Dony, R.D.,
Haykin, S.,
Neural Network Approaches To Image Compression,
PIEEE(83), No. 2, February 1995, pp. 288-303.
BibRef
9502
Chang, W.,
Soliman, H.S.,
Image-Coding by a Neural-Net Classification Process,
AppAI(11), No. 1, January/February 1997, pp. 33-57.
9702
BibRef
Benbenisti, Y.,
Kornreich, D.,
Mitchell, H.B.,
Schaefer, P.A.,
New Simple 3-Layer Neural Network for Image Compression,
OptEng(36), No. 6, June 1997, pp. 1814-1817.
9706
BibRef
Abdelwahhab, O.,
Fahmy, M.M.,
Image Compression Using Multilayer Neural Networks,
VISP(144), No. 5, October 1997, pp. 307-312.
9806
BibRef
Jiang, J.,
Image compression with neural networks: A survey,
SP:IC(14), No. 9, July 1999, pp. 737-760.
Elsevier DOI
Survey, Compression.
BibRef
9907
Clausen, C.[Clifford],
Wechsler, H.[Harry],
Color image compression using PCA and backpropagation learning,
PR(33), No. 9, September 2000, pp. 1555-1560.
Elsevier DOI
0005
BibRef
Zheng, M.,
Bu, J.,
Chen, C.A.,
Wang, C.,
Zhang, L.,
Qiu, G.,
Cai, D.,
Graph Regularized Sparse Coding for Image Representation,
IP(20), No. 5, May 2011, pp. 1327-1336.
IEEE DOI
1104
Find a basis set capturing high-level semantics in the data and learn
sparse coordinates in terms of the basis set.
BibRef
Zhang, C.,
He, X.,
Image Compression by Learning to Minimize the Total Error,
CirSysVideo(23), No. 4, April 2013, pp. 565-576.
IEEE DOI
1304
BibRef
Xu, M.[Mai],
Li, S.X.[Sheng-Xi],
Lu, J.H.[Jian-Hua],
Zhu, W.W.[Wen-Wu],
Compressibility Constrained Sparse Representation With Learnt
Dictionary for Low Bit-Rate Image Compression,
CirSysVideo(24), No. 10, October 2014, pp. 1743-1757.
IEEE DOI
1411
BibRef
Earlier: A1, A3, A4, Only:
Sparse representation of texture patches for low bit-rate image
compression,
VCIP12(1-6).
IEEE DOI
1302
BibRef
Gao, F.Y.[Fang-Yuan],
Deng, X.[Xin],
Jing, J.P.[Jun-Peng],
Zou, X.[Xin],
Xu, M.[Mai],
Extremely Low Bit-Rate Image Compression via Invertible Image
Generation,
CirSysVideo(34), No. 8, August 2024, pp. 6993-7004.
IEEE DOI
2408
Image coding, Image restoration, Image synthesis, Standards,
Image reconstruction, Transform coding, Task analysis, invertible network
BibRef
Gao, F.Y.[Fang-Yuan],
Deng, X.[Xin],
Gao, C.[Chao],
Xu, M.[Mai],
ULcompress: A Unified low bit-rate image Compression Framework via
Invertible Image Representation,
ICIP23(2095-2099)
IEEE DOI
2312
BibRef
Sun, Y.P.[Yi-Peng],
Tao, X.M.[Xiao-Ming],
Li, Y.[Yang],
Lu, J.H.[Jian-Hua],
Dictionary Learning for Image Coding Based on Multisample Sparse
Representation,
CirSysVideo(24), No. 11, November 2014, pp. 2004-2010.
IEEE DOI
1411
compressed sensing
BibRef
Ma, L.[Lin],
Zhao, D.B.[De-Bin],
Gao, W.[Wen],
Learning-based image restoration for compressed images,
SP:IC(27), No. 1, January 2012, pp. 54-65.
Elsevier DOI
1201
Image restoration; Compression artifacts; Primitive
BibRef
Liu, X.M.[Xian-Ming],
Cheung, G.[Gene],
Wu, X.L.[Xiao-Lin],
Zhao, D.B.[De-Bin],
Random Walk Graph Laplacian-Based Smoothness Prior for Soft Decoding
of JPEG Images,
IP(26), No. 2, February 2017, pp. 509-524.
IEEE DOI
1702
BibRef
Earlier:
Inter-block consistent soft decoding of JPEG images with sparsity and
graph-signal smoothness priors,
ICIP15(1628-1632)
IEEE DOI
1512
Laplace equations.
graph signal processing; image decoding; sparse signal representation
BibRef
Liu, X.M.[Xian-Ming],
Wu, X.L.[Xiao-Lin],
Zhou, J.T.[Jian-Tao],
Zhao, D.B.[De-Bin],
Data-driven sparsity-based restoration of JPEG-compressed images in
dual transform-pixel domain,
CVPR15(5171-5178)
IEEE DOI
1510
BibRef
Liu, X.M.[Xian-Ming],
Wu, X.L.[Xiao-Lin],
Zhao, D.B.[De-Bin],
Sparsity-based soft decoding of compressed images in transform domain,
ICIP13(563-566)
IEEE DOI
1402
Decoding. Restore compressed images not decoded images.
BibRef
Braca, P.,
Lazzeretti, R.,
Marano, S.,
Matta, V.,
Learning With Privacy in Consensus + Obfuscation,
SPLetters(23), No. 9, September 2016, pp. 1174-1178.
IEEE DOI
1609
data privacy
BibRef
Alshehri, S.A.,
Neural network technique for image compression,
IET-IP(10), No. 3, 2016, pp. 222-226.
DOI Link
1603
data compression
BibRef
Jiang, F.,
Tao, W.,
Liu, S.,
Ren, J.,
Guo, X.,
Zhao, D.,
An End-to-End Compression Framework Based on Convolutional Neural
Networks,
CirSysVideo(28), No. 10, October 2018, pp. 3007-3018.
IEEE DOI
1811
Image coding, Transform coding, Image reconstruction,
Neural networks, Codecs, Convolutional codes,
convolutional neural networks (CNNs)
BibRef
Ding, J.,
Wang, I.,
Chen, H.,
Improved Efficiency on Adaptive Arithmetic Coding for Data
Compression Using Range-Adjusting Scheme, Increasingly Adjusting
Step, and Mutual-Learning Scheme,
CirSysVideo(28), No. 12, December 2018, pp. 3412-3423.
