Chen, Y.S.[Yu-Shi],
Zhu, K.Q.[Kai-Qiang],
Zhu, L.[Lin],
He, X.[Xin],
Ghamisi, P.[Pedram],
Benediktsson, J.A.[Jón Atli],
Automatic Design of Convolutional Neural Network for Hyperspectral
Image Classification,
GeoRS(57), No. 9, September 2019, pp. 7048-7066.
IEEE DOI
1909
Feature extraction, Deep learning, Hyperspectral imaging,
Convolution, Training, Convolutional neural network (CNN),
neural architecture search (NAS)
BibRef
Jaafra, Y.[Yesmina],
Laurent, J.L.[Jean Luc],
Deruyver, A.[Aline],
Naceur, M.S.[Mohamed Saber],
Reinforcement learning for neural architecture search: A review,
IVC(89), 2019, pp. 57-66.
Elsevier DOI
1909
Reinforcement learning, Convolutional neural networks,
Neural Architecture Search, AutoML
BibRef
Dong, H.,
Zou, B.,
Zhang, L.,
Zhang, S.,
Automatic Design of CNNs via Differentiable Neural Architecture
Search for PolSAR Image Classification,
GeoRS(58), No. 9, September 2020, pp. 6362-6375.
IEEE DOI
2008
Personal digital assistants,
Deep learning, Search problems, Neural networks,
polarimetric synthetic aperture radar (PolSAR) classification
BibRef
Liu, J.H.[Jia-Heng],
Zhou, S.F.[Shun-Feng],
Wu, Y.C.[Yi-Chao],
Chen, K.[Ken],
Ouyang, W.L.[Wan-Li],
Xu, D.[Dong],
Block Proposal Neural Architecture Search,
IP(30), 2021, pp. 15-25.
IEEE DOI
2011
Proposals, Task analysis, DNA, Convolution,
Network architecture, Evolutionary computation,
image classification
BibRef
Jing, W.P.[Wei-Peng],
Ren, Q.L.[Quan-Lin],
Zhou, J.[Jun],
Song, H.B.[Hou-Bing],
AutoRSISC: Automatic design of neural architecture for remote sensing
image scene classification,
PRL(140), 2020, pp. 186-192.
Elsevier DOI
2012
Deep learning, High resolution remote sensing,
Network architecture search (NAS), Image classification
BibRef
Nakai, K.[Kohei],
Matsubara, T.[Takashi],
Uehara, K.[Kuniaki],
Neural Architecture Search for Convolutional Neural Networks with
Attention,
IEICE(E104-D), No. 2, February 2021, pp. 312-321.
WWW Link.
2102
BibRef
Yu, Q.[Qian],
Song, J.F.[Ji-Fei],
Song, Y.Z.[Yi-Zhe],
Chen, H.L.[Han-Lin],
Zhuo, L.[Li'an],
Zhang, B.C.[Bao-Chang],
Zheng, X.W.[Xia-Wu],
Liu, J.Z.[Jian-Zhuang],
Ji, R.R.[Rong-Rong],
Doermann, D.[David],
Guo, G.D.[Guo-Dong],
Binarized Neural Architecture Search for Efficient Object Recognition,
IJCV(129), No. 2, February 2021, pp. 501-516.
Springer DOI
2102
BibRef
Wang, J.J.[Jun-Jue],
Zhong, Y.F.[Yan-Fei],
Zheng, Z.[Zhuo],
Ma, A.L.[Ai-Long],
Zhan, L.P.[Liang-Pei],
RSNet: The Search for Remote Sensing Deep Neural Networks in
Recognition Tasks,
GeoRS(59), No. 3, March 2021, pp. 2520-2534.
IEEE DOI
2103
Task analysis, Image recognition, Remote sensing,
Neural networks, Feature extraction,
search for convolutional neural networks (CNNs)
BibRef
Chen, X.[Xin],
Xie, L.X.[Ling-Xi],
Wu, J.[Jun],
Tian, Q.[Qi],
Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild,
IJCV(129), No. 3, March 2021, pp. 638-655.
Springer DOI
2103
Neural Architecture Search.
BibRef
Chen, Z.S.[Zheng-Su],
Xie, L.X.[Ling-Xi],
Niu, J.W.[Jian-Wei],
Liu, X.F.[Xue-Feng],
Wei, L.H.[Long-Hui],
Tian, Q.[Qi],
Network Adjustment: Channel and Block Search Guided by Resource
Utilization Ratio,
IJCV(130), No. 3, March 2022, pp. 820-835.
Springer DOI
2203
BibRef
Earlier: A1, A3, A2, A4, A5, A6:
Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio,
CVPR20(10655-10664)
IEEE DOI
2008
Training, Neural networks,
Channel estimation, Pipelines, Standards
BibRef
Liu, X.B.[Xiao-Bo],
Zhang, C.C.[Chao-Chao],
Cai, Z.H.[Zhi-Hua],
Yang, J.F.[Jian-Feng],
Zhou, Z.L.[Zhi-Lang],
Gong, X.[Xin],
Continuous Particle Swarm Optimization-Based Deep Learning
Architecture Search for Hyperspectral Image Classification,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Liu, H.Y.[Hong-Ying],
Xu, D.R.[De-Rong],
Zhu, T.W.[Tian-Wen],
Shang, F.H.[Fan-Hua],
Liu, Y.Y.[Yuan-Yuan],
Lu, J.H.[Jian-Hua],
Yang, R.[Ri],
Graph Convolutional Networks by Architecture Search for PolSAR Image
Classification,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Peng, C.[Cheng],
Li, Y.Y.[Yang-Yang],
Jiao, L.C.[Li-Cheng],
Shang, R.H.[Rong-Hua],
Efficient Convolutional Neural Architecture Search for Remote Sensing
Image Scene Classification,
GeoRS(59), No. 7, July 2021, pp. 6092-6105.
