan-Yu],
Zhang, K.[Ke],
Tang, C.L.[Chun-Lan],
Cao, Q.A.[Qi-Ang],
Tian, Y.C.[Yong-Chao],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Liu, X.J.[Xiao-Jun],
Estimation of Rice Growth Parameters Based on Linear Mixed-Effect
Model Using Multispectral Images from Fixed-Wing Unmanned Aerial
Vehicles,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Asilo, S.[Sonia],
Nelson, A.[Andrew],
de Bie, K.[Kees],
Skidmore, A.[Andrew],
Laborte, A.[Alice],
Maunahan, A.[Aileen],
Quilang, E.J.P.[Eduardo Jimmy P.],
Relating X-band SAR Backscattering to Leaf Area Index of Rice in
Different Phenological Phases,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Zhang, J.[Jing],
Zhang, Z.[Zhao],
Wang, C.Z.[Chen-Zhi],
Tao, F.[Fulu],
Double-Rice System Simulation in a Topographically Diverse Region:
A Remote-Sensing-Driven Case Study in Hunan Province of China,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Guo, Y.Q.[Yi-Qing],
Jia, X.P.[Xiu-Ping],
Paull, D.[David],
Benediktsson, J.A.[Jón Atli],
Nomination-favoured opinion pool for optical-SAR-synergistic rice
mapping in face of weakened flooding signals,
PandRS(155), 2019, pp. 187-205.
Elsevier DOI
1908
Rice mapping, Rice variety, Sowing method, Data fusion,
Opinion pool, Consensus theory, Optical, Synthetic-Aperture Radar (SAR)
BibRef
Rudiyanto,
Minasny, B.[Budiman],
Shah, R.M.[Ramisah M.],
Soh, N.C.[Norhidayah Che],
Arif, C.[Chusnul],
Setiawan, B.I.[Budi Indra],
Automated Near-Real-Time Mapping and Monitoring of Rice Extent,
Cropping Patterns, and Growth Stages in Southeast Asia Using
Sentinel-1 Time Series on a Google Earth Engine Platform,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Yin, Q.[Qi],
Liu, M.L.[Mao-Lin],
Cheng, J.[Junyi],
Ke, Y.H.[Ying-Hai],
Chen, X.W.[Xiu-Wan],
Mapping Paddy Rice Planting Area in Northeastern China Using
Spatiotemporal Data Fusion and Phenology-Based Method,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Li, S.Y.[Song-Yang],
Yuan, F.[Fei],
Ata-UI-Karim, S.T.[Syed Tahir],
Zheng, H.B.[Heng-Biao],
Cheng, T.[Tao],
Liu, X.J.[Xiao-Jun],
Tian, Y.C.[Yong-Chao],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Cao, Q.A.[Qi-Ang],
Combining Color Indices and Textures of UAV-Based Digital Imagery for
Rice LAI Estimation,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
He, J.Y.[Jiao-Yang],
Zhang, N.[Ni],
Su, X.[Xi],
Lu, J.S.[Jing-Shan],
Yao, X.[Xia],
Cheng, T.[Tao],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Tian, Y.C.[Yong-Chao],
Estimating Leaf Area Index with a New Vegetation Index Considering
the Influence of Rice Panicles,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Phan, A.[Anh],
Ha, D.N.[Duong N.],
Man, C.D.[Chuc D.],
Nguyen, T.T.[Thuy T.],
Bui, H.Q.[Hung Q.],
Nguyen, T.T.N.[Thanh T. N.],
Rapid Assessment of Flood Inundation and Damaged Rice Area in Red
River Delta from Sentinel 1A Imagery,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Hashimoto, N.[Naoyuki],
Saito, Y.[Yuki],
Maki, M.[Masayasu],
Homma, K.[Koki],
Simulation of Reflectance and Vegetation Indices for Unmanned Aerial
Vehicle (UAV) Monitoring of Paddy Fields,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Wang, J.J.[Jian-Jun],
Dai, Q.X.[Qi-Xing],
Shang, J.L.[Jia-Li],
Jin, X.L.[Xiu-Liang],
Sun, Q.[Quan],
Zhou, G.S.[Gui-Sheng],
Dai, Q.G.[Qi-Gen],
Field-Scale Rice Yield Estimation Using Sentinel-1A Synthetic
Aperture Radar (SAR) Data in Coastal Saline Region of Jiangsu
Province, China,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
He, Z.[Ze],
Li, S.H.[Shi-Hua],
Wang, Y.[Yong],
Hu, Y.M.[Yue-Ming],
Chen, F.X.[Fei-Xiang],
Assessment of Leaf Area Index of Rice for a Growing Cycle Using
Multi-Temporal C-Band PolSAR Datasets,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Zhang, S.Y.[Shuang-Yin],
Li, J.[Jun],
Wang, S.Y.[Si-Ying],
Huang, Y.J.[Ying-Jing],
Li, Y.Z.[Yi-Zhuo],
Chen, Y.Y.[Yi-Yun],
Fei, T.[Teng],
Repaid Identification and Prediction of Cadmium-Lead Cross-Stress of
Different Stress Levels in Rice Canopy Based on Visible and
Near-Infrared Spectroscopy,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Yang, M.D.[Ming-Der],
Tseng, H.H.[Hsin-Hung],
Hsu, Y.C.[Yu-Chun],
Tsai, H.P.[Hui Ping],
Semantic Segmentation Using Deep Learning with Vegetation Indices for
Rice Lodging Identification in Multi-date UAV Visible Images,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Ding, M.J.[Ming-Jun],
Guan, Q.H.[Qi-Hui],
Li, L.[Lanhui],
Zhang, H.M.[Hua-Min],
Liu, C.[Chong],
Zhang, L.[Le],
Phenology-Based Rice Paddy Mapping Using Multi-Source Satellite
Imagery and a Fusion Algorithm Applied to the Poyang Lake Plain,
Southern China,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Wang, H.F.[Hong-Fei],
Ghosh, A.[Aniruddha],
Linquist, B.A.[Bruce A.],
Hijmans, R.J.[Robert J.],
Satellite-Based Observations Reveal Effects of Weather Variation on
Rice Phenology,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Zhang, W.C.[Wei-Chun],
Liu, H.B.[Hong-Bin],
Wu, W.[Wei],
Zhan, L.Q.[Lin-Qing],
Wei, J.[Jing],
Mapping Rice Paddy Based on Machine Learning with Sentinel-2
Multi-Temporal Data: Model Comparison and Transferability,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Inoue, S.P.[Shim-Pei],
Ito, A.[Akihiko],
Yonezawa, C.[Chinatsu],
Mapping Paddy Fields in Japan by Using a Sentinel-1 SAR Time Series
Supplemented by Sentinel-2 Images on Google Earth Engine,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Jiang, R.[Rui],
Wang, P.[Pei],
Xu, Y.[Yan],
Zhou, Z.Y.[Zhi-Yan],
Luo, X.[Xiwen],
Lan, Y.[Yubin],
Zhao, G.[Genping],
Sanchez-Azofeifa, A.[Arturo],
Laakso, K.[Kati],
Assessing the Operation Parameters of a Low-altitude UAV for the
Collection of NDVI Values Over a Paddy Rice Field,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Raksapatcharawong, M.[Mongkol],
Veerakachen, W.[Watcharee],
Homma, K.[Koki],
Maki, M.[Masayasu],
Oki, K.[Kazuo],
Satellite-Based Drought Impact Assessment on Rice Yield in Thailand
with SIMRIW-RS,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Alebele, Y.[Yeshanbele],
Zhang, X.[Xue],
Wang, W.H.[Wen-Hui],
Yang, G.X.[Gao-Xiang],
Yao, X.[Xia],
Zheng, H.B.[Heng-Biao],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Cheng, T.[Tao],
Estimation of Canopy Biomass Components in Paddy Rice from Combined
Optical and SAR Data Using Multi-Target Gaussian Regressor Stacking,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Karydas, C.[Christos],
Iatrou, M.[Miltiadis],
Iatrou, G.[George],
Mourelatos, S.[Spiros],
Management Zone Delineation for Site-Specific Fertilization in Rice