IEEE DOI
1812
Image coding, Probability distribution, Transform coding,
Entropy coding, Adaptation models, Data compression,
lossless image compression by edge-directed prediction
BibRef
Gan, Z.L.[Zong-Liang],
Low Bit-Rate Compression Image Restoration through Subspace Joint
Regression Learning,
IEICE(E101-D), No. 10, October 2018, pp. 2539-2542.
WWW Link.
1810
BibRef
Zhao, L.J.[Li-Jun],
Bai, H.H.[Hui-Hui],
Wang, A.H.[An-Hong],
Zhao, Y.[Yao],
Learning a virtual codec based on deep convolutional neural network
to compress image,
JVCIR(63), 2019, pp. 102589.
Elsevier DOI
1909
Image representation, Image compression, Soft-projection,
Virtual codec, Post-processing
BibRef
Dumas, T.,
Roumy, A.,
Guillemot, C.,
Context-Adaptive Neural Network-Based Prediction for Image
Compression,
IP(29), No. 1, 2020, pp. 679-693.
IEEE DOI
1910
convolutional neural nets, data compression, image texture,
set theory, video codecs, video coding, image compression,
neural networks
BibRef
Fu, H.S.[Hai-Sheng],
Liang, F.[Feng],
Lei, B.[Bo],
Bian, N.[Nai],
Zhang, Q.[Qian],
Akbari, M.[Mohammad],
Liang, J.[Jie],
Tu, C.J.[Cheng-Jie],
Improved hybrid layered image compression using deep learning and
traditional codecs,
SP:IC(82), 2020, pp. 115774.
Elsevier DOI
2001
Deep learning-based image coding, Layered image coding,
Residual coding, Convolutional neural network, Autoencoder
BibRef
Song, Q.,
Xiong, R.,
Fan, X.,
Liu, D.,
Wu, F.,
Huang, T.,
Gao, W.,
Compressed Image Restoration via Artifacts-Free PCA Basis Learning
and Adaptive Sparse Modeling,
IP(29), 2020, pp. 7399-7413.
IEEE DOI
2007
Compressed image restoration, sparse modeling,
paired PCA learning, adaptive distribution modeling
BibRef
Liu, J.,
Liu, D.,
Yang, W.,
Xia, S.,
Zhang, X.,
Dai, Y.,
A Comprehensive Benchmark for Single Image Compression Artifact
Reduction,
IP(29), 2020, pp. 7845-7860.
IEEE DOI
2007
Compression artifacts removal, benchmark, side information,
loop filter, deep learning
BibRef
Cheng, Z.,
Sun, H.,
Takeuchi, M.,
Katto, J.,
Energy Compaction-Based Image Compression Using Convolutional
AutoEncoder,
MultMed(22), No. 4, April 2020, pp. 860-873.
IEEE DOI
2004
Image compression, convolutional autoencoder,
optimum bit allocation, energy compaction
BibRef
Yeo, Y.,
Shin, Y.,
Sagong, M.,
Kim, S.,
Ko, S.,
Simple Yet Effective Way for Improving the Performance of Lossy Image
Compression,
SPLetters(27), 2020, pp. 530-534.
IEEE DOI
2005
Convolutional neural network, deep learning, image compression
BibRef
Cai, J.,
Cao, Z.,
Zhang, L.,
Learning a Single Tucker Decomposition Network for Lossy Image
Compression With Multiple Bits-per-Pixel Rates,
IP(29), 2020, pp. 3612-3625.
IEEE DOI
2002
Lossy image compression, convolutional neural networks, tucker decomposition
BibRef
Schiopu, I.,
Munteanu, A.,
Deep-Learning-Based Lossless Image Coding,
CirSysVideo(30), No. 7, July 2020, pp. 1829-1842.
IEEE DOI
2007
Image coding, Cameras, Context modeling, Tools, Codecs,
Prediction methods, Standards, Machine learning, image coding, context modeling
BibRef
Chen, L.H.,
Bampis, C.G.,
Li, Z.,
Norkin, A.,
Bovik, A.C.,
ProxIQA: A Proxy Approach to Perceptual Optimization of Learned Image
Compression,
IP(30), 2021, pp. 360-373.
IEEE DOI
2012
Image coding, Optimization, Image quality, Training, Task analysis,
Indexes, Loss measurement, Perceptual optimization,
deep compression
BibRef
Kudo, S.[Shinobu],
Orihashi, S.[Shota],
Tanida, R.[Ryuichi],
Takamura, S.[Seishi],
Kimata, H.[Hideaki],
GAN-Based Image Compression Using Mutual Information for Optimizing
Subjective Image Similarity,
IEICE(E104-D), No. 3, March 2021, pp. 450-460.
WWW Link.
2103
BibRef
Wang, J.,
Duan, Y.,
Tao, X.,
Xu, M.,
Lu, J.,
Semantic Perceptual Image Compression With a Laplacian Pyramid of
Convolutional Networks,
IP(30), 2021, pp. 4225-4237.
IEEE DOI
2104
BibRef
Earlier: A1, A3, A4, A5, Only:
ICIP19(699-703)
IEEE DOI
1910
Image coding, Laplace equations, Semantics,
Generative adversarial networks, Training, Image reconstruction,
perceptual quality.
image compression, deep learning, Laplacian pyramid,
adversarial network, perceptual loss
BibRef
Dua, Y.[Yaman],
Singh, R.S.[Ravi Shankar],
Parwani, K.[Kshitij],
Lunagariya, S.[Smit],
Kumar, V.[Vinod],
Convolution Neural Network based lossy compression of hyperspectral
images,
SP:IC(95), 2021, pp. 116255.
Elsevier DOI
2106
Autoencoder, Lossy compression, Convolution Neural Network,
Hyperspectral images, Learning based compression
BibRef
Zhao, S.H.[Shi-Hui],
Yang, S.Y.[Shu-Yuan],
Gu, J.[Jing],
Liu, Z.[Zhi],
Feng, Z.X.[Zhi-Xi],
Symmetrical lattice generative adversarial network for remote sensing
images compression,
PandRS(176), 2021, pp. 169-181.
Elsevier DOI
2106
Generative adversarial network,
Remote sensing image compression, Symmetrical lattice, Cooperative learning
BibRef
Chen, Y.H.[Yi-Hao],
Tan, B.[Bin],
Wu, J.[Jun],
Zhang, Z.F.[Zhi-Feng],
Ren, H.Q.[Hao-Qi],
A Deep Image Coding Scheme With Generative Network to Learn From
Correlated Images,
MultMed(23), 2021, pp. 2235-2244.