IEEE DOI
2106
Remote sensing, Task analysis,
Feature extraction, Data models, Machine learning, Semantics,
scene classification
BibRef
Zhang, B.F.[Bao Feng],
Zhou, G.Q.[Guo Qiang],
Control the number of skip-connects to improve robustness of the NAS
algorithm,
IET-CV(15), No. 5, 2021, pp. 356-365.
DOI Link
2107
neural architecture search
BibRef
Zhang, X.B.[Xin-Bang],
Huang, Z.[Zehao],
Wang, N.Y.[Nai-Yan],
Xiang, S.M.[Shi-Ming],
Pan, C.H.[Chun-Hong],
You Only Search Once: Single Shot Neural Architecture Search via
Direct Sparse Optimization,
PAMI(43), No. 9, September 2021, pp. 2891-2904.
IEEE DOI
2108
Optimization,
Learning (artificial intelligence), Task analysis, Acceleration,
sparse optimization
BibRef
Zhang, X.B.[Xin-Bang],
Chang, J.L.[Jian-Long],
Guo, Y.W.[Yi-Wen],
Meng, G.F.[Gao-Feng],
Xiang, S.M.[Shi-Ming],
Lin, Z.C.[Zhou-Chen],
Pan, C.H.[Chun-Hong],
DATA: Differentiable ArchiTecture Approximation With Distribution
Guided Sampling,
PAMI(43), No. 9, September 2021, pp. 2905-2920.
IEEE DOI
2108
Search problems, Optimization,
Task analysis, Bridges, Binary codes, Estimation,
distribution guided sampling
BibRef
Zheng, X.[Xiawu],
Ji, R.R.[Rong-Rong],
Chen, Y.H.[Yu-Hang],
Wang, Q.[Qiang],
Zhang, B.C.[Bao-Chang],
Chen, J.[Jie],
Ye, Q.X.[Qi-Xiang],
Huang, F.Y.[Fei-Yue],
Tian, Y.H.[Yong-Hong],
MIGO-NAS: Towards Fast and Generalizable Neural Architecture Search,
PAMI(43), No. 9, September 2021, pp. 2936-2952.
IEEE DOI
2108
Training, Dynamic programming,
Graphics processing units, Task analysis,
dynamic programming
BibRef
Xu, Y.H.[Yu-Hui],
Xie, L.X.[Ling-Xi],
Dai, W.R.[Wen-Rui],
Zhang, X.P.[Xiao-Peng],
Chen, X.[Xin],
Qi, G.J.[Guo-Jun],
Xiong, H.K.[Hong-Kai],
Tian, Q.[Qi],
Partially-Connected Neural Architecture Search for Reduced
Computational Redundancy,
PAMI(43), No. 9, September 2021, pp. 2953-2970.
IEEE DOI
2108
Redundancy, Network architecture,
Stability analysis, Microprocessors, Space exploration,
normalization
BibRef
Lu, Z.C.[Zhi-Chao],
Sreekumar, G.[Gautam],
Goodman, E.[Erik],
Banzhaf, W.[Wolfgang],
Deb, K.[Kalyanmoy],
Boddeti, V.N.[Vishnu Naresh],
Neural Architecture Transfer,
PAMI(43), No. 9, September 2021, pp. 2971-2989.
IEEE DOI
2108
BibRef
Earlier: A1, A5, A3, A4, A6, Only:
Nsganetv2: Evolutionary Multi-objective Surrogate-assisted Neural
Architecture Search,
ECCV20(I:35-51).
Springer DOI
2011
Task analysis, Search problems,
Predictive models, Computational modeling, Training,
evolutionary algorithms
BibRef
Fang, J.M.[Jie-Min],
Sun, Y.Z.[Yu-Zhu],
Zhang, Q.[Qian],
Peng, K.J.[Kang-Jian],
Li, Y.[Yuan],
Liu, W.Y.[Wen-Yu],
Wang, X.G.[Xing-Gang],
FNA++: Fast Network Adaptation via Parameter Remapping and
Architecture Search,
PAMI(43), No. 9, September 2021, pp. 2990-3004.
IEEE DOI
2108
Task analysis, Object detection, Semantics,
Image segmentation, Search problems, Pose estimation,
neural architecture search
BibRef
Chen, Y.K.[Yu-Kang],
Meng, G.F.[Gao-Feng],
Zhang, Q.[Qian],
Xiang, S.M.[Shi-Ming],
Huang, C.[Chang],
Mu, L.[Lisen],
Wang, X.G.[Xing-Gang],
RENAS: Reinforced Evolutionary Neural Architecture Search,
CVPR19(4782-4791).
IEEE DOI
2002
BibRef
Tian, Y.J.[Yun-Jie],
Liu, C.[Chang],
Xie, L.X.[Ling-Xi],
jiao, J.B.[Jian-Bin],
Ye, Q.X.[Qi-Xiang],
Discretization-aware architecture search,
PR(120), 2021, pp. 108186.