Crop Using Multi-Temporal RapidEye Imagery,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Ryu, J.H.[Jae-Hyun],
Jeong, H.[Hoejeong],
Cho, J.[Jaeil],
Performances of Vegetation Indices on Paddy Rice at Elevated Air
Temperature, Heat Stress, and Herbicide Damage,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Crisóstomo de Castro Filho, H.[Hugo],
de Carvalho Júnior, O.A.[Osmar Abílio],
de Carvalho, O.L.F.[Osmar Luiz Ferreira],
Pozzobon de Bem, P.[Pablo],
dos Santos de Moura, R.[Rebeca],
Olino de Albuquerque, A.[Anesmar],
Silva, C.R.[Cristiano Rosa],
Ferreira, P.H.G.[Pedro Henrique Guimarães],
Guimarães, R.F.[Renato Fontes],
Gomes, R.A.T.[Roberto Arnaldo Trancoso],
Rice Crop Detection Using LSTM, Bi-LSTM, and Machine Learning Models
from Sentinel-1 Time Series,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Jimenez-Sierra, D.A.[David Alejandro],
Benítez-Restrepo, H.D.[Hernán Darío],
Vargas-Cardona, H.D.[Hernán Darío],
Chanussot, J.[Jocelyn],
Graph-Based Data Fusion Applied to
Change Detection and Biomass Estimation in Rice Crops,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Du, Y.M.[Yong-Ming],
Cao, B.[Biao],
Li, H.[Hua],
Bian, Z.J.[Zun-Jian],
Qin, B.X.[Bo-Xiong],
Xiao, Q.[Qing],
Liu, Q.H.[Qin-Huo],
Zeng, Y.J.[Yi-Jian],
Su, Z.B.[Zhong-Bo],
Modeling Directional Brightness Temperature (DBT) over Crop Canopy
with Effects of Intra-Row Heterogeneity,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Chen, N.C.[Neng-Cheng],
Yu, L.X.N.[Li-Xiao-Na],
Zhang, X.[Xiang],
Shen, Y.L.[Yong-Lin],
Zeng, L.L.[Ling-Lin],
Hu, Q.[Qiong],
Niyogi, D.[Dev],
Mapping Paddy Rice Fields by Combining Multi-Temporal Vegetation
Index and Synthetic Aperture Radar Remote Sensing Data Using Google
Earth Engine Machine Learning Platform,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
O'Shea, K.[Kristen],
LaRoe, J.[Jillian],
Vorster, A.[Anthony],
Young, N.[Nicholas],
Evangelista, P.[Paul],
Mayer, T.[Timothy],
Carver, D.[Daniel],
Simonson, E.[Eli],
Martin, V.[Vanesa],
Radomski, P.[Paul],
Knopik, J.[Joshua],
Kern, A.[Anthony],
Khoury, C.K.[Colin K.],
Improved Remote Sensing Methods to Detect Northern Wild Rice (Zizania
palustris L.),
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Hoang-Phi, P.[Phung],
Lam-Dao, N.[Nguyen],
Pham-Van, C.[Cu],
Chau-Nguyen-Xuan, Q.[Quang],
Nguyen-Van-Anh, V.[Vu],
Gummadi, S.[Sridhar],
Le-Van, T.[Trung],
Sentinel-1 SAR Time Series-Based Assessment of the Impact of Severe
Salinity Intrusion Events on Spatiotemporal Changes in Distribution
of Rice Planting Areas in Coastal Provinces of the Mekong Delta,
Vietnam,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Qiu, Z.C.[Zheng-Chao],
Xiang, H.T.[Hai-Tao],
Ma, F.[Fei],
Du, C.W.[Chang-Wen],
Qualifications of Rice Growth Indicators Optimized at Different
Growth Stages Using Unmanned Aerial Vehicle Digital Imagery,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Liu, S.S.[Shi-Shi],
Chen, Y.R.[Yu-Ren],
Ma, Y.T.[Yin-Tao],
Kong, X.X.[Xiao-Xuan],
Zhang, X.Y.[Xin-Yu],
Zhang, D.Y.[Dong-Ying],
Mapping Ratoon Rice Planting Area in Central China Using Sentinel-2
Time Stacks and the Phenology-Based Algorithm,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Fiorillo, E.[Edoardo],
di Giuseppe, E.[Edmondo],
Fontanelli, G.[Giacomo],
Maselli, F.[Fabio],
Lowland Rice Mapping in Sédhiou Region (Senegal) Using Sentinel 1 and
Sentinel 2 Data and Random Forest,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Dey, S.[Subhadip],
Bhattacharya, A.[Avik],
Ratha, D.[Debanshu],
Mandal, D.[Dipankar],
McNairn, H.[Heather],
Lopez-Sanchez, J.M.[Juan M.],
Rao, Y.S.,
Novel clustering schemes for full and compact polarimetric SAR data:
An application for rice phenology characterization,
PandRS(169), 2020, pp. 135-151.
Elsevier DOI
2011
Unsupervised clustering, Entropy, RADARSAT-2, Crop monitoring,
PolSAR, Roll-invariant parameter
BibRef
Jo, H.W.,
Lee, S.,
Park, E.,
Lim, C.H.,
Song, C.,
Lee, H.,
Ko, Y.,
Cha, S.,
Yoon, H.,
Lee, W.K.,
Deep Learning Applications on Multitemporal SAR (Sentinel-1) Image
Classification Using Confined Labeled Data: The Case of Detecting
Rice Paddy in South Korea,
GeoRS(58), No. 11, November 2020, pp. 7589-7601.
IEEE DOI
2011
Machine learning, Image resolution, Remote sensing, Satellites,
Feature extraction, Synthetic aperture radar,
semisupervised classification
BibRef
Ramadhani, F.[Fadhlullah],
Pullanagari, R.[Reddy],
Kereszturi, G.[Gabor],
Procter, J.[Jonathan],
Automatic Mapping of Rice Growth Stages Using the Integration of
SENTINEL-2, MOD13Q1, and SENTINEL-1,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Arjasakusuma, S.[Sanjiwana],
Kusuma, S.S.[Sandiaga Swahyu],
Rafif, R.[Raihan],
Saringatin, S.[Siti],
Wicaksono, P.[Pramaditya],
Combination of Landsat 8 OLI and Sentinel-1 SAR Time-Series Data for
Mapping Paddy Fields in Parts of West and Central Java Provinces,
Indonesia,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Li, H.[He],
Fu, D.J.[Dong-Jie],
Huang, C.[Chong],
Su, F.Z.[Fen-Zhen],
Liu, Q.S.[Qing-Sheng],
Liu, G.H.[Gao-Huan],
Wu, S.R.[Shang-Rong],
An Approach to High-Resolution Rice Paddy Mapping Using Time-Series
Sentinel-1 SAR Data in the Mun River Basin, Thailand,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Zhou, D.B.[Dong-Bo],
Liu, S.J.[Shuang-Jian],
Yu, J.[Jie],
Li, H.[Hao],
A High-Resolution Spatial and Time-Series Labeled Unmanned Aerial
Vehicle Image Dataset for Middle-Season Rice,
IJGI(9), No. 12, 2020, pp. xx-yy.
DOI Link
2012
Dataset, Rice.
BibRef
Yamaguchi, T.[Tomoaki],
Tanaka, Y.[Yukie],
Imachi, Y.[Yuto],
Yamashita, M.[Megumi],
Katsura, K.[Keisuke],
Feasibility of Combining Deep Learning and RGB Images Obtained by
Unmanned Aerial Vehicle for Leaf Area Index Estimation in Rice,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Ma, Y.[Yi],
Jiang, Q.[Qi],
Wu, X.T.[Xian-Ting],
Zhu, R.S.[Ren-Shan],
Gong, Y.[Yan],
Peng, Y.[Yi],
Duan, B.[Bo],
Fang, S.H.[Sheng-Hui],
Monitoring Hybrid Rice Phenology at Initial Heading Stage Based on
Low-Altitude Remote Sensing Data,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Kim, H.[Hyewon],
Kim, W.[Woojung],
Kim, S.D.[Sang Don],
Damage Assessment of Rice Crop after Toluene Exposure Based on the
Vegetation Index (VI) and UAV Multispectral Imagery,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Wei, P.L.[Peng-Liang],
Chai, D.F.[Deng-Feng],
Lin, T.[Tao],
Tang, C.[Chao],
Du, M.Q.[Mei-Qi],
Huang, J.F.[Jing-Feng],
Large-scale rice mapping under different years based on time-series
Sentinel-1 images using deep semantic segmentation model,
PandRS(174), 2021, pp. 198-214.