IEEE DOI
2108
Image coding, Image reconstruction, Inverse problems,
Generative adversarial networks, Generators, Deep learning, inverse problem
BibRef
Wang, Z.X.[Zi-Xi],
Ding, G.G.[Gui-Guang],
Han, J.G.[Jun-Gong],
Li, F.[Fan],
Deep image compression with multi-stage representation,
JVCIR(79), 2021, pp. 103226.
Elsevier DOI
2109
Deep image compression, Multi-stage representation,
Data-dependent probability model, Convolutional neural network
BibRef
Hong, W.X.[Wei-Xin],
Chen, T.[Tong],
Lu, M.[Ming],
Pu, S.L.[Shi-Liang],
Ma, Z.[Zhan],
Efficient Neural Image Decoding via Fixed-Point Inference,
CirSysVideo(31), No. 9, September 2021, pp. 3618-3630.
IEEE DOI
2109
Image coding, Decoding, Task analysis, Convolutional codes,
Transform coding, Quantization (signal), Dynamic range,
range-dependent normalization
BibRef
Sun, S.[Simeng],
He, T.Y.[Tian-Yu],
Chen, Z.B.[Zhi-Bo],
Semantic Structured Image Coding Framework for Multiple Intelligent
Applications,
CirSysVideo(31), No. 9, September 2021, pp. 3631-3642.
IEEE DOI
2109
Image coding, Task analysis, Bit rate, Image reconstruction,
Amplitude modulation, Semantics, Computational modeling,
neural networks
BibRef
Guo, Z.Y.[Zong-Yu],
Zhang, Z.Z.[Zhi-Zheng],
Feng, R.S.[Run-Sen],
Chen, Z.B.[Zhi-Bo],
Causal Contextual Prediction for Learned Image Compression,
CirSysVideo(32), No. 4, April 2022, pp. 2329-2341.
IEEE DOI
2204
Context modeling, Predictive models, Image coding, Entropy,
Correlation, Entropy coding, Transforms, Learned image compression,
improved entropy model
BibRef
Mei, Y.X.[Yi-Xin],
Li, L.[Li],
Li, Z.[Zhu],
Li, F.[Fan],
Learning-Based Scalable Image Compression With Latent-Feature Reuse
and Prediction,
MultMed(24), 2022, pp. 4143-4157.
IEEE DOI
2208
Image coding, Standards, Redundancy, Streaming media, Scalability,
Image reconstruction, Spatial resolution,
convolutional neural network
BibRef
Li, D.W.[Dao-Wen],
Li, Y.M.[Ying-Ming],
Sun, H.M.[He-Ming],
Yu, L.[Lu],
Deep image compression based on multi-scale deformable convolution,
JVCIR(87), 2022, pp. 103573.
Elsevier DOI
2208
Deep image compression, Multi-scale deformable convolution, Spatial attention
BibRef
Lopes, L.S.[Lucas S.],
Chou, P.A.[Philip A.],
de Queiroz, R.L.[Ricardo L.],
Adaptive Context Modeling for Arithmetic Coding Using Perceptrons,
SPLetters(29), 2022, pp. 2382-2386.
IEEE DOI
2212
Context modeling, Training, Adaptation models, Table lookup, Symbols,
Encoding, Codes, Adaptive arithmetic coding, neural context modeling
BibRef
Tang, Z.[Zhisen],
Wang, H.[Hanli],
Yi, X.K.[Xiao-Kai],
Zhang, Y.[Yun],
Kwong, S.[Sam],
Kuo, C.C.J.[C.C. Jay],
Joint Graph Attention and Asymmetric Convolutional Neural Network for
Deep Image Compression,
CirSysVideo(33), No. 1, January 2023, pp. 421-433.
IEEE DOI
2301
Image coding, Convolution, Convolutional neural networks, Training,
Kernel, Visualization, Rate-distortion, Image compression,
variational autoencoder
BibRef
Guo, J.Y.[Jin-Yang],
Xu, D.[Dong],
Lu, G.[Guo],
CBANet: Toward Complexity and Bitrate Adaptive Deep Image Compression
Using a Single Network,
IP(32), 2023, pp. 2049-2062.
IEEE DOI
2304
Image coding, Bit rate, Decoding, Computational complexity,
Computational modeling, Adaptive systems, Rate-distortion,
dynamic computational complexity
BibRef
Fu, H.S.[Hai-Sheng],
Liang, F.[Feng],
Lin, J.P.[Jian-Ping],
Li, B.[Bing],
Akbari, M.[Mohammad],
Liang, J.[Jie],
Zhang, G.[Guohe],
Liu, D.[Dong],
Tu, C.J.[Cheng-Jie],
Han, J.N.[Jing-Ning],
Learned Image Compression With Gaussian-Laplacian-Logistic Mixture
Model and Concatenated Residual Modules,
IP(32), 2023, pp. 2063-2076.
IEEE DOI
2304
Image coding, Entropy, Entropy coding, Decoding, Correlation,
Context modeling, Complexity theory, residual network
BibRef
Bao, Y.[Youneng],
Meng, F.Y.[Fan-Yang],
Li, C.[Chao],
Ma, S.W.[Si-Wei],
Tian, Y.H.[Yong-Hong],
Liang, Y.S.[Yong-Sheng],
Nonlinear Transforms in Learned Image Compression From a
Communication Perspective,
CirSysVideo(33), No. 4, April 2023, pp. 1922-1936.
IEEE DOI
2304
Transforms, Modulation, Image coding, Communication systems,
Quantization (signal), Mathematical models, Context modeling,
nonlinear transform
BibRef
Yang, Y.[Yibo],
Mandt, S.[Stephan],
Theis, L.[Lucas],
An Introduction to Neural Data Compression,
FTCGV(15), No. 2, 2023, pp. 113-200.
DOI Link
2305
Survey, Compression.
BibRef
Wang, S.R.[Shu-Run],
Wang, Z.[Zhao],
Wang, S.Q.[Shi-Qi],
Ye, Y.[Yan],
Deep Image Compression Toward Machine Vision:
A Unified Optimization Framework,
CirSysVideo(33), No. 6, June 2023, pp. 2979-2989.
IEEE DOI
2306
Visualization, Image coding, Machine vision, Transform coding,
Task analysis, Feature extraction, Bit rate, Image compression, machine vision
BibRef
Lee, S.[Soonbin],
Jeong, J.B.[Jong-Beom],
Ryu, E.S.[Eun-Seok],
Entropy-Constrained Implicit Neural Representations for Deep Image
Compression,
SPLetters(30), 2023, pp. 663-667.