Elsevier DOI
2109
Neural architecture search, Weight-sharing,
Discretization-aware, Imbalanced network configuration
BibRef
Lukasik, J.[Jovita],
Friede, D.[David],
Stuckenschmidt, H.[Heiner],
Keuper, M.[Margret],
Neural Architecture Performance Prediction Using Graph Neural Networks,
GCPR20(188-201).
Springer DOI
2110
BibRef
Wang, N.[Ning],
Gao, Y.[Yang],
Chen, H.[Hao],
Wang, P.[Peng],
Tian, Z.[Zhi],
Shen, C.H.[Chun-Hua],
Zhang, Y.N.[Yan-Ning],
NAS-FCOS: Efficient Search for Object Detection Architectures,
IJCV(129), No. 12, December 2021, pp. 3299-3312.
Springer DOI
2111
BibRef
Earlier:
NAS-FCOS: Fast Neural Architecture Search for Object Detection,
CVPR20(11940-11948)
IEEE DOI
2008
Object detection, Search problems,
Task analysis, Decoding, Feature extraction, Detectors
BibRef
Zhang, Z.[Zhen],
Liu, S.H.[Shang-Hao],
Zhang, Y.[Yang],
Chen, W.B.[Wen-Bo],
RS-DARTS: A Convolutional Neural Architecture Search for Remote
Sensing Image Scene Classification,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Guo, Q.B.[Qing-Bei],
Wu, X.J.[Xiao-Jun],
Kittler, J.V.[Josef V.],
Feng, Z.Q.[Zhi-Quan],
Differentiable neural architecture learning for efficient neural
networks,
PR(126), 2022, pp. 108448.
Elsevier DOI
2204
Deep neural network, Convolutional neural network,
Neural architecture search, Automated machine learning
BibRef
Dong, X.[Xuanyi],
Liu, L.[Lu],
Musial, K.[Katarzyna],
Gabrys, B.[Bogdan],
NATS-Bench:
Benchmarking NAS Algorithms for Architecture Topology and Size,
PAMI(44), No. 7, July 2022, pp. 3634-3646.
IEEE DOI
2206
Topology, Microprocessors,
Benchmark testing, Training, Search problems, Deep learning,
deep learning
BibRef
Hu, Y.F.[Yu-Fei],
Belkhir, N.[Nacim],
Angulo, J.[Jesus],
Yao, A.[Angela],
Franchi, G.[Gianni],
Learning deep morphological networks with neural architecture search,
PR(131), 2022, pp. 108893.
Elsevier DOI
2208
Mathematical morphology, Deep learning, Architecture search,
Edge detection, Semantic segmentation
BibRef
Ren, X.H.[Xu-Hong],
Chen, J.[Jianlang],
Juefei-Xu, F.[Felix],
Xue, W.L.[Wan-Li],
Guo, Q.[Qing],
Ma, L.[Lei],
Zhao, J.J.[Jian-Jun],
Chen, S.Y.[Sheng-Yong],
DARTSRepair: Core-failure-set guided DARTS for network robustness to
common corruptions,
PR(131), 2022, pp. 108864.
Elsevier DOI
2208
Network architecture search, Core-failure-set selection,
Robustness enhancement, Differentiable architecture search
BibRef
Liu, J.Y.[Jin-Yuan],
Wu, Y.H.[Yu-Hui],
Wu, G.Y.[Guan-Yao],
Liu, R.S.[Ri-Sheng],
Fan, X.[Xin],
Learn to Search a Lightweight Architecture for Target-Aware Infrared
and Visible Image Fusion,
SPLetters(29), 2022, pp. 1614-1618.
IEEE DOI
2208
Training, Image fusion, Task analysis,
Search problems, Feature extraction, Fuses, Deep learning,
neural architecture search
BibRef
Wang, L.[Linnan],
Xie, S.[Saining],
Li, T.[Teng],
Fonseca, R.[Rodrigo],
Tian, Y.D.[Yuan-Dong],
Sample-Efficient Neural Architecture Search by Learning Actions for
Monte Carlo Tree Search,
PAMI(44), No. 9, September 2022, pp. 5503-5515.
IEEE DOI
2208
Vegetation, Optimization, Measurement, Bayes methods, Task analysis,
Search problems, Monte Carlo methods, Neural architecture search,
Monte Carlo tree search
BibRef
Wang, Y.[Yu],
Li, Y.S.[Yan-Sheng],
Chen, W.[Wei],
Li, Y.Z.[Yun-Zhou],
Dang, B.[Bo],
DNAS: Decoupling Neural Architecture Search for High-Resolution
Remote Sensing Image Semantic Segmentation,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Tian, Y.[Yuesong],
Shen, L.[Li],
Shen, L.[Li],
Su, G.[Guinan],
Li, Z.F.[Zhi-Feng],
Liu, W.[Wei],
AlphaGAN: Fully Differentiable Architecture Search for Generative
Adversarial Networks,
PAMI(44), No. 10, October 2022, pp. 6752-6766.
IEEE DOI
2209
Generators, Search problems,
Generative adversarial networks, Training, Nash equilibrium,
generative models
BibRef
Tong, L.Y.[Lyu-Yang],
Du, B.[Bo],
Neural architecture search via reference point based multi-objective
evolutionary algorithm,
PR(132), 2022, pp. 108962.