Elsevier DOI
2103
Sentinel-1 images, Multi-temporal, Rice mapping, Large-scale,
Deep semantic segmentation
BibRef
Lin, Z.X.[Zhi-Xian],
Zhong, R.H.[Ren-Hai],
Xiong, X.G.[Xing-Guo],
Guo, C.Q.[Chang-Qiang],
Xu, J.F.[Jin-Fan],
Zhu, Y.[Yue],
Xu, J.[Jialu],
Ying, Y.B.[Yi-Bin],
Ting, K.C.,
Huang, J.F.[Jing-Feng],
Lin, T.[Tao],
Large-Scale Rice Mapping Using Multi-Task Spatiotemporal Deep
Learning and Sentinel-1 SAR Time Series,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Jiang, X.Q.[Xue-Qin],
Fang, S.H.[Sheng-Hui],
Huang, X.[Xia],
Liu, Y.H.[Yang-Hua],
Guo, L.L.[Lin-Lin],
Rice Mapping and Growth Monitoring Based on Time Series GF-6 Images
and Red-Edge Bands,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Phan, H.[Hoa],
Toan, T.L.[Thuy Le],
Bouvet, A.[Alexandre],
Understanding Dense Time Series of Sentinel-1 Backscatter from Rice
Fields: Case Study in a Province of the Mekong Delta, Vietnam,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Xiao, W.[Wu],
Xu, S.[Suchen],
He, T.T.[Ting-Ting],
Mapping Paddy Rice with Sentinel-1/2 and Phenology-, Object-Based
Algorithm: A Implementation in Hangjiahu Plain in China Using GEE
Platform,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Yang, L.B.[Ling-Bo],
Wang, L.M.[Li-Min],
Abubakar, G.A.[Ghali Abdullahi],
Huang, J.F.[Jing-Feng],
High-Resolution Rice Mapping Based on SNIC Segmentation and
Multi-Source Remote Sensing Images,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Yang, M.D.[Ming-Der],
Tseng, H.H.[Hsin-Hung],
Hsu, Y.C.[Yu-Chun],
Yang, C.Y.[Chin-Ying],
Lai, M.H.[Ming-Hsin],
Wu, D.H.[Dong-Hong],
A UAV Open Dataset of Rice Paddies for Deep Learning Practice,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Zhu, A.X.[A-Xing],
Zhao, F.H.[Fang-He],
Pan, H.B.[Hao-Bo],
Liu, J.Z.[Jun-Zhi],
Mapping Rice Paddy Distribution Using Remote Sensing by Coupling Deep
Learning with Phenological Characteristics,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Fernandez-Beltran, R.[Ruben],
Baidar, T.[Tina],
Kang, J.[Jian],
Pla, F.[Filiberto],
Rice-Yield Prediction with Multi-Temporal Sentinel-2 Data and 3D CNN:
A Case Study in Nepal,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Ramadhani, F.[Fadhlullah],
Pullanagari, R.[Reddy],
Kereszturi, G.[Gabor],
Procter, J.[Jonathan],
Mapping a Cloud-Free Rice Growth Stages Using the Integration of
PROBA-V and Sentinel-1 and Its Temporal Correlation with Sub-District
Statistics,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Kang, Y.S.[Ye-Seong],
Nam, J.[Jinwoo],
Kim, Y.G.[Young-Gwang],
Lee, S.T.[Seong-Tae],
Seong, D.[Deokgyeong],
Jang, S.Y.[Sih-Yeong],
Ryu, C.[Chanseok],
Assessment of Regression Models for Predicting Rice Yield and Protein
Content Using Unmanned Aerial Vehicle-Based Multispectral Imagery,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Sitokonstantinou, V.[Vasileios],
Koukos, A.[Alkiviadis],
Drivas, T.[Thanassis],
Kontoes, C.[Charalampos],
Papoutsis, I.[Ioannis],
Karathanassi, V.[Vassilia],
A Scalable Machine Learning Pipeline for Paddy Rice Classification
Using Multi-Temporal Sentinel Data,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Wang, L.[Li],
Chen, S.[Shuisen],
Peng, Z.P.[Zhi-Ping],
Huang, J.C.[Ji-Chuan],
Wang, C.Y.[Chong-Yang],
Jiang, H.[Hao],
Zheng, Q.[Qiong],
Li, D.[Dan],
Phenology Effects on Physically Based Estimation of Paddy Rice Canopy
Traits from UAV Hyperspectral Imagery,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Elsherbiny, O.[Osama],
Zhou, L.[Lei],
Feng, L.[Lei],
Qiu, Z.J.[Zheng-Jun],
Integration of Visible and Thermal Imagery with an Artificial Neural
Network Approach for Robust Forecasting of Canopy Water Content in
Rice,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Jin, H.X.[Hong-Xiao],
Köppl, C.J.[Christian Josef],
Fischer, B.M.C.[Benjamin M. C.],
Rojas-Conejo, J.[Johanna],
Johnson, M.S.[Mark S.],
Morillas, L.[Laura],
Lyon, S.W.[Steve W.],
Durán-Quesada, A.M.[Ana M.],
Suárez-Serrano, A.[Andrea],
Manzoni, S.[Stefano],
Garcia, M.[Monica],
Drone-Based Hyperspectral and Thermal Imagery for Quantifying Upland
Rice Productivity and Water Use Efficiency after Biochar Application,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Iwahashi, Y.[Yu],
Ye, R.L.[Rong-Ling],
Kobayashi, S.[Satoru],
Yagura, K.[Kenjiro],
Hor, S.[Sanara],
Soben, K.[Kim],
Homma, K.[Koki],
Quantification of Changes in Rice Production for 2003-2019 with MODIS
LAI Data in Pursat Province, Cambodia,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Yuan, N.G.[Ning-Ge],
Gong, Y.[Yan],
Fang, S.H.[Sheng-Hui],
Liu, Y.T.[Ya-Ting],
Duan, B.[Bo],
Yang, K.[Kaili],
Wu, X.T.[Xian-Ting],
Zhu, R.S.[Ren-Shan],
UAV Remote Sensing Estimation of Rice Yield Based on Adaptive
Spectral Endmembers and Bilinear Mixing Model,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Arumugam, P.[Ponraj],
Chemura, A.[Abel],
Schauberger, B.[Bernhard],
Gornott, C.[Christoph],
Remote Sensing Based Yield Estimation of Rice (Oryza Sativa L.) Using
Gradient Boosted Regression in India,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Peprah, C.O.[Clement Oppong],
Yamashita, M.[Megumi],
Yamaguchi, T.[Tomoaki],
Sekino, R.[Ryo],
Takano, K.[Kyohei],
Katsura, K.[Keisuke],
Spatio-Temporal Estimation of Biomass Growth in Rice Using Canopy
Surface Model from Unmanned Aerial Vehicle Images,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Ge, H.X.[Hai-Xiao],
Ma, F.[Fei],
Li, Z.W.[Zhen-Wang],
Tan, Z.Z.[Zheng-Zheng],
Du, C.W.[Chang-Wen],
Improved Accuracy of Phenological Detection in Rice Breeding by Using
Ensemble Models of Machine Learning Based on UAV-RGB Imagery,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Ni, R.G.[Rong-Guang],
Tian, J.Y.[Jin-Yan],
Li, X.J.[Xiao-Juan],
Yin, D.[Dameng],
Li, J.[Jiwei],
Gong, H.[Huili],
Zhang, J.[Jie],
Zhu, L.[Lin],
Wu, D.L.[Dong-Li],
An enhanced pixel-based phenological feature for accurate paddy rice
mapping with Sentinel-2 imagery in Google Earth Engine,
PandRS(178), 2021, pp. 282-296.