IEEE DOI
2307
Image coding, Entropy, Computational modeling, Training, Data models,
Neural networks, Distortion, Image compression, model compression,
implicit neural representation
BibRef
Fu, H.S.[Hai-Sheng],
Liang, F.[Feng],
Liang, J.[Jie],
Li, B.L.[Bing-Lin],
Zhang, G.[Guohe],
Han, J.N.[Jing-Ning],
Asymmetric Learned Image Compression With Multi-Scale Residual Block,
Importance Scaling, and Post-Quantization Filtering,
CirSysVideo(33), No. 8, August 2023, pp. 4309-4321.
IEEE DOI
2308
Image coding, Decoding, Complexity theory, Quantization (signal),
Entropy coding, Bit rate, Measurement
BibRef
Luo, S.[Sihui],
Fang, G.F.[Gong-Fan],
Song, M.L.[Ming-Li],
Deep semantic image compression via cooperative network pruning,
JVCIR(95), 2023, pp. 103897.
Elsevier DOI
2309
Deep image compression, Network pruning, Semantic perception
BibRef
Duan, W.H.[Wen-Hong],
Chang, Z.[Zheng],
Jia, C.M.[Chuan-Min],
Wang, S.S.[Shan-She],
Ma, S.W.[Si-Wei],
Song, L.[Li],
Gao, W.[Wen],
Learned Image Compression Using Cross-Component Attention Mechanism,
IP(32), 2023, pp. 5478-5493.
IEEE DOI
2310
BibRef
Zhang, G.[Gai],
Zhang, X.F.[Xin-Feng],
Tang, L.[Lv],
Enhanced Quantified Local Implicit Neural Representation for Image
Compression,
SPLetters(30), 2023, pp. 1742-1746.
IEEE DOI
2312
BibRef
Tsubota, K.[Koki],
Aizawa, K.[Kiyoharu],
Content-Adaptive Optimization Framework for Universal Deep Image
Compression,
IEICE(E108-D), No. 2, February 2024, pp. 201-211.
WWW Link.
2402
BibRef
Tsubota, K.[Koki],
Akutsu, H.[Hiroaki],
Aizawa, K.[Kiyoharu],
Universal Deep Image Compression via Content-Adaptive Optimization
with Adapters,
WACV23(2528-2537)
IEEE DOI
2302
Adaptation models, Image coding, Codes, Transform coding,
Rate-distortion, Benchmark testing,
image and video synthesis
BibRef
Liang, Y.X.[Yan-Xia],
Zhao, M.[Meng],
Liu, X.[Xin],
Jiang, J.[Jing],
Lu, G.Y.[Guang-Yue],
Jia, T.[Tong],
An adaptive image compression algorithm based on joint clustering
algorithm and deep learning,
IET-IPR(18), No. 3, 2024, pp. 829-837.
DOI Link
2402
image processing, neural networks, pixel clustering
BibRef
Sui, Y.[Yang],
Ding, D.[Ding],
Pan, X.[Xiang],
Xu, X.Z.[Xiao-Zhong],
Liu, S.[Shan],
Yuan, B.[Bo],
Chen, Z.Z.[Zhen-Zhong],
Corner-to-Center long-range context model for efficient learned image
compression,
JVCIR(98), 2024, pp. 103990.
Elsevier DOI
2402
Learned image compression, Context model, Transformer
BibRef
Li, S.H.[Shao-Hui],
Dai, W.R.[Wen-Rui],
Fang, Y.[Yimian],
Zheng, Z.Y.[Zi-Yang],
Fei, W.[Wen],
Xiong, H.K.[Hong-Kai],
Zhang, W.[Wei],
Revisiting Learned Image Compression With Statistical Measurement of
Latent Representations,
CirSysVideo(34), No. 4, April 2024, pp. 2891-2907.
IEEE DOI
2404
Image coding, Transforms, Robustness, Quantization (signal),
Transform coding, Entropy coding, Visualization, post-training pruning
BibRef
Jiang, Z.[Zeyu],
Liu, X.H.[Xiao-Hong],
Li, A.[Aini],
Wang, G.Y.[Guang-Yu],
Enhancing High-Resolution Image Compression Through Local-Global
Joint Attention Mechanism,
SPLetters(31), 2024, pp. 1044-1048.
IEEE DOI
2405
Image reconstruction, Feature extraction, Image coding, Decoding,
Transform coding, Convolution, Bit rate, Deep learning, joint learning
BibRef
Pakdaman, F.[Farhad],
Gabbouj, M.[Moncef],
Channel-Wise Feature Decorrelation for Enhanced Learned Image
Compression,
SPLetters(31), 2024, pp. 1635-1639.
IEEE DOI
2406
Image coding, Decorrelation, Optimization, Complexity theory,
Context modeling, Codecs, Artificial neural networks,
rate-distortion optimization
BibRef
Koyuncu, A.B.[A. Burakhan],
Jia, P.[Panqi],
Boev, A.[Atanas],
Alshina, E.[Elena],
Steinbach, E.[Eckehard],
Efficient Contextformer: Spatio-Channel Window Attention for Fast
Context Modeling in Learned Image Compression,
CirSysVideo(34), No. 8, August 2024, pp. 7498-7511.
IEEE DOI
2408
Context modeling, Transformers, Image coding, Adaptation models,
Computational modeling, Entropy, Complexity theory,
transformers
BibRef
Koyuncu, A.B.[A. Burakhan],
Gao, H.[Han],
Boev, A.[Atanas],
Gaikov, G.[Georgii],
Alshina, E.[Elena],
Steinbach, E.[Eckehard],
Contextformer: A Transformer with Spatio-Channel Attention for Context
Modeling in Learned Image Compression,
ECCV22(XIX:447-463).
Springer DOI
2211
BibRef
Li, C.[Chao],
Yin, S.Z.[Shan-Zhi],
Jia, C.M.[Chuan-Min],
Meng, F.Y.[Fan-Yang],
Tian, Y.H.[Yong-Hong],
Liang, Y.S.[Yong-Sheng],
Multirate Progressive Entropy Model for Learned Image Compression,
CirSysVideo(34), No. 8, August 2024, pp. 7725-7741.