Elsevier DOI
2209
Neural architecture search,
Multi-objective evolutionary algorithm, The image classification
BibRef
Shen, H.[Hao],
Zhao, Z.Q.[Zhong-Qiu],
Liao, W.R.[Wen-Rui],
Tian, W.D.[Wei-Dong],
Huang, D.S.[De-Shuang],
Joint operation and attention block search for lightweight image
restoration,
PR(132), 2022, pp. 108909.
Elsevier DOI
2209
Image restoration, Neural architecture search, Attention mechanism
BibRef
Yu, K.C.[Kai-Cheng],
Ranftl, R.[René],
Salzmann, M.[Mathieu],
An Analysis of Super-Net Heuristics in Weight-Sharing NAS,
PAMI(44), No. 11, November 2022, pp. 8110-8124.
IEEE DOI
2210
BibRef
Earlier:
Landmark Regularization: Ranking Guided Super-Net Training in Neural
Architecture Search,
CVPR21(13718-13727)
IEEE DOI
2111
Training, Protocols, Task analysis, Measurement, Benchmark testing,
Encoding, AutoML, neural architecture search, weight-sharing, super-net.
Correlation, Limiting, Computational modeling, Hardware
BibRef
Liu, Z.J.[Zhi-Jian],
Tang, H.T.[Hao-Tian],
Zhao, S.Y.[Sheng-Yu],
Shao, K.[Kevin],
Han, S.[Song],
PVNAS: 3D Neural Architecture Search With Point-Voxel Convolution,
PAMI(44), No. 11, November 2022, pp. 8552-8568.
IEEE DOI
2210
Convolution, Solid modeling, Random access memory,
Computational modeling, Memory management, Neural networks,
autonomous driving
BibRef
Tang, H.T.[Hao-Tian],
Liu, Z.J.[Zhi-Jian],
Zhao, S.Y.[Sheng-Yu],
Lin, Y.J.[Yu-Jun],
Lin, J.[Ji],
Wang, H.R.[Han-Rui],
Han, S.[Song],
Searching Efficient 3d Architectures with Sparse Point-voxel
Convolution,
ECCV20(XXVIII:685-702).
Springer DOI
2011
BibRef
Yu, H.Y.[Hong-Yuan],
Peng, H.[Houwen],
Huang, Y.[Yan],
Fu, J.L.[Jian-Long],
Du, H.[Hao],
Wang, L.[Liang],
Ling, H.B.[Hai-Bin],
Cyclic Differentiable Architecture Search,
PAMI(45), No. 1, January 2023, pp. 211-228.
IEEE DOI
2212
Computer architecture, Optimization, Search problems,
Task analysis, Training, Microprocessors, Object detection, Cyclic,
unified framework
BibRef
Gudzius, P.[Povilas],
Kurasova, O.[Olga],
Darulis, V.[Vytenis],
Filatovas, E.[Ernestas],
AutoML-Based Neural Architecture Search for Object Recognition in
Satellite Imagery,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Zhang, Y.Q.[Yong-Qi],
Yao, Q.M.[Quan-Ming],
Kwok, J.T.[James T.],
Bilinear Scoring Function Search for Knowledge Graph Learning,
PAMI(45), No. 2, February 2023, pp. 1458-1473.
IEEE DOI
2301
Task analysis, Artificial neural networks, Training,
Machine learning, Evolutionary computation, neural architecture search
BibRef
Fu, S.[Siming],
Chu, H.[Huanpeng],
Yu, L.[Lu],
Peng, B.[Bo],
Li, Z.[Zheyang],
Tan, W.M.[Wen-Ming],
Hu, H.J.[Hao-Ji],
AuxBranch: Binarization residual-aware network design via auxiliary
branch search,
PR(136), 2023, pp. 109263.
Elsevier DOI
2301
Binary neural network, Binarization residual,
Performance estimation indicator, Neural architecture search
BibRef
Wang, W.[Wenna],
Zhang, X.W.[Xiu-Wei],
Cui, H.F.[Heng-Fei],
Yin, H.L.[Han-Lin],
Zhang, Y.N.[Yan-Nnig],
FP-DARTS: Fast parallel differentiable neural architecture search for
image classification,
PR(136), 2023, pp. 109193.
Elsevier DOI
2301
Neural architecture search, Computing overheads,
Operator sub-sets, Two-parallel-path, Binary gate, Sigmoid function
BibRef
Li, W.[Wei],
Gong, S.G.[Shao-Gang],
Zhu, X.T.[Xia-Tian],
Neural operator search,
PR(136), 2023, pp. 109215.
Elsevier DOI
2301
Neural architecture search, Search space,
Self-calibration operations, Dynamic convolution, Knowledge distillation
BibRef
Zheng, X.[Xiawu],
Yang, C.Y.[Chen-Yi],
Zhang, S.[Shaokun],
Wang, Y.[Yan],
Zhang, B.C.[Bao-Chang],
Wu, Y.J.[Yong-Jian],
Wu, Y.S.[Yun-Sheng],
Shao, L.[Ling],
Ji, R.R.[Rong-Rong],
DDPNAS: Efficient Neural Architecture Search via Dynamic Distribution
Pruning,
IJCV(131), No. 5, May 2023, pp. 1234-1249.
Springer DOI
2305
BibRef
Ao, L.[Lei],
Feng, K.[Kaiyuan],
Sheng, K.[Kai],
Zhao, H.Y.[Hong-Yu],
He, X.[Xin],
Chen, Z.[Zigang],
TPENAS: A Two-Phase Evolutionary Neural Architecture Search for
Remote Sensing Image Classification,
RS(15), No. 8, 2023, pp. 2212.