Elsevier DOI
2108
Paddy rice mapping, Phenology, Time-series analysis,
Pixel-based, One-class classifier
BibRef
Jiang, R.[Rui],
Sanchez-Azofeifa, A.[Arturo],
Laakso, K.[Kati],
Xu, Y.[Yan],
Zhou, Z.Y.[Zhi-Yan],
Luo, X.[Xiwen],
Huang, J.H.[Jun-Hao],
Chen, X.[Xin],
Zang, Y.[Yu],
Cloud Cover throughout All the Paddy Rice Fields in Guangdong, China:
Impacts on Sentinel 2 MSI and Landsat 8 OLI Optical Observations,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Yang, K.[Kaili],
Gong, Y.[Yan],
Fang, S.H.[Sheng-Hui],
Duan, B.[Bo],
Yuan, N.G.[Ning-Ge],
Peng, Y.[Yi],
Wu, X.T.[Xian-Ting],
Zhu, R.S.[Ren-Shan],
Combining Spectral and Texture Features of UAV Images for the Remote
Estimation of Rice LAI throughout the Entire Growing Season,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
An, G.Q.[Gang-Qiang],
Xing, M.F.[Min-Feng],
He, B.B.[Bin-Bin],
Kang, H.Q.[Hai-Qi],
Shang, J.L.[Jia-Li],
Liao, C.H.[Chun-Hua],
Huang, X.D.[Xiao-Dong],
Zhang, H.G.[Hong-Guo],
Extraction of Areas of Rice False Smut Infection Using UAV
Hyperspectral Data,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Feng, S.[Shuai],
Cao, Y.L.[Ying-Li],
Xu, T.Y.[Tong-Yu],
Yu, F.H.[Feng-Hua],
Zhao, D.X.[Dong-Xue],
Zhang, G.S.[Guo-Sheng],
Rice Leaf Blast Classification Method Based on Fused Features and
One-Dimensional Deep Convolutional Neural Network,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Lu, J.S.[Jing-Shan],
Eitel, J.U.H.[Jan U. H.],
Jennewein, J.S.[Jyoti S.],
Zhu, J.[Jie],
Zheng, H.[Hengbiao],
Yao, X.[Xia],
Cheng, T.[Tao],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Tian, Y.C.[Yong-Chao],
Combining Remote Sensing and Meteorological Data for Improved Rice
Plant Potassium Content Estimation,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Wang, F.M.[Fu-Min],
Yao, X.P.[Xiao-Ping],
Xie, L.[Lili],
Zheng, J.Y.[Jue-Yi],
Xu, T.Y.[Tian-Yue],
Rice Yield Estimation Based on Vegetation Index and Florescence
Spectral Information from UAV Hyperspectral Remote Sensing,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Xu, T.Y.[Tian-Yue],
Wang, F.M.[Fu-Min],
Shi, Z.[Zhou],
Xie, L.[Lili],
Yao, X.P.[Xiao-Ping],
Dynamic estimation of rice aboveground biomass based on spectral and
spatial information extracted from hyperspectral remote sensing
images at different combinations of growth stages,
PandRS(202), 2023, pp. 169-183.
Elsevier DOI
2308
Data fusion, Optical, Vegetative growth stages,
Gray level co-occurrence matrix, Time series
BibRef
Liu, S.Z.[Shen-Zhou],
Zeng, W.Z.[Wen-Zhi],
Wu, L.F.[Li-Feng],
Lei, G.Q.[Guo-Qing],
Chen, H.R.[Hao-Rui],
Gaiser, T.[Thomas],
Srivastava, A.K.[Amit Kumar],
Simulating the Leaf Area Index of Rice from Multispectral Images,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Li, D.C.[Dai-Chao],
Liang, J.Q.[Jian-Qin],
Wang, X.F.[Xing-Feng],
Wu, S.[Sheng],
Xie, X.W.[Xiao-Wei],
Lu, J.Q.[Jia-Qi],
Rice Yield Simulation and Planting Suitability Environment Pattern
Recognition at a Fine Scale,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Xu, L.[Lu],
Zhang, H.[Hong],
Wang, C.[Chao],
Wei, S.[Sisi],
Zhang, B.[Bo],
Wu, F.[Fan],
Tang, Y.X.[Yi-Xian],
Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and
Deep Learning Model,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Xue, W.[Wei],
Jeong, S.[Seungtaek],
Ko, J.[Jonghan],
Yeom, J.M.[Jong-Min],
Contribution of Biophysical Factors to Regional Variations of
Evapotranspiration and Seasonal Cooling Effects in Paddy Rice in
South Korea,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Franch, B.[Belen],
Bautista, A.S.[Alberto San],
Fita, D.[David],
Rubio, C.[Constanza],
Tarrazó-Serrano, D.[Daniel],
Sánchez, A.[Antonio],
Skakun, S.[Sergii],
Vermote, E.[Eric],
Becker-Reshef, I.[Inbal],
Uris, A.[Antonio],
Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Zhao, R.K.[Rong-Kun],
Li, Y.C.[Yue-Chen],
Chen, J.[Jin],
Ma, M.G.[Ming-Guo],
Fan, L.[Lei],
Lu, W.[Wei],
Mapping a Paddy Rice Area in a Cloudy and Rainy Region Using
Spatiotemporal Data Fusion and a Phenology-Based Algorithm,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Pan, B.[Baihong],
Zheng, Y.[Yi],
Shen, R.[Ruoque],
Ye, T.[Tao],
Zhao, W.Z.[Wen-Zhi],
Dong, J.[Jie],
Ma, H.Q.[Han-Qing],
Yuan, W.P.[Wen-Ping],
High Resolution Distribution Dataset of Double-Season Paddy Rice in
China,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Wei, H.D.[Hao-Dong],
Hu, Q.[Qiong],
Cai, Z.W.[Zhi-Wen],
Yang, J.Y.[Jing-Ya],
Song, Q.[Qian],
Yin, G.F.[Gao-Fei],
Xu, B.D.[Bao-Dong],
An Object- and Topology-Based Analysis (OTBA) Method for Mapping
Rice-Crayfish Fields in South China,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Guo, X.Y.[Xian-Yu],
Yin, J.J.[Jun-Jun],
Li, K.[Kun],
Yang, J.[Jian],
Fine Classification of Rice Paddy Based on RHSI-DT Method Using
Multi-Temporal Compact Polarimetric SAR Data,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Wei, L.[Lele],
Luo, Y.S.[Yu-Sen],
Xu, L.Z.[Li-Zhang],
Zhang, Q.[Qian],
Cai, Q.B.[Qi-Bing],
Shen, M.J.[Ming-Jun],
Deep Convolutional Neural Network for Rice Density Prescription Map
at Ripening Stage Using Unmanned Aerial Vehicle-Based Remotely Sensed
Images,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Lu, W.Y.[Wen-Yi],
Okayama, T.[Tsuyoshi],
Komatsuzaki, M.[Masakazu],
Rice Height Monitoring between Different Estimation Models Using UAV
Photogrammetry and Multispectral Technology,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Zhang, T.[Tao],
Jiang, X.D.[Xiao-Dong],
Jiang, L.L.[Lin-Lin],
Li, X.[Xuran],
Yang, S.B.[Shen-Bin],
Li, Y.X.[Ying-Xue],
Hyperspectral Reflectance Characteristics of Rice Canopies under
Changes in Diffuse Radiation Fraction,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Wei, P.L.[Peng-Liang],
Huang, R.[Ran],
Lin, T.[Tao],
Huang, J.F.[Jing-Feng],
Rice Mapping in Training Sample Shortage Regions Using a Deep
Semantic Segmentation Model Trained on Pseudo-Labels,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Anuar, M.M.[Mohamed Marzhar],
Halin, A.A.[Alfian Abdul],
Perumal, T.[Thinagaran],
Kalantar, B.[Bahareh],
Aerial Imagery Paddy Seedlings Inspection Using Deep Learning,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Wei, J.[Jun],
Cui, Y.[Yuanlai],
Luo, W.Q.[Wan-Qi],
Luo, Y.F.[Yu-Feng],
Mapping Paddy Rice Distribution and Cropping Intensity in China from
2014 to 2019 with Landsat Images, Effective Flood Signals, and Google
Earth Engine,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Yang, H.J.[Hui-Jin],
Li, H.P.[He-Ping],
Wang, W.[Wei],
Li, N.[Ning],
Zhao, J.H.[Jian-Hui],
Pan, B.[Bin],
Spatio-Temporal Estimation of Rice Height Using Time Series
Sentinel-1 Images,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Chen, F.N.[Feng-Nong],
Zhang, Y.[Yao],
Zhang, J.C.[Jing-Cheng],
Liu, L.M.[Lian-Meng],
Wu, K.H.[Kai-Hua],
Rice False Smut Detection and Prescription Map Generation in a
Complex Planting Environment, with Mixed Methods, Based on Near Earth
Remote Sensing,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Qiu, Z.C.[Zheng-Chao],
Ma, F.[Fei],
Li, Z.W.[Zhen-Wang],
Xu, X.B.[Xue-Bin],
Du, C.W.[Chang-Wen],
Development of Prediction Models for Estimating Key Rice Growth
Variables Using Visible and NIR Images from Unmanned Aerial Systems,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Guo, X.Y.[Xian-Yu],
Yin, J.J.[Jun-Jun],
Li, K.[Kun],
Yang, J.[Jian],
Shao, Y.[Yun],
Scattering Intensity Analysis and Classification of Two Types of Rice
Based on Multi-Temporal and Multi-Mode Simulated Compact Polarimetric
SAR Data,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Fatchur-Rachman,
Rudiyanto,
Soh, N.C.[Norhidayah Che],
Shah, R.M.[Ramisah Mohd],
Giap, S.G.E.[Sunny Goh Eng],
Setiawan, B.I.[Budi Indra],
Minasny, B.[Budiman],
High-Resolution Mapping of Paddy Rice Extent and Growth Stages across
Peninsular Malaysia Using a Fusion of Sentinel-1 and 2 Time Series
Data in Google Earth Engine,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Chang, Y.L.[Yang-Lang],
Tan, T.H.[Tan-Hsu],
Chen, T.H.[Tsung-Hau],
Chuah, J.H.[Joon Huang],
Chang, L.[Lena],
Wu, M.C.[Meng-Che],
Tatini, N.B.[Narendra Babu],
Ma, S.C.[Shang-Chih],
Alkhaleefah, M.[Mohammad],
Spatial-Temporal Neural Network for Rice Field Classification from
SAR Images,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Uehara, H.[Hiroshi],
Iuchi, Y.[Yasuhiro],
Fukazawa, Y.[Yusuke],
Kaneta, Y.[Yoshihiro],
Predicting A Growing Stage of Rice Plants Based on The Cropping Records
over 25 Years: A Trial of Feature Engineering Incorporating Hidden
Regional Characteristics,
IEICE(E105-D), No. 5, May 2022, pp. 955-963.