IEEE DOI
2408
Entropy, Filter banks, Context modeling, Image coding, Decoding,
Entropy coding, Computational modeling, Deep learning, attention mechanism
BibRef
Fu, H.S.[Hai-Sheng],
Liang, F.[Feng],
Liang, J.[Jie],
Wang, Y.Q.[Yong-Qiang],
Fang, Z.[Zhenman],
Zhang, G.[Guohe],
Han, J.N.[Jing-Ning],
Fast and High-Performance Learned Image Compression With Improved
Checkerboard Context Model, Deformable Residual Module, and Knowledge
Distillation,
IP(33), 2024, pp. 4702-4715.
IEEE DOI
2409
Image coding, Decoding, Context modeling, Entropy coding,
Convolution, Complexity theory, Entropy,
three-pass knowledge distillation scheme
BibRef
Wu, C.H.[Chen-Hao],
Wu, Q.B.[Qing-Bo],
Ma, R.[Rui],
Ngan, K.N.[King Ngi],
Li, H.L.[Hong-Liang],
Meng, F.M.[Fan-Man],
Qiu, H.Q.[He-Qian],
Continual Cross-Domain Image Compression via Entropy Prior Guided
Knowledge Distillation and Scalable Decoding,
CirSysVideo(34), No. 9, September 2024, pp. 8080-8092.
IEEE DOI Code:
WWW Link.
2410
Image coding, Entropy, Decoding, Stability analysis,
Thermal stability, Training, Task analysis, scalable decoding
BibRef
Park, J.[Jongmin],
Lee, J.Y.[Joo-Young],
Kim, M.C.[Mun-Churl],
COMPASS: High-Efficiency Deep Image Compression with Arbitrary-scale
Spatial Scalability,
ICCV23(12780-12789)
IEEE DOI
2401
BibRef
Tao, L.F.[Lv-Fang],
Gao, W.[Wei],
Li, G.[Ge],
Zhang, C.H.[Chen-Hao],
AdaNIC: Towards Practical Neural Image Compression via Dynamic
Transform Routing,
ICCV23(16833-16842)
IEEE DOI
2401
BibRef
Yang, Y.[Yibo],
Mandt, S.[Stephan],
Computationally-Efficient Neural Image Compression with Shallow
Decoders,
ICCV23(530-540)
IEEE DOI Code:
WWW Link.
2401
BibRef
Presta, A.[Alberto],
Fiandrotti, A.[Attilio],
Tartaglione, E.[Enzo],
Grangetto, M.[Marco],
A Differentiable Entropy Model for Learned Image Compression,
CIAP23(I:328-339).
Springer DOI
2312
BibRef
Yang, Z.[Zheng],
Wang, R.G.[Rong-Gang],
Improving Learned Invertible Coding with Invertible Attention and
Back-Projection,
ICIP23(3349-3353)
IEEE DOI
2312
BibRef
Haase, P.[Paul],
Pfaff, J.[Jonathan],
Schwarz, H.[Heiko],
Marpe, D.[Detlev],
Wiegand, T.[Thomas],
Bitrate-Performance Optimized Model Training for the Neural Network
Coding (NNC) Standard,
ICIP23(3245-3249)
IEEE DOI
2312
BibRef
Foroutan, Y.[Yalda],
Harell, A.[Alon],
de Andrade, A.[Anderson],
Bajic, I.V.[Ivan V.],
Base Layer Efficiency in Scalable Human-Machine Coding,
ICIP23(3299-3303)
IEEE DOI
2312
Efficiency of the coding intended for machine, not human, use.
BibRef
Minnen, D.[David],
Johnston, N.[Nick],
Advancing the Rate-Distortion-Computation Frontier for Neural Image
Compression,
ICIP23(2940-2944)
IEEE DOI
2312
BibRef
Ye, Y.[Yun],
Pan, Y.J.[Yan-Jie],
Jiang, Q.[Qually],
Lu, M.[Ming],
Fang, X.R.[Xiao-Ran],
Xu, B.[Beryl],
Frequency-Aware Re-Parameterization for Over-Fitting Based Image
Compression,
ICIP23(2310-2314)
IEEE DOI
2312
BibRef
Hu, Y.T.[Yu-Ting],
Tan, W.[Wen],
Meng, F.Y.[Fan-Yang],
Liang, Y.S.[Yong-Sheng],
A Decoupled Spatial-Channel Inverted Bottleneck For Image Compression,
ICIP23(1740-1744)
IEEE DOI
2312
BibRef
Munna, T.A.[Tahsir Ahmed],
Ascenso, J.[Joăo],
Complexity Scalable Learning-Based Image Decoding,
ICIP23(1860-1864)
IEEE DOI
2312
BibRef
Herglotz, C.[Christian],
Brand, F.[Fabian],
Regensky, A.[Andy],
Rievel, F.[Felix],
Kaup, A.[André],
Processing Energy Modeling For Neural Network Based Image Compression,
ICIP23(2390-2394)
IEEE DOI
2312
Energy use in NN based compression.
BibRef
Brand, F.[Fabian],
Kopte, A.[Alexander],
Fischer, K.[Kristian],
Kaup, A.[André],
Spatially-Adaptive Learning-Based Image Compression with Hierarchical
Multi-Scale Latent Spaces,
ICIP23(1660-1664)
IEEE DOI
2312
BibRef
Meng, X.D.[Xian-Dong],
Zhu, S.Y.[Shu-Yuan],
Ma, S.W.[Si-Wei],
Zeng, B.[Bing],
Learned Image Compression with Large Capacity and Low Redundancy of
Latent Representation,
ICIP23(1640-1644)
IEEE DOI
2312
BibRef
Hojjat, A.[Ali],
Haberer, J.[Janek],
Landsiedel, O.[Olaf],
ProgDTD: Progressive Learned Image Compression with Double-Tail-Drop
Training,
NTIRE23(1130-1139)
IEEE DOI
2309
BibRef
Brummer, B.[Benoit],
de Vleeschouwer, C.[Christophe],
On the Importance of Denoising when Learning to Compress Images,
WACV23(2439-2447)
IEEE DOI
2302
Training, Adaptation models, Image coding, Noise reduction,
Rate-distortion, Transform coding, Noise measurement
BibRef
Li, M.[Meng],
Gao, S.Y.[Shang-Yin],
Feng, Y.H.[Yi-Hui],
Shi, Y.[Yibo],
Wang, J.[Jing],
Content-Oriented Learned Image Compression,
ECCV22(XIX:632-647).