DOI Link
2305
BibRef
Li, Y.X.[Yan-Xi],
Dong, M.J.[Min-Jing],
Wang, Y.H.[Yun-He],
Xu, C.[Chang],
Neural Architecture Search via Proxy Validation,
PAMI(45), No. 6, June 2023, pp. 7595-7610.
IEEE DOI
2305
Optimization, Training, Search problems, Graphics processing units,
Costs, Predictive models, Neural architecture search,
deep neural architecture
BibRef
Su, X.[Xiu],
You, S.[Shan],
Xie, J.[Jiyang],
Wang, F.[Fei],
Qian, C.[Chen],
Zhang, C.S.[Chang-Shui],
Xu, C.[Chang],
Searching for Network Width With Bilaterally Coupled Network,
PAMI(45), No. 7, July 2023, pp. 8936-8953.
IEEE DOI
2306
BibRef
Earlier: A1, A2, A4, A5, A6, A7, Only:
BCNet: Searching for Network Width with Bilaterally Coupled Network,
CVPR21(2175-2184)
IEEE DOI
2111
Training, Hardware, Benchmark testing, Search methods,
Neural networks, Convolutional neural networks, Sociology,
stochastic complementary strategy.
Refining, Stochastic processes, Sampling methods
BibRef
Huang, H.[Han],
Shen, L.[Li],
He, C.Y.[Chao-Yang],
Dong, W.S.[Wei-Sheng],
Liu, W.[Wei],
Differentiable Neural Architecture Search for Extremely Lightweight
Image Super-Resolution,
CirSysVideo(33), No. 6, June 2023, pp. 2672-2682.
IEEE DOI
2306
Task analysis, Convolution, Superresolution,
Computational modeling, Search problems, Reinforcement learning,
lightweight model design
BibRef
Mohan, R.[Rohit],
Elsken, T.[Thomas],
Zela, A.[Arberf],
Metzen, J.H.[Jan Hendrik],
Staffler, B.[Benedikt],
Brox, T.[Thomas],
Valada, A.[Abhinav],
Hutter, F.[Frank],
Neural Architecture Search for Dense Prediction Tasks in Computer
Vision,
IJCV(131), No. 7, July 2023, pp. 1784-1807.
Springer DOI
2307
BibRef
Kang, X.T.[Xia-Tao],
Li, P.[Ping],
Yao, J.Y.[Jia-Yi],
Li, C.X.[Cheng-Xi],
Neural Network Panning: Screening the Optimal Sparse Network Before
Training,
ACCV22(I:602-617).
Springer DOI
2307
BibRef
Dou, Z.[Ziwen],
Ye, D.[Dong],
Wang, B.[Boya],
AutoSegEdge: Searching for the edge device real-time semantic
segmentation based on multi-task learning,
IVC(136), 2023, pp. 104719.
Elsevier DOI
2308
Semantic segmentation, Multi-task-learning,
Hardware-aware neural architecture search, Edge, Real-time
BibRef
Xu, P.[Peng],
Wang, K.[Ke],
Hassan, M.M.[Mohammad Mehedi],
Chen, C.M.[Chien-Ming],
Lin, W.G.[Wei-Guo],
Hassan, M.R.[Md. Rafiul],
Fortino, G.[Giancarlo],
Adversarial Robustness in Graph-Based Neural Architecture Search for
Edge AI Transportation Systems,
ITS(24), No. 8, August 2023, pp. 8465-8474.
IEEE DOI
2308
Robustness, Computational modeling, Data models,
Mathematical models, Analytical models, Deep learning,
model compression and neural architecture search
BibRef
Wang, R.Q.[Run-Qi],
Yang, L.L.[Lin-Lin],
Chen, H.L.[Han-Lin],
Wang, W.[Wei],
Doermann, D.[David],
Zhang, B.C.[Bao-Chang],
Anti-Bandit for Neural Architecture Search,
IJCV(131), No. 10, October 2023, pp. 2682-2698.
Springer DOI
2309
BibRef
Chen, H.L.[Han-Lin],
Zhang, B.C.[Bao-Chang],
Xue, S.[Song],
Gong, X.[Xuan],
Liu, H.[Hong],
Ji, R.R.[Rong-Rong],
Doermann, D.[David],
Anti-Bandit Neural Architecture Search for Model Defense,
ECCV20(XIII:70-85).
Springer DOI
2011
Logic gates, Artificial neural networks, Training, Encoding,
Measurement, Data processing, Neural architecture search,
ranking loss
BibRef
Chen, Z.H.[Zhi-Hua],
Qiu, G.[Guhao],
Li, P.[Ping],
Zhu, L.[Lei],
Yang, X.K.[Xiao-Kang],
Sheng, B.[Bin],
MNGNAS: Distilling Adaptive Combination of Multiple Searched Networks
for One-Shot Neural Architecture Search,
PAMI(45), No. 11, November 2023, pp. 13489-13508.
IEEE DOI
2310
BibRef
Wang, X.X.[Xiao-Xing],
Lian, Z.[Zhirui],
Lin, J.[Jiale],
Xue, C.[Chao],
Yan, J.C.[Jun-Chi],
DIY Your EasyNAS for Vision: Convolution Operation Merging, Map
Channel Reducing, and Search Space to Supernet Conversion Tooling,
PAMI(45), No. 11, November 2023, pp. 13974-13990.