WWW Link.
2205
BibRef
Kang, J.M.[Jun-Mei],
Yang, X.M.[Xiao-Mei],
Wang, Z.H.[Zhi-Hua],
Huang, C.[Chong],
Wang, J.[Jun],
Collaborative Extraction of Paddy Planting Areas with Multi-Source
Information Based on Google Earth Engine: A Case Study of Cambodia,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Xu, T.Y.[Tian-Yue],
Wang, F.M.[Fu-Min],
Xie, L.[Lili],
Yao, X.P.[Xiao-Ping],
Zheng, J.[Jueyi],
Li, J.[Jiale],
Chen, S.[Siting],
Integrating the Textural and Spectral Information of UAV
Hyperspectral Images for the Improved Estimation of Rice Aboveground
Biomass,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Ji, S.[Shu],
Gu, C.[Chen],
Xi, X.B.[Xiao-Bo],
Zhang, Z.H.[Zheng-Hua],
Hong, Q.Q.[Qing-Qing],
Huo, Z.Y.[Zhong-Yang],
Zhao, H.T.[Hai-Tao],
Zhang, R.H.[Rui-Hong],
Li, B.[Bin],
Tan, C.W.[Chang-Wei],
Quantitative Monitoring of Leaf Area Index in Rice Based on
Hyperspectral Feature Bands and Ridge Regression Algorithm,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Tseng, H.H.[Hsin-Hung],
Yang, M.D.[Ming-Der],
Saminathan, R.,
Hsu, Y.C.[Yu-Chun],
Yang, C.Y.[Chin-Ying],
Wu, D.H.[Dong-Hong],
Rice Seedling Detection in UAV Images Using Transfer Learning and
Machine Learning,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Liu, R.[Ruoqi],
Zhang, G.[Geli],
Dong, J.W.[Jin-Wei],
Zhou, Y.[Yan],
You, N.[Nanshan],
He, Y.L.[Ying-Li],
Xiao, X.M.[Xiang-Ming],
Evaluating Effects of Medium-Resolution Optical Data Availability on
Phenology-Based Rice Mapping in China,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Sun, C.L.[Chun-Ling],
Zhang, H.[Hong],
Ge, J.[Ji],
Wang, C.[Chao],
Li, L.[Liutong],
Xu, L.[Lu],
Rice Mapping in a Subtropical Hilly Region Based on Sentinel-1 Time
Series Feature Analysis and the Dual Branch BiLSTM Model,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Kobayashi, S.[Shoko],
Ide, H.[Hiyuto],
Rice Crop Monitoring Using Sentinel-1 SAR Data: A Case Study in Saku,
Japan,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhang, H.G.[Hong-Guo],
He, B.B.[Bin-Bin],
Xing, J.[Jin],
Mapping Paddy Rice in Complex Landscapes with Landsat Time Series
Data and Superpixel-Based Deep Learning Method,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Xu, T.Y.[Tian-Yue],
Wang, F.M.[Fu-Min],
Yi, Q.X.[Qiu-Xiang],
Xie, L.[Lili],
Yao, X.P.[Xiao-Ping],
A Bibliometric and Visualized Analysis of Research Progress and
Trends in Rice Remote Sensing over the Past 42 Years (1980-2021),
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Carrasco, L.[Luis],
Fujita, G.[Go],
Kito, K.[Kensuke],
Miyashita, T.[Tadashi],
Historical mapping of rice fields in Japan using phenology and
temporally aggregated Landsat images in Google Earth Engine,
PandRS(191), 2022, pp. 277-289.
Elsevier DOI
2208
Crop mapping, Gap-filling, Phenology-based, Pixel-based,
Rice paddy, Rice transplanting, Temporal reduction
BibRef
Zhang, J.[Jie],
Song, X.Y.[Xiao-Yu],
Jing, X.[Xia],
Yang, G.J.[Gui-Jun],
Yang, C.H.[Cheng-Hai],
Feng, H.K.[Hai-Kuan],
Wang, J.J.[Jiao-Jiao],
Ming, S.K.[Shi-Kang],
Remote Sensing Monitoring of Rice Grain Protein Content Based on a
Multidimensional Euclidean Distance Method,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhang, J.[Jing],
Wu, H.Q.[Hua-Qing],
Zhang, Z.[Zhao],
Zhang, L.L.[Liang-Liang],
Luo, Y.C.[Yu-Chuan],
Han, J.C.[Ji-Chong],
Tao, F.[Fulu],
Asian Rice Calendar Dynamics Detected by Remote Sensing and Their
Climate Drivers,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Ma, X.S.[Xiao-Shuang],
Huang, Z.[Zunyi],
Zhu, S.Y.[Sheng-Yuan],
Fang, W.[Wei],
Wu, Y.L.[Ying-Lei],
Rice Planting Area Identification Based on Multi-Temporal Sentinel-1
SAR Images and an Attention U-Net Model,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Liu, Y.Y.[Yuan-Yuan],
Wang, S.Q.[Shao-Qiang],
Chen, J.H.[Jing-Hua],
Chen, B.[Bin],
Wang, X.B.[Xiao-Bo],
Hao, D.Z.[Dong-Ze],
Sun, L.[Leigang],
Rice Yield Prediction and Model Interpretation Based on Satellite and
Climatic Indicators Using a Transformer Method,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Zhang, K.[Kaili],
Chen, Y.G.[Yong-Gang],
Zhang, B.[Bokun],
Hu, J.J.[Jun-Jie],
Wang, W.T.[Wen-Tao],
A Multitemporal Mountain Rice Identification and Extraction Method
Based on the Optimal Feature Combination and Machine Learning,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Li, N.[Nan],
Lopez-Sanchez, J.M.[Juan M.],
Fu, H.Q.[Hai-Qiang],
Zhu, J.J.[Jian-Jun],
Han, W.T.[Wen-Tao],
Xie, Q.H.[Qing-Hua],
Hu, J.[Jun],
Xie, Y.Z.[Yan-Zhou],
Rice Crop Height Inversion from TanDEM-X PolInSAR Data Using the RVoG
Model Combined with the Logistic Growth Equation,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Sun, T.[Tao],
Chen, L.[Liding],
Sun, R.[Ranhao],
A Method to Estimate Clear-Sky Albedo of Paddy Rice Fields,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
And:
Correction, Add A2:
Fang, H.L.[Hong-Liang],
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Cipta, I.M.[Iqbal Maulana],
Jaelani, L.M.[Lalu Muhamad],
Sanjaya, H.[Hartanto],
Identification of Paddy Varieties from Landsat 8 Satellite Image Data
Using Spectral Unmixing Method in Indramayu Regency, Indonesia,
IJGI(11), No. 10, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Liao, S.C.[Shi-Cheng],
Xu, X.[Xiong],
Xie, H.[Huan],
Chen, P.[Peng],
Wang, C.[Chao],
Jin, Y.M.[Yan-Min],
Tong, X.H.[Xiao-Hua],
Xiao, C.J.[Chang-Jiang],
A Modified Shape Model Incorporating Continuous Accumulated Growing
Degree Days for Phenology Detection of Early Rice,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Xia, L.[Lang],
Zhao, F.[Fen],
Chen, J.[Jin],
Yu, L.[Le],
Lu, M.[Miao],
Yu, Q.Y.[Qiang-Yi],
Liang, S.F.[She-Fang],
Fan, L.L.[Ling-Ling],
Sun, X.[Xiao],
Wu, S.R.[Shang-Rong],
Wu, W.B.[Wen-Bin],
Yang, P.[Peng],
A full resolution deep learning network for paddy rice mapping using
Landsat data,
PandRS(194), 2022, pp. 91-107.