Springer DOI
2211
BibRef
Wang, F.[Feng],
Chen, J.Y.[Jing-Yi],
Wang, R.G.[Rong-Gang],
Entropy-Reduced Attention for Image Compression,
ICIP22(2401-2405)
IEEE DOI
2211
Deep learning, Image coding, Uncertainty, Redundancy, Entropy,
Entropy coding, Decoding, Deep Learning, Image Compression,
Attention Mechanism
BibRef
Cheng, K.L.[Ka Leong],
Xie, Y.[Yueqi],
Chen, Q.F.[Qi-Feng],
Optimizing Image Compression via Joint Learning with Denoising,
ECCV22(XIX:56-73).
Springer DOI
2211
BibRef
Liu, Z.Y.[Zi-Yi],
Wang, H.L.[Han-Li],
Su, T.Y.[Tai-Yi],
Learned Image Compression with Multi-Scale Spatial and Contextual
Information Fusion,
ICIP22(706-710)
IEEE DOI
2211
Video coding, Visualization, Solid modeling, Image coding,
Convolution, Neural networks, Image compression, deep learning,
multi-scale 3D context
BibRef
Zhang, G.[Gai],
Zhang, X.F.[Xin-Feng],
Zhu, S.Y.[Shu-Yuan],
Local and Global Fusion Network for Learned Image Compression,
ICIP22(3763-3767)
IEEE DOI
2211
Video coding, Image coding, Convolution, Fuses, Neural networks,
Redundancy, Information retrieval, Image compression, autoencoder
BibRef
Pan, G.B.[Guan-Bo],
Lu, G.[Guo],
Hu, Z.H.[Zhi-Hao],
Xu, D.[Dong],
Content Adaptive Latents and Decoder for Neural Image Compression,
ECCV22(XVIII:556-573).
Springer DOI
2211
Neural compression, usually not adaptive.
BibRef
Lin, F.Z.[Fang-Zheng],
Sun, H.M.[He-Ming],
Katto, J.[Jiro],
Streaming-Capable High-Performance Architecture of Learned Image
Compression Codecs,
ICIP22(286-290)
IEEE DOI
2211
Performance evaluation, Image coding, Runtime, Codecs,
Computational modeling, Streaming media,
pipelining
BibRef
He, D.[Dailan],
Yang, Z.M.[Zi-Ming],
Peng, W.[Weikun],
Ma, R.[Rui],
Qin, H.W.[Hong-Wei],
Wang, Y.[Yan],
ELIC: Efficient Learned Image Compression with Unevenly Grouped
Space-Channel Contextual Adaptive Coding,
CVPR22(5708-5717)
IEEE DOI
2210
Adaptation models, Image coding, Computational modeling,
Transforms, Decoding, Low-level vision
BibRef
He, D.L.[Dai-Lan],
Yang, Z.M.[Zi-Ming],
Yu, H.J.[Hong-Jiu],
Xu, T.D.[Tong-Da],
Luo, J.X.[Ji-Xiang],
Chen, Y.[Yuan],
Gao, C.J.[Chen-Jian],
Shi, X.J.[Xin-Jie],
Qin, H.W.[Hong-Wei],
Wang, Y.[Yan],
PO-ELIC: Perception-Oriented Efficient Learned Image Coding,
CLIC22(1763-1768)
IEEE DOI
2210
Measurement, Training, Image quality, Adaptation models,
Visualization, Image coding, Image color analysis
BibRef
Gao, G.[Ge],
You, P.[Pei],
Pan, R.[Rong],
Han, S.Y.[Shun-Yuan],
Zhang, Y.Y.[Yuan-Yuan],
Dai, Y.C.[Yu-Chao],
Lee, H.[Hojae],
Neural Image Compression via Attentional Multi-scale Back Projection
and Frequency Decomposition,
ICCV21(14657-14666)
IEEE DOI
2203
Training, Video coding, Image coding, Estimation, Standards,
Next generation networking, Image and video synthesis,
Vision applications and systems
BibRef
Kim, J.H.[Jun-Hyuk],
Heo, B.[Byeongho],
Lee, J.S.[Jong-Seok],
Joint Global and Local Hierarchical Priors for Learned Image
Compression,
CVPR22(5982-5991)
IEEE DOI
2210
Image coding, Computational modeling, Redundancy, Rate-distortion,
Transformers, Entropy, Probability distribution, Low-level vision
BibRef
Fischer, K.[Kristian],
Forsch, C.[Christian],
Herglotz, C.[Christian],
Kaup, A.[André],
Analysis of Neural Image Compression Networks for Machine-To-Machine
Communication,
ICIP21(2079-2083)
IEEE DOI
2201
Training, Weight measurement, Video coding,
Machine-to-machine communications, Image coding, Codecs
BibRef
Haase, P.[Paul],
Becking, D.[Daniel],
Kirchhoffer, H.[Heiner],
Müller, K.[Karsten],
Schwarz, H.[Heiko],
Samek, W.[Wojciech],
Marpe, D.[Detlev],
Wiegand, T.[Thomas],
Encoder Optimizations for the NNR Standard on Neural Network
Compression,
ICIP21(3522-3526)
IEEE DOI
2201
Image coding, Quantization (signal), Tensors, Transform coding,
Optimization methods, Artificial neural networks, Tools, MPEG, NNR,
encoder optimization
BibRef
Yílmaz, M.A.[M. Akín],
Keless, O.[Onur],
Güven, H.[Hilal],
Tekalp, A.M.[A. Murat],
Malik, J.[Junaid],
Kíranyaz, S.[Serkan],
Self-Organized Variational Autoencoders (Self-Vae) for Learned Image
Compression,
ICIP21(3732-3736)
IEEE DOI
2201
Convolutional codes, Measurement, Visualization, Image coding,
Codecs, Neurons, Rate-distortion, perceptual quality metrics
BibRef
Mikami, Y.[Yu],
Tsutake, C.[Chihiro],
Takahashi, K.[Keita],
Fujii, T.[Toshiaki],
An Efficient Image Compression Method Based on Neural Network:
An Overfitting Approach,
ICIP21(2084-2088)
IEEE DOI
2201
Image quality, Visualization, Image coding, Quantization (signal),
Image edge detection, Rate-distortion,
parameter visualization
BibRef
Tsubota, K.[Koki],
Aizawa, K.[Kiyoharu],
Comprehensive Comparisons of Uniform Quantizers for Deep Image
Compression,
ICIP21(2089-2093)
IEEE DOI
2201
Quantization (signal), Image coding, Rate-distortion, Focusing,
Entropy, Entropy coding, Image Compression, Neural Networks, Quantization
BibRef
Yang, C.H.[Chun-Hui],
Ma, Y.[Yi],
Yang, J.Y.[Jia-Yu],
Liu, S.Y.[Shi-Yi],
Wang, R.G.[Rong-Gang],
Graph-Convolution Network for Image Compression,
ICIP21(2094-2098)
IEEE DOI
2201
Image coding, Quantization (signal), Convolution, Neural networks,