IEEE DOI
2310
BibRef
Wang, X.X.[Xiao-Xing],
Lin, J.[Jiale],
Zhao, J.P.[Juan-Ping],
Yang, X.K.[Xiao-Kang],
Yan, J.C.[Jun-Chi],
EAutoDet: Efficient Architecture Search for Object Detection,
ECCV22(XX:668-684).
Springer DOI
2211
BibRef
Li, Y.J.[Yan-Jing],
Xu, S.[Sheng],
Cao, X.B.[Xian-Bin],
Zhuo, L.[Li'an],
Zhang, B.C.[Bao-Chang],
Wang, T.[Tian],
Guo, G.D.[Guo-Dong],
DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs,
IJCV(131), No. 1, January 2023, pp. 2793-2815.
Springer DOI
2310
BibRef
Xue, S.[Song],
Wang, R.[Runqi],
Zhang, B.C.[Bao-Chang],
Wang, T.[Tian],
Guo, G.D.[Guo-Dong],
Doermann, D.[David],
IDARTS: Interactive Differentiable Architecture Search,
ICCV21(1143-1152)
IEEE DOI
2203
Training, Couplings, Backpropagation, Backtracking, Costs,
Recognition and classification,
Optimization and learning methods
BibRef
Qian, X.X.[Xiao-Xue],
Liu, F.[Fang],
Jiao, L.C.[Li-Cheng],
Zhang, X.R.[Xiang-Rong],
Huang, X.Y.[Xin-Yan],
Li, S.[Shuo],
Chen, P.[Puhua],
Liu, X.[Xu],
Knowledge transfer evolutionary search for lightweight neural
architecture with dynamic inference,
PR(143), 2023, pp. 109790.
Elsevier DOI
2310
Neural architecture search (NAS), Knowledge transfer,
Dynamic inference, Image classification
BibRef
Ma, B.[Benteng],
Zhang, J.[Jing],
Xia, Y.[Yong],
Tao, D.C.[Da-Cheng],
Inter-layer transition in neural architecture search,
PR(143), 2023, pp. 109697.
Elsevier DOI
2310
Image classification, Neural network, Neural architecture search
BibRef
Liu, A.[Aishan],
Tang, S.Y.[Shi-Yu],
Liang, S.Y.[Si-Yuan],
Gong, R.[Ruihao],
Wu, B.[Boxi],
Liu, X.L.[Xiang-Long],
Tao, D.C.[Da-Cheng],
Exploring the Relationship Between Architectural Design and
Adversarially Robust Generalization,
CVPR23(4096-4107)
IEEE DOI
2309
BibRef
Xie, B.Q.[Bang-Quan],
Yang, Z.M.[Zong-Ming],
Yang, L.[Liang],
Luo, R.[Ruifa],
Lu, J.[Jun],
Wei, A.[Ailin],
Weng, X.X.[Xiao-Xiong],
Li, B.[Bing],
ANAS: Asymptotic NAS for large-scale proxyless search and multi-task
transfer learning,
PR(144), 2023, pp. 109821.
Elsevier DOI
2310
Neural architecture search, Memory consumption,
Proxyless search, Multi-task transfer, Classification and segmentation
BibRef
Poyser, M.[Matt],
Breckon, T.P.[Toby P.],
Neural architecture search: A contemporary literature review for
computer vision applications,
PR(147), 2024, pp. 110052.
Elsevier DOI
2312
Neural architecture search, Classification, Detection, Segmentation
BibRef
Heuillet, A.[Alexandre],
Tabia, H.[Hedi],
Arioui, H.[Hichem],
Youcef-Toumi, K.[Kamal],
D-DARTS: Distributed Differentiable Architecture Search,
PRL(176), 2023, pp. 42-48.
Elsevier DOI
2312
Neural architecture search,
Differentiable architecture search, Deep learning, Computer vision
BibRef
Chen, W.Y.[Wu-Yang],
Gong, X.Y.[Xin-Yu],
Wu, J.[Junru],
Wei, Y.C.[Yun-Chao],
Shi, H.[Humphrey],
Yan, Z.C.[Zhi-Cheng],
Yang, Y.[Yi],
Wang, Z.Y.[Zhang-Yang],
Understanding and Accelerating Neural Architecture Search With
Training-Free and Theory-Grounded Metrics,
PAMI(46), No. 2, February 2024, pp. 749-763.
IEEE DOI
2401
Generalization, linear region, neural architecture search,
neural tangent kernel
BibRef
Gong, X.Y.[Xin-Yu],
Chang, S.Y.[Shi-Yu],
Jiang, Y.F.[Yi-Fan],
Wang, Z.Y.[Zhang-Yang],
AutoGAN: Neural Architecture Search for Generative Adversarial
Networks,
ICCV19(3223-3233)
IEEE DOI
2004
Code, Generative Adversarial Network.
WWW Link. image classification, image segmentation, neural nets,
neural architecture search, generative adversarial networks,
Prediction algorithms
BibRef
Wang, G.R.[Guang-Run],
Li, C.L.[Chang-Lin],
Yuan, L.C.[Liu-Chun],
Peng, J.F.[Jie-Feng],
Xian, X.Y.[Xiao-Yu],
Liang, X.D.[Xiao-Dan],
Chang, X.J.[Xiao-Jun],
Lin, L.[Liang],
DNA Family: Boosting Weight-Sharing NAS With Block-Wise Supervisions,
PAMI(46), No. 5, May 2024, pp. 2722-2740.