Elsevier DOI
2212
Paddy rice, Deep learning, Resolution fusion, Landsat, Training dataset
BibRef
Iatrou, M.[Miltiadis],
Karydas, C.[Christos],
Tseni, X.[Xanthi],
Mourelatos, S.[Spiros],
Representation Learning with a Variational Autoencoder for Predicting
Nitrogen Requirement in Rice,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Park, S.[Seonyoung],
Lee, J.[Jaese],
Yeom, J.[Jongmin],
Seo, E.[Eunkyo],
Im, J.[Jungho],
Performance of Drought Indices in Assessing Rice Yield in North Korea
and South Korea under the Different Agricultural Systems,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Dai, X.M.[Xue-Mei],
Chen, S.S.[Shui-Sen],
Jia, K.[Kai],
Jiang, H.[Hao],
Sun, Y.S.[Yi-Shan],
Li, D.[Dan],
Zheng, Q.[Qiong],
Huang, J.X.[Jian-Xi],
A Decision-Tree Approach to Identifying Paddy Rice Lodging with
Multiple Pieces of Polarization Information Derived from Sentinel-1,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Liu, S.Y.[Shi-Yuan],
Zhang, B.[Bin],
Yang, W.G.[Wei-Guang],
Chen, T.T.[Ting-Ting],
Zhang, H.[Hui],
Lin, Y.D.[Yong-Da],
Tan, J.T.[Jiang-Tao],
Li, X.[Xi],
Gao, Y.[Yu],
Yao, S.[Suzhe],
Lan, Y.[Yubin],
Zhang, L.[Lei],
Quantification of Physiological Parameters of Rice Varieties Based on
Multi-Spectral Remote Sensing and Machine Learning Models,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Ma, S.Q.[Si-Qi],
Wang, D.Y.[Dan-Yang],
Yang, H.C.[Hai-Chao],
Hou, H.[Huagang],
Li, C.[Cheng],
Li, Z.[Zhaofu],
A Bi-Temporal-Feature-Difference- and Object-Based Method for Mapping
Rice-Crayfish Fields in Sihong, China,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Hu, J.[Jie],
Chen, Y.P.[Yun-Ping],
Cai, Z.W.[Zhi-Wen],
Wei, H.D.[Hao-Dong],
Zhang, X.Y.[Xin-Yu],
Zhou, W.[Wei],
Wang, C.[Cong],
You, L.Z.[Liang-Zhi],
Xu, B.D.[Bao-Dong],
Mapping Diverse Paddy Rice Cropping Patterns in South China Using
Harmonized Landsat and Sentinel-2 Data,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Dimyati, M.[Muhammad],
Supriatna, S.[Supriatna],
Nagasawa, R.[Ryota],
Pamungkas, F.D.[Fajar Dwi],
Pramayuda, R.[Rizki],
A Comparison of Several UAV-Based Multispectral Imageries in
Monitoring Rice Paddy (A Case Study in Paddy Fields in Tottori
Prefecture, Japan),
IJGI(12), No. 2, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Ye, Z.W.[Zhi-Wei],
Song, Z.L.[Zi-Lun],
Li, P.F.[Peng-Fei],
Wang, M.W.[Ming-Wei],
Hou, W.G.[Wen-Guang],
A modified threshold score-based multilevel thresholding segmentation
technique for brain magnetic resonance images using opposition-based
learning hybrid rice optimization algorithm,
IJIST(33), No. 2, 2023, pp. 622-643.
DOI Link
2303
brain MR image, hybrid rice optimization,
multilevel thresholding, opposition-based learning
BibRef
Xu, H.[Huiyao],
Song, J.[Jia],
Zhu, Y.Q.[Yun-Qiang],
Evaluation and Comparison of Semantic Segmentation Networks for Rice
Identification Based on Sentinel-2 Imagery,
RS(15), No. 6, 2023, pp. 1499.
DOI Link
2304
BibRef
Lu, Y.[Yang],
Tao, X.P.[Xian-Peng],
Zeng, N.Y.[Nian-Yin],
Du, J.J.[Jiao-Jiao],
Shang, R.[Rou],
Enhanced CNN Classification Capability for Small Rice Disease
Datasets Using Progressive WGAN-GP: Algorithms and Applications,
RS(15), No. 7, 2023, pp. 1789.
DOI Link
2304
BibRef
Kurihara, J.[Junichi],
Nagata, T.[Toru],
Tomiyama, H.[Hiroyuki],
Rice Yield Prediction in Different Growth Environments Using Unmanned
Aerial Vehicle-Based Hyperspectral Imaging,
RS(15), No. 8, 2023, pp. 2004.
DOI Link
2305
BibRef
Yang, L.B.[Ling-Bo],
Huang, R.[Ran],
Zhang, J.C.[Jing-Cheng],
Huang, J.F.[Jing-Feng],
Wang, L.M.[Li-Min],
Dong, J.C.[Jian-Cong],
Shao, J.[Jie],
Inter-Continental Transfer of Pre-Trained Deep Learning Rice Mapping
Model and Its Generalization Ability,
RS(15), No. 9, 2023, pp. xx-yy.
DOI Link
2305
BibRef
Mia, M.S.[Md. Suruj],
Tanabe, R.[Ryoya],
Habibi, L.N.[Luthfan Nur],
Hashimoto, N.[Naoyuki],
Homma, K.[Koki],
Maki, M.[Masayasu],
Matsui, T.[Tsutomu],
Tanaka, T.S.T.[Takashi S. T.],
Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based
Multispectral Imagery and Weather Data,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Tian, G.X.[Gui-Xiang],
Li, H.P.[He-Ping],
Jiang, Q.[Qi],
Qiao, B.J.[Bao-Jun],
Li, N.[Ning],
Guo, Z.W.[Zheng-Wei],
Zhao, J.H.[Jian-Hui],
Yang, H.J.[Hui-Jin],
An Automatic Method for Rice Mapping Based on Phenological Features
with Sentinel-1 Time-Series Images,
RS(15), No. 11, 2023, pp. 2785.
DOI Link
2306
BibRef
Jiang, Q.[Qin],
Tang, Z.G.[Zhi-Guang],
Zhou, L.[Linghua],
Hu, G.J.[Guo-Jie],
Deng, G.[Gang],
Xu, M.[Meifeng],
Sang, G.Q.[Guo-Qing],
Mapping Paddy Rice Planting Area in Dongting Lake Area Combining Time
Series Sentinel-1 and Sentinel-2 Images,
RS(15), No. 11, 2023, pp. 2794.
DOI Link
2306
BibRef
Qin, J.[Jiale],
Hu, T.[Tianci],
Yuan, J.H.[Jiang-Hao],
Liu, Q.Z.[Qing-Zhi],
Wang, W.S.[Wen-Sheng],
Liu, J.[Jie],
Guo, L.F.[Lei-Feng],
Song, G.Z.[Guo-Zhu],
Deep-Learning-Based Rice Phenological Stage Recognition,
RS(15), No. 11, 2023, pp. 2891.
DOI Link
2306
BibRef
Malathi, V.,
Gopinath, M.P.,
A Review on Rice Crop Disease Classification Using Computational
Approach,
IJIG(23), No. 3 2023, pp. 2240007.
DOI Link
2306
BibRef
Mirandilla, J.R.F.[Jean Rochielle F.],
Yamashita, M.[Megumi],
Yoshimura, M.[Mitsunori],
Paringit, E.C.[Enrico C.],
Leaf Spectral Analysis for Detection and Differentiation of Three
Major Rice Diseases in the Philippines,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Wang, Y.X.[Yan-Xiang],
Xing, M.F.[Min-Feng],
Zhang, H.G.[Hong-Guo],
He, B.B.[Bin-Bin],
Zhang, Y.[Yi],
Rice False Smut Monitoring Based on Band Selection of UAV
Hyperspectral Data,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Malvade, N.N.[Naveen N.],
Yakkundimath, R.[Rajesh],
Saunshi, G.B.[Girish B.],
Elemmi, M.C.[Mahantesh C.],
Paddy variety identification from field crop images using deep learning
techniques,
IJCVR(13), No. 4, 2023, pp. 405-419.