Feature extraction, Entropy, Image compression, graph convolution,
deep learning
BibRef
Yuan, L.[Liang],
Luo, J.X.[Ji-Xiang],
Li, S.H.[Shao-Hui],
Dai, W.R.[Wen-Rui],
Li, C.L.[Cheng-Lin],
Zou, J.[Junni],
Xiong, H.K.[Hong-Kai],
Learned Image Compression with Channel-Wise Grouped Context Modeling,
ICIP21(2099-2103)
IEEE DOI
2201
Deep learning, Solid modeling, Image coding, Correlation, Redundancy,
Rate-distortion, Entropy coding, Image compression,
coding efficiency
BibRef
Dick, J.[Joăo],
Abreu, B.[Brunno],
Grellert, M.[Mateus],
Bampi, S.[Sergio],
Quality and Complexity Assessment of Learning-Based Image Compression
Solutions,
ICIP21(599-603)
IEEE DOI
2201
Measurement, Visualization, Image coding, Codecs, Bit rate,
Transform coding, image compression, learning-based
BibRef
He, D.[Dailan],
Zheng, Y.Y.[Yao-Yan],
Sun, B.C.[Bao-Cheng],
Wang, Y.[Yan],
Qin, H.W.[Hong-Wei],
Checkerboard Context Model for Efficient Learned Image Compression,
CVPR21(14766-14775)
IEEE DOI
2111
Image coding, Computational modeling, Redundancy,
Rate-distortion, Decoding, Pattern recognition
BibRef
Liu, Y.C.[Yu-Chen],
Shu, Z.X.[Zhi-Xin],
Li, Y.J.[Yi-Jun],
Lin, Z.[Zhe],
Perazzi, F.[Federico],
Kung, S.Y.,
Content-Aware GAN Compression,
CVPR21(12151-12161)
IEEE DOI
2111
Manifolds, Image quality, Visualization, Image coding,
Image synthesis, Pipelines, Generative adversarial networks
BibRef
Weber, M.[Maurice],
Renggli, C.[Cedric],
Grabner, H.[Helmut],
Zhang, C.[Ce],
Observer Dependent Lossy Image Compression,
GCPR20(130-144).
Springer DOI
2110
BibRef
Suzuki, A.[Akifumi],
Akutsu, H.[Hiroaki],
Naruko, T.[Takahiro],
Tsubota, K.[Koki],
Aizawa, K.[Kiyoharu],
Learned Image Compression with Super-Resolution Residual Modules and
DISTS Optimization,
CLIC21(1906-1910)
IEEE DOI
2109
Image quality, Measurement, Visualization, Image coding,
Superresolution, Bit rate, Decoding
BibRef
Gao, Y.X.[Yi-Xin],
Wu, Y.J.[Yao-Jun],
Guo, Z.Y.[Zong-Yu],
Zhang, Z.Z.[Zhi-Zheng],
Chen, Z.B.[Zhi-Bo],
Perceptual Friendly Variable Rate Image Compression,
CLIC21(1916-1920)
IEEE DOI
2109
Measurement, Training, Visualization, Adaptation models,
Image coding, Rate-distortion
BibRef
Islam, K.[Khawar],
Dang, L.M.[L. Minh],
Lee, S.[Sujin],
Moon, H.[Hyeonjoon],
Image Compression with Recurrent Neural Network and Generalized
Divisive Normalization,
CLIC21(1875-1879)
IEEE DOI
2109
Image coding, Recurrent neural networks, Quantization (signal),
Convolution, Redundancy, Transform coding, Decoding
BibRef
Zhao, J.[Jing],
Li, B.[Bin],
Li, J.H.[Jia-Hao],
Xiong, R.Q.[Rui-Qin],
Lu, Y.[Yan],
A Universal Encoder Rate Distortion Optimization Framework for
Learned Compression,
CLIC21(1880-1884)
IEEE DOI
2109
Image coding, Codecs, Bit rate,
Rate-distortion, Optimization methods
BibRef
Ayzik, S.[Sharon],
Avidan, S.[Shai],
Deep Image Compression Using Decoder Side Information,
ECCV20(XVII:699-714).
Springer DOI
2011
Code, Compression.
WWW Link. Information available only to the decoder. Learn the transformation.
BibRef
Su, R.,
Cheng, Z.,
Sun, H.,
Katto, J.,
Scalable Learned Image Compression With A Recurrent Neural
Networks-Based Hyperprior,
ICIP20(3369-3373)
IEEE DOI
2011
Image coding, Entropy, Quantization (signal), Transform coding,
Entropy coding, Recurrent neural networks, Transforms,
RNN-based hyperprior
BibRef
Guarda, A.F.R.,
Rodrigues, N.M.M.,
Pereira, F.,
Point Cloud Geometry Scalable Coding With a Single End-to-End Deep
Learning Model,
ICIP20(3354-3358)
IEEE DOI
2011
Encoding, Geometry, Decoding,
Transform coding, Standards, Training, Point cloud coding,
quality scalability
BibRef
Singh, S.,
Abu-El-Haija, S.,
Johnston, N.,
Ballé, J.,
Shrivastava, A.,
Toderici, G.,
End-to-End Learning of Compressible Features,
ICIP20(3349-3353)
IEEE DOI
2011
Image coding, Task analysis, Training, Quantization (signal),
Distortion, Entropy, Principal component analysis,
Neural networks
BibRef
Xu, J.,
Lytchier, A.,
Cursio, C.,
Kollias, D.,
Besenbruch, C.,
Zafar, A.,
Efficient Context-Aware Lossy Image Compression,
CLIC20(552-554)
IEEE DOI
2008
Context modeling, Image coding, Training, Pipelines,
Decoding, Computational modeling
BibRef
Sun, H.,
Liu, C.,
Katto, J.,
Fan, Y.,
An Image Compression Framework with Learning-based Filter,
CLIC20(602-606)
IEEE DOI
2008
Image color analysis, Principal component analysis, Image coding,
Image reconstruction, Distortion, Correlation, Covariance matrices
BibRef
Lin, C.,
Yao, J.,
Chen, F.,
Wang, L.,
A Spatial RNN Codec for End-to-End Image Compression,
CVPR20(13266-13274)
IEEE DOI
2008
Image coding, Quantization (signal), Standards, Entropy,
Computational modeling, Redundancy, Transforms
BibRef
Agustsson, E.[Eirikur],
Minnen, D.[David],
Toderici, G.[George],
Mentzer, F.[Fabian],
Multi-Realism Image Compression with a Conditional Generator,
CVPR23(22324-22333)
IEEE DOI
2309
BibRef
Mentzer, F.[Fabian],
Agustsson, E.[Eirikur],
Tschannen, M.[Michael],
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
Practical Full Resolution Learned Lossless Image Compression,
CVPR19(10621-10630).