IEEE DOI
2404
Computer architecture, DNA, Training, Computational modeling,
Optimization, Transformers, Scalability, Block-wise learning,
vision transformer
BibRef
Liao, Y.G.[Yu-Gang],
Li, J.Q.[Jun-Qing],
Wei, S.W.[Shu-Wei],
Xiao, X.M.[Xiu-Mei],
Evolutionary Search via channel attention based parameter inheritance
and stochastic uniform sampled training,
CVIU(243), 2024, pp. 104000.
Elsevier DOI
2405
Deep learning, Neural architecture search, Image classification
BibRef
Guo, B.C.[Bi-Cheng],
Xu, L.[Lilin],
Chen, T.[Tao],
Ye, P.[Peng],
He, S.[Shibo],
Liu, H.Y.[Hao-Yu],
Chen, J.M.[Ji-Ming],
Latency-Aware Neural Architecture Performance Predictor With
Query-to-Tier Technique,
CirSysVideo(34), No. 7, July 2024, pp. 5868-5883.
IEEE DOI
2407
Computer architecture, Training, Costs, Prediction algorithms,
Performance evaluation, Pipelines, Search problems, latency
BibRef
Ho, J.C.[Jia-Cang],
Park, K.[Kyongseok],
Kang, D.K.[Dae-Ki],
GLNAS: Greedy Layer-wise Network Architecture Search for low cost and
fast network generation,
PR(155), 2024, pp. 110730.
Elsevier DOI
2408
Automated machine learning, Greedy layer-wise,
Network architecture search,
Image classification
BibRef
Ma, B.T.[Ben-Teng],
Zhang, Y.N.[Yan-Ning],
Xia, Y.[Yong],
Momentum recursive DARTS,
PR(156), 2024, pp. 110710.
Elsevier DOI
2408
Neural architecture search, Gradient estimation, Image recognition
BibRef
Lin, C.H.[Chuen-Horng],
Chen, T.Y.[Tsung-Yi],
Chen, H.Y.[Huan-Yu],
Chan, Y.K.[Yung-Kuan],
Efficient and lightweight convolutional neural network architecture
search methods for object classification,
PR(156), 2024, pp. 110752.
Elsevier DOI Code:
WWW Link.
2408
Convolutional neural network (CNN), Architecture search,
Lightweight, Long short-term memory (LSTM) network
BibRef
Ma, B.T.[Ben-Teng],
Zhang, J.[Jing],
Xia, Y.[Yong],
Tao, D.C.[Da-Cheng],
VNAS: Variational Neural Architecture Search,
IJCV(132), No. 1, January 2024, pp. 3689-3713.
Springer DOI
2409
BibRef
Zhou, Q.Q.[Qin-Qin],
Sheng, K.[Kekai],
Zheng, X.[Xiawu],
Li, K.[Ke],
Tian, Y.H.[Yong-Hong],
Chen, J.[Jie],
Ji, R.R.[Rong-Rong],
Training-Free Transformer Architecture Search With Zero-Cost Proxy
Guided Evolution,
PAMI(46), No. 10, October 2024, pp. 6525-6541.
IEEE DOI
2409
Transformers, Computer architecture, Graphics processing units,
Task analysis, Architecture, Correlation, Evolution, transformer
BibRef
Wang, A.[Aili],
Zhang, K.[Kang],
Wu, H.B.[Hai-Bin],
Dai, S.Y.[Shi-Yu],
Iwahori, Y.[Yuji],
Yu, X.Y.[Xiao-Yu],
Noise-Disruption-Inspired Neural Architecture Search with
Spatial-Spectral Attention for Hyperspectral Image Classification,
RS(16), No. 17, 2024, pp. 3123.
DOI Link
2409
BibRef
Artaud, C.[Corentin],
De-Silva, V.[Varuna],
Pina, R.[Rafael],
Shi, X.[Xiyu],
Generating neural architectures from parameter spaces for multi-agent
reinforcement learning,
PRL(185), 2024, pp. 272-278.
Elsevier DOI
2410
Multi-agent reinforcement learning, Generative models,
Neural networks, Transformers, Parameter generation
BibRef
Turner, J.[Jack],
Crowley, E.J.[Elliot J.],
O'Boyle, M.F.P.[Michael F.P.],
Neural Architecture Search as Program Transformation Exploration,
CACM(67), No. 10, October 2024, pp. 92-100.
DOI Link
2410
In this work, we express neural architecture operations as program
transformations whose legality depends on a notion of representational
capacity.
BibRef
Chen, Y.F.[Yao-Fo],
Guo, Y.[Yong],
Liao, D.H.[Dai-Hai],
Lv, F.B.[Fan-Bing],
Song, H.J.[Heng-Jie],
Kwok, J.T.Y.[James Tin-Yau],
Tan, M.K.[Ming-Kui],
Automated Dominative Subspace Mining for Efficient Neural
Architecture Search,
CirSysVideo(34), No. 10, October 2024, pp. 9281-9297.