DOI Link
2307
BibRef
Chou, Y.S.[Yi-Shin],
Chou, C.Y.[Cheng-Ying],
Deep Learning Approach for Paddy Field Detection Using Labeled Aerial
Images: The Case of Detecting and Staging Paddy Fields in Central and
Southern Taiwan,
RS(15), No. 14, 2023, pp. 3575.
DOI Link
2307
BibRef
Fu, T.[Tingyan],
Tian, S.[Shufang],
Ge, J.[Jia],
R-Unet: A Deep Learning Model for Rice Extraction in Rio Grande do
Sul, Brazil,
RS(15), No. 16, 2023, pp. 4021.
DOI Link
2309
BibRef
Huang, C.H.[Chen-Hao],
You, S.[Shucheng],
Liu, A.[Aixia],
Li, P.[Penghan],
Zhang, J.H.[Jian-Hua],
Deng, J.S.[Jin-Song],
High-Resolution National-Scale Mapping of Paddy Rice Based on
Sentinel-1/2 Data,
RS(15), No. 16, 2023, pp. 4055.
DOI Link
2309
BibRef
Zhang, J.C.[Jing-Cheng],
Li, H.[Huizi],
Tian, Y.Y.[Yang-Yang],
Qiu, H.X.[Han-Xiao],
Zhou, X.[Xuehe],
Ma, H.Q.[Hui-Qin],
Yuan, L.[Lin],
Assessing Rice Sheath Blight Disease Habitat Suitability at a
Regional Scale through Multisource Data Analysis,
RS(15), No. 23, 2023, pp. 5530.
DOI Link
2312
BibRef
Yamashita, M.[Megumi],
Kaieda, T.[Tomoya],
Toyoda, H.[Hiro],
Yamaguchi, T.[Tomoaki],
Katsura, K.[Keisuke],
Spatial Estimation of Daily Growth Biomass in Paddy Rice Field Using
Canopy Photosynthesis Model Based on Ground and UAV Observations,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Wang, G.Z.[Geng-Ze],
Meng, D.[Di],
Chen, R.Q.[Ri-Qiang],
Yang, G.J.[Gui-Jun],
Wang, L.G.[Lai-Gang],
Jin, H.L.[Hai-Liang],
Ge, X.S.[Xiao-San],
Feng, H.K.[Hai-Kuan],
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative
Clustering and Multi-Source Remote Sensing Images,
RS(16), No. 2, 2024, pp. 277.
DOI Link
2402
BibRef
Zhang, B.[Bolin],
Li, K.[Kun],
Zhang, F.[Fengli],
Shao, Y.[Yun],
Wang, D.[Duo],
Lou, L.[Linjiang],
Rice Height Estimation with Multi-Baseline PolInSAR Data and Optimal
Detection Baseline Combination Analysis,
RS(16), No. 2, 2024, pp. 358.
DOI Link
2402
BibRef
Zhu, W.C.[Wen-Chao],
Peng, X.Q.[Xin-Qin],
Ding, M.J.[Ming-Jun],
Li, L.H.[Lan-Hui],
Liu, Y.[Yaqun],
Liu, W.[Wei],
Yang, M.D.[Meng-Die],
Chen, X.X.[Xin-Xin],
Cai, J.[Jiale],
Huang, H.B.[Han-Bing],
Dong, Y.H.[Ying-Han],
Lu, J.[Jiaye],
Decline in Planting Areas of Double-Season Rice by Half in Southern
China over the Last Two Decades,
RS(16), No. 3, 2024, pp. 440.
DOI Link
2402
BibRef
Hosonuma, K.[Kohei],
Aida, K.[Kentaro],
Ballaran, V.[Vicente],
Nagumo, N.[Naoko],
Sanchez, P.A.J.[Patricia Ann J.],
Sumita, T.[Tsuyoshi],
Homma, K.[Koki],
Evaluation of Geographical and Annual Changes in Rice Planting
Patterns Using Satellite Images in the Flood-Prone Area of the
Pampanga River Basin, the Philippines,
RS(16), No. 3, 2024, pp. 499.
DOI Link
2402
BibRef
Prabhakar, M.[Mathyam],
Gopinath, K.A.[Kodigal A.],
Kumar, N.R.[Nakka Ravi],
Thirupathi, M.[Merugu],
Sravan, U.S.[Uppu Sai],
Kumar, G.S.[Golla Srasvan],
Siva, G.S.[Gutti Samba],
Chandana, P.[Pebbeti],
Singh, V.K.[Vinod Kumar],
Mapping Leaf Area Index at Various Rice Growth Stages in Southern
India Using Airborne Hyperspectral Remote Sensing,
RS(16), No. 6, 2024, pp. 954.
DOI Link
2403
BibRef
Wang, Q.Y.[Qing-Yan],
Sun, L.Z.[Long-Zhi],
Yang, X.[Xuan],
Identifying Spatial Determinants of Rice Yields in Main Producing
Areas of China Using Geospatial Machine Learning,
IJGI(13), No. 3, 2024, pp. 76.
DOI Link
2404
BibRef
Gao, X.Y.[Xin-Yi],
Chi, H.[Hong],
Huang, J.L.[Jin-Liang],
Han, Y.F.[Yi-Fei],
Li, Y.F.[Yi-Fan],
Ling, F.[Feng],
Comparison of Cloud-Mask Algorithms and Machine-Learning Methods
Using Sentinel-2 Imagery for Mapping Paddy Rice in Jianghan Plain,
RS(16), No. 7, 2024, pp. 1305.
DOI Link
2404
BibRef
Du, X.Y.[Xiao-Yue],
Zheng, L.Y.[Li-Yuan],
Zhu, J.P.[Jiang-Peng],
He, Y.[Yong],
Enhanced Leaf Area Index Estimation in Rice by Integrating UAV-Based
Multi-Source Data,
RS(16), No. 7, 2024, pp. 1138.
DOI Link
2404
BibRef
Sato, Y.[Yuki],
Tsuji, T.[Takeshi],
Matsuoka, M.[Masayuki],
Estimation of Rice Plant Coverage Using Sentinel-2 Based on
UAV-Observed Data,
RS(16), No. 9, 2024, pp. 1628.
DOI Link
2405
BibRef
Clarke, A.[Allister],
Yates, D.[Darren],
Blanchard, C.[Christopher],
Islam, M.Z.[Md. Zahidul],
Ford, R.[Russell],
Rehman, S.U.[Sabih-Ur],
Walsh, R.P.[Robert Paul],
Integrating Climate and Satellite Data for Multi-Temporal Pre-Harvest
Prediction of Head Rice Yield in Australia,
RS(16), No. 10, 2024, pp. 1815.
DOI Link
2405
BibRef
Yang, M.L.[Mao-Lin],
Guo, B.[Bin],
Wang, J.L.[Jian-Lin],
A novel and robust method for large-scale single-season rice mapping
based on phenology and statistical data,
PandRS(213), 2024, pp. 14-32.
Elsevier DOI
2406
Rice mapping, Phenology index, Statistical data, Northern China, Sentinel-2
BibRef
Yu, M.L.[Ming-Lei],
He, J.Y.[Jiao-Yang],
Li, W.[Wanyu],
Zheng, H.B.[Heng-Biao],
Wang, X.[Xue],
Yao, X.[Xia],
Cheng, T.[Tao],
Zhang, X.[Xiaohu],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Tian, Y.C.[Yong-Chao],
Estimation of Rice Leaf Area Index Utilizing a Kalman Filter Fusion
Methodology Based on Multi-Spectral Data Obtained from Unmanned
Aerial Vehicles (UAVs),
RS(16), No. 12, 2024, pp. 2073.
DOI Link
2406
BibRef
Lin, F.F.[Fen-Fang],
Li, B.R.[Bao-Rui],
Zhou, R.[Ruiyu],
Chen, H.Z.[Hong-Zhou],
Zhang, J.[Jingcheng],
Early Detection of Rice Sheath Blight Using Hyperspectral Remote
Sensing,
RS(16), No. 12, 2024, pp. 2047.
DOI Link
2406
BibRef
Li, Y.C.[Yue-Chen],
Zhao, R.K.[Rong-Kun],
Wang, Y.[Yue],
Mapping Ratoon Rice Fields Based on SAR Time Series and Phenology
Data in Cloudy Regions,
RS(16), No. 15, 2024, pp. 2703.
DOI Link
2408
BibRef
Filho, A.S.F.[Alexandre S. Fernandes],
Fonseca, L.M.G.[Leila M. G.],
Bendini, H.D.N.[Hugo Do N.],
Mapping Irrigated Rice in Brazil Using Sentinel-2 Spectral-Temporal
Metrics and Random Forest Algorithm,
RS(16), No. 16, 2024, pp. 2900.