IEEE DOI
2002
BibRef
Yang, J.,
Yang, C.,
Ma, Y.,
Liu, S.,
Wang, R.,
Learned Low Bit-rate Image Compression with Adversarial Mechanism,
CLIC20(575-579)
IEEE DOI
2008
Image coding, Image reconstruction, Decoding, Training, Entropy,
Estimation, Distortion
BibRef
Huang, C.C.[Ching-Chun],
Nguyen, T.P.[Thanh-Phat],
Lai, C.T.[Chen-Tung],
Multi-Channel Multi-Loss Deep Learning Based Compression Model of
Color Images,
ICIP19(4524-4528)
IEEE DOI
1910
CNN, Deep image compression, Color shift reduction
BibRef
Mentzer, F.,
Van Gool, L.J.,
Tschannen, M.,
Learning Better Lossless Compression Using Lossy Compression,
CVPR20(6637-6646)
IEEE DOI
2008
Image coding, Image reconstruction, Probabilistic logic,
Entropy coding, Bit rate, Decoding, Transform coding
BibRef
Luo, A.[Ao],
Sun, H.M.[He-Ming],
Liu, J.M.[Jin-Ming],
Katto, J.[Jiro],
Memory-Efficient Learned Image Compression with Pruned Hyperprior
Module,
ICIP22(3061-3065)
IEEE DOI
2211
Performance evaluation, Image coding, Costs, Deconvolution,
Image edge detection, Memory management, Rate-distortion,
Model Pruning
BibRef
Cheng, Z.X.[Zheng-Xue],
Sun, H.M.[He-Ming],
Takeuchi, M.[Masaru],
Katto, J.[Jiro],
Learned Image Compression With Discretized Gaussian Mixture
Likelihoods and Attention Modules,
CVPR20(7936-7945)
IEEE DOI
2008
BibRef
And: A1, A2, A4, Only:
Low Bitrate Image Compression with Discretized Gaussian Mixture
Likelihoods,
CLIC20(543-546)
IEEE DOI
2008
Image coding, Entropy, Standards, Visualization,
Training, Redundancy, Transform coding.
Convolution, Training, Decoding,
Pattern recognition, Bit rate
BibRef
Lucas, A.,
Lopez-Tapia, S.,
Molina, R.,
Katsaggelos, A.K.,
Efficient Fine-Tuning of Neural Networks for Artifact Removal in Deep
Learning for Inverse Imaging Problems,
ICIP19(3591-3595)
IEEE DOI
1910
Deep Neural Networks, Image and Video Processing, Inversion,
Fine-tuning, Artifacts, Data Consistency
BibRef
Li, C.X.[Chong-Xin],
Luo, J.X.[Ji-Xiang],
Dai, W.R.[Wen-Rui],
Li, C.L.[Cheng-Lin],
Zou, J.N.[Jun-Ni],
Xiong, H.K.[Hong-Kai],
Spatial-Channel Context-Based Entropy Modeling for End-to-end
Optimized Image Compression,
VCIP20(222-225)
IEEE DOI
2102
Reduce spatial redundancy, improve reconstruction.
Entropy, Image coding, Context modeling, Transforms, Entropy coding,
Decoding, Solid modeling, End-to-end optimized image compression,
artificial neural networks
BibRef
Kumar, S.[Saurabh],
Chaudhuri, S.[Subhasis],
Banerjee, B.[Biplab],
Ali, F.[Feroz],
Onboard Hyperspectral Image Compression Using Compressed Sensing and
Deep Learning,
CVUAV18(II:30-42).
Springer DOI
1905
BibRef
Nakanishi, K.M.[Ken M.],
Maeda, S.I.[Shin-Ichi],
Miyato, T.[Takeru],
Okanohara, D.[Daisuke],
Neural Multi-scale Image Compression,
ACCV18(VI:718-732).
Springer DOI
1906
consists of two networks: multi-scale lossy autoencoder
and parallel multi-scale lossless coder.
BibRef
He, X.Y.[Xiang-Yu],
Cheng, J.[Jian],
Learning Compression from Limited Unlabeled Data,
ECCV18(I: 778-795).
Springer DOI
1810
BibRef
Shen, H.,
Pan, W.D.[W. David],
Predictive lossless compression of regions of interest in
hyperspectral image via Maximum Correntropy Criterion based Least
Mean Square learning,
ICIP16(2182-2186)
IEEE DOI
1610
Data communication
BibRef
Quijas, J.,
Fuentes, O.,
Removing JPEG blocking artifacts using machine learning,
Southwest14(77-80)
IEEE DOI
1406
data compression
BibRef
Zhan, X.[Xin],
Zhang, R.[Rong],
Yin, D.[Dong],
Hu, A.Z.[An-Zhou],
Hu, W.L.[Wen-Long],
Remote sensing image compression based on double-sparsity dictionary
learning and universal trellis coded quantization,
ICIP13(1665-1669)
IEEE DOI
1402
Dictionary learning
BibRef
He, X.F.[Xiao-Fei],
Ji, M.[Ming],
Bao, H.J.[Hu-Jun],
A unified active and semi-supervised learning framework for image
compression,
CVPR09(65-72).
IEEE DOI
0906
Learn which pixels predict the color for others.
BibRef
Simard, P.Y.,
Burges, C.J.C.,
Steinkraus, D.,
Malvar, H.S.,
Image compression with on-line and off-line learning,
ICIP03(II: 259-262).
IEEE DOI
0312
BibRef
Parodi, G.,
Passaggio, F.,
Size-adaptive neural network for image compression,
ICIP94(III: 945-947).
IEEE DOI
9411
BibRef
Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Block Coding, General Techniques and Issues .