DOI Link
2408
BibRef
Zhang, Y.[Yuan],
Jiang, Y.[Youyi],
Xu, B.[Bo],
Yang, G.J.[Gui-Jun],
Feng, H.K.[Hai-Kuan],
Yang, X.D.[Xiao-Dong],
Yang, H.[Hao],
Liu, C.B.[Chang-Bin],
Cheng, Z.[Zhida],
Feng, Z.H.[Zi-Heng],
Study on the Estimation of Leaf Area Index in Rice Based on UAV RGB
and Multispectral Data,
RS(16), No. 16, 2024, pp. 3049.
DOI Link
2408
BibRef
Chen, X.B.[Xue-Bing],
Shen, R.[Ruoque],
Pan, B.H.[Bai-Hong],
Peng, Q.Y.[Qiong-Yan],
Zhang, X.[Xi],
Fu, Y.Y.[Yang-Yang],
Yuan, W.P.[Wen-Ping],
A High-Resolution Distribution Dataset of Paddy Rice in India Based
on Satellite Data,
RS(16), No. 17, 2024, pp. 3180.
DOI Link
2409
BibRef
Liu, R.[Ruoqi],
Dong, J.[Jinwei],
Ge, Y.[Yong],
Lin, H.[Hui],
Che, X.[Xianghong],
Di, Y.Y.[Yuan-Yuan],
Chen, X.[Xi],
Qi, S.H.[Shu-Hua],
Ding, M.J.[Ming-Jun],
Xiao, X.M.[Xiang-Ming],
Zhang, G.[Geli],
Tracking paddy rice acreage, flooding impacts, and mitigations during
El Niño flooding events using Sentinel-1/2 imagery and cloud
computing,
PandRS(217), 2024, pp. 165-178.
Elsevier DOI
2409
In-season rice mapping, Flood mapping,
Post-flood rice replanting, Extreme weather, Agricultural mitigation
BibRef
Ibrahim, S.[Sa'ad],
Balzter, H.[Heiko],
Evaluating Flood Damage to Paddy Rice Fields Using PlanetScope and
Sentinel-1 Data in North-Western Nigeria: Towards Potential Climate
Adaptation Strategies,
RS(16), No. 19, 2024, pp. 3657.
DOI Link
2410
BibRef
Appalanaidu, M.V.[Majji V.],
Kumaravelan, G.,
Nutrient Deficiency Classification in Rice Plants Using DenseNet121,
IJIG(24), No. 5, September 2024, pp. 2340010.
DOI Link
2410
BibRef
Baldin, C.M.[Christian Massimiliano],
Casella, V.M.[Vittorio Marco],
Vegetative Index Intercalibration Between PlanetScope and Sentinel-2
Through a SkySat Classification in the Context of 'Riserva San
Massimo' Rice Farm in Northern Italy,
RS(16), No. 21, 2024, pp. 3921.
DOI Link
2411
BibRef
Hu, X.L.[Xiao-Long],
Shi, L.[Liangsheng],
Lin, L.[Lin],
Li, S.[Shenji],
Deng, X.Z.[Xian-Zhi],
Li, J.[Jinmin],
Bian, J.[Jiang],
Su, C.[Chenye],
Du, S.[Shuai],
Wang, T.[Tinghan],
Wang, Y.J.[Yu-Jie],
Zhang, Z.[Zhitao],
Accurate Estimation of Gross Primary Production of Paddy Rice
Cropland with UAV Imagery-Driven Leaf Biochemical Model,
RS(16), No. 20, 2024, pp. 3906.
DOI Link
2411
BibRef
Wang, X.Q.[Xiao-Qi],
Wang, Y.J.[Yao-Jun],
Zhao, J.B.[Jing-Bo],
Niu, J.[Jing],
ECA-ConvNeXt: A Rice Leaf Disease Identification Model Based on
ConvNeXt,
AgriVision23(6235-6243)
IEEE DOI
2309
BibRef
Yamashita, M.,
Toyoda, H.,
Tanaka, Y.,
Light Environment and LAI Monitoring In Rice Community By Ground- And
UAV-based Remote Sensing,
ISPRS20(B3:1085-1089).
DOI Link
2012
BibRef
Saadat, M.,
Hasanlou, M.,
Homayouni, S.,
Rice Crop Mapping Using Sentinel-1 Time Series Images (case Study:
Mazandaran, Iran),
SMPR19(897-904).
DOI Link
1912
BibRef
Sakata, K.,
Rikimaru, A.,
Yasunaga, Y.,
Study On Extraction Methodology of Rice Growth Characteristics in Field
Using Terrestrial Laser Measurement Data,
Environmental19(61-67).
DOI Link
1904
BibRef
Yamada, Y.,
Crop Species Recognition And Discrimination Paddy-rice-growingfields
From Reaped-fields By The Radar Vegetation Index (rvi) Of
Alos-2/palsar2,
ISPRS16(B8: 1083-1087).
DOI Link
1610
BibRef
Kimura, A.,
Kondo, A.,
Mochizuki, K.,
A Study on the SAR Data Observation Time For The Classification Of
Planting Condition Of Paddy Fields,
ISPRS16(B8: 927-930).
DOI Link
1610
BibRef
Willkomm, M.,
Bolten, A.,
Bareth, G.,
Non-destructive Monitoring Of Rice By Hyperspectral In-field
Spectrometry And Uav-based Remote Sensing: Case Study Of Field-grown
Rice In North Rhine-westphalia, Germany,
ISPRS16(B1: 1071-1077).
DOI Link
1610
BibRef
Chen, C.F.,
Son, N.T.,
Chen, C.R.,
Chang, L.Y.,
Chiang, S.H.,
Rice Crop Mapping Using Sentinel-1a Phenological Metrics,
ISPRS16(B8: 863-865).
DOI Link
1610
BibRef
Son, N.T.,
Chen, C.F.,
Chen, C.R.,
Chang, L.Y.,
Chiang, S.H.,
Rice Yield Estimation Through Assimilating Satellite Data Into A Crop
Simumlation Model,
ISPRS16(B8: 993-996).
DOI Link
1610
BibRef
Elshorbagy, A.M.,
Imam, E.H.,
Nour, M.H.,
Rice Area Inter Annual Variation through a Remote Sensing Based Mapping
Algorithm,
SSG13(81-85).
DOI Link
1402
BibRef
Hashjin, S.S.[S. Sharifi],
Darvishzadeh, R.,
Khandan, R.,
A Study toward the Evaluation of ALOS Images for LAI Estimation in Rice
Fields,
SMPR13(509-514).
DOI Link
1311
BibRef
Bendig, J.,
Willkomm, M.,
Tilly, N.,
Gnyp, M.L.,
Bennertz, S.,
Qiang, C.,
Miao, Y.,
Lenz-Wiedemann, V.I.S.,
Bareth, G.,
Very high resolution crop surface models (CSMs) from UAV-based stereo
images for rice growth monitoring In Northeast China,
UAV-g13(45-50).
DOI Link
1311
BibRef
Tilly, N.,
Hoffmeister, D.,
Liang, H.,
Cao, Q.,
Liu, Y.,
Lenz-Wiedemann, V.,
Miao, Y.,
Bareth, G.,
Evaluation of Terrestrial Laser Scanning for Rice Growth Monitoring,
ISPRS12(XXXIX-B7:351-356).
DOI Link
1209
BibRef
Wu, L.[Ling],
Liu, X.N.[Xiang-Nan],
Liu, M.L.[Mei-Ling],
Analysis of the fractal characteristic of the hyperspectral curves of
the rice under plumbum pollution stress,
CVRS12(296-300).
IEEE DOI
1302
BibRef
Sarkar, S.[Subrata],
Bhattacharyya, N.[Nabarun],
Mukherjee, S.[Subhankar],
Determination of Amylose content in rice using electronic tongue,
ICIIP11(1-4).
IEEE DOI
1112
BibRef
Zhou, Y.F.[Ying-Feng],
Wang, Y.M.[Ya-Ming],
Yao, Q.[Qing],
Segmentation of rice disease spots based on improved BPNN,
IASP10(575-578).
IEEE DOI
1004
BibRef
Li, M.W.[Ming-Wei],
Zhang, W.[Wei],
Research and Implement of Head Milled Rice Detection High-Speed
Algorithm Based on FPGA,
CISP09(1-4).
IEEE DOI
0910
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Wheat Crop Analysis, Detection, Change .