IEEE DOI
2411
Computer architecture, Statistics, Sociology, Costs,
Circuits and systems, Training, Technological innovation,
convolutional neural networks
BibRef
Chen, Y.F.[Yao-Fo],
Guo, Y.[Yong],
Chen, Q.[Qi],
Li, M.L.[Min-Li],
Zeng, W.[Wei],
Wang, Y.W.[Yao-Wei],
Tan, M.K.[Ming-Kui],
Contrastive Neural Architecture Search with Neural Architecture
Comparators,
CVPR21(9497-9506)
IEEE DOI
2111
Training data,
Computational efficiency, Task analysis
BibRef
Li, G.H.[Gui-Hong],
Hoang, D.[Duc],
Bhardwaj, K.[Kartikeya],
Lin, M.[Ming],
Wang, Z.Y.[Zhang-Yang],
Marculescu, R.[Radu],
Zero-Shot Neural Architecture Search: Challenges, Solutions, and
Opportunities,
PAMI(46), No. 12, December 2024, pp. 7618-7635.
IEEE DOI
2411
Training, Computer architecture, Hardware, Costs, Benchmark testing,
Computational modeling, Vectors, Neural architecture search,
hardware-aware neural network design
BibRef
Zhang, Y.M.[Yu-Ming],
Hsieh, J.W.[Jun-Wei],
Chang, Y.H.[Yu-Hsiu],
Li, X.[Xin],
Chang, M.C.[Ming-Ching],
Lee, C.C.[Chun-Chieh],
Fan, K.C.[Kuo-Chin],
Set-Nas: Sample-Efficient Training for Neural Architecture Search
With Strong Predictor and Stratified Sampling,
ICIP24(680-686)
IEEE DOI
2411
Training, Performance evaluation, Costs,
Graph convolutional networks, Network architecture, efficient NAS
BibRef
Zhang, T.[Tunhou],
Li, S.Y.[Shi-Yu],
Cheng, H.P.[Hsin-Pai],
Yan, F.[Feng],
Li, H.[Hai],
Chen, Y.[Yiran],
CSCO: Connectivity Search of Convolutional Operators,
NAS24(1685-1694)
IEEE DOI
2410
Convolutional codes, Wiring, Architecture, Buildings,
Computer architecture, Data augmentation, Convolutional Neural Networks
BibRef
Jiang, J.T.[Jian-Tong],
Wen, Z.Y.[Ze-Yi],
Mansoor, A.[Atif],
Mian, A.[Ajmal],
Efficient Hyperparameter Optimization with Adaptive Fidelity
Identification,
CVPR24(26181-26190)
IEEE DOI
2410
Adaptation models, Source coding, Computer architecture,
Hyperparameter optimization, Bayes methods, Muti-fidelity
BibRef
Lee, J.[Junghyup],
Ham, B.[Bumsub],
AZ-NAS: Assembling Zero-Cost Proxies for Network Architecture Search,
CVPR24(5893-5903)
IEEE DOI
2410
Correlation, Runtime, Costs, Computer architecture,
Network architecture, network architecture search
BibRef
Li, Z.G.[Zhen-Gang],
Kang, Y.[Yan],
Liu, Y.C.[Yu-Chen],
Liu, D.[Difan],
Hinz, T.[Tobias],
Liu, F.[Feng],
Wang, Y.Z.[Yan-Zhi],
SNED: Superposition Network Architecture Search for Efficient Video
Diffusion Model,
CVPR24(8661-8670)
IEEE DOI
2410
Training, Costs, Computational modeling, Search methods,
Computer architecture, Network architecture, Diffusion Model, NAS,
Model Efficiency
BibRef
Broni-Bediako, C.[Clifford],
Xia, J.[Junshi],
Yokoya, N.[Naoto],
Unsupervised Domain Adaptation Architecture Search with Self-Training
for Land Cover Mapping,
EarthVision24(543-553)
IEEE DOI Code:
WWW Link.
2410
Limiting, Neural networks, Land surface, Computer architecture,
Benchmark testing, Search problems,
Remote Sensing Image Segmentation
BibRef
Geada, R.[Rob],
Towers, D.[David],
Forshaw, M.[Matthew],
Atapour-Abarghouei, A.[Amir],
McGough, A.S.[A. Stephen],
Insights from the Use of Previously Unseen Neural Architecture Search
Datasets,
CVPR24(22541-22550)
IEEE DOI
2410
Deep learning, Knowledge engineering, Costs, Neural networks,
Benchmark testing, NAS,
Classification
BibRef
Hwang, D.[Dongyeong],
Kim, H.[Hyunju],
Kim, S.[Sunwoo],
Shin, K.[Kijung],
FlowerFormer: Empowering Neural Architecture Encoding Using a
Flow-Aware Graph Transformer,
CVPR24(6128-6137)
IEEE DOI
2410
Training, Representation learning, Computational modeling,
Message passing, Computer architecture, Speech recognition,
Architecture Performance Prediction
BibRef
Ou, Y.W.[Yu-Wei],
Feng, Y.Q.[Yu-Qi],
Sun, Y.[Yanan],
Towards Accurate and Robust Architectures via Neural Architecture
Search,
CVPR24(5967-5976)
IEEE DOI
2410
Training, Accuracy, Closed box, Computer architecture,
Search problems, Robustness
BibRef
Mills, K.G.[Keith G.],
Han, F.X.[Fred X.],
Salameh, M.[Mohammad],
Lu, S.Y.[Sheng-Yao],
Zhou, C.H.[Chun-Hua],
He, J.[Jiao],
Sun, F.Y.[Feng-Yu],
Niu, D.[Di],
Building Optimal Neural Architectures Using Interpretable Knowledge,
CVPR24(5726-5735)
IEEE DOI Code:
WWW Link.
2410
Image segmentation, Architecture, Neural networks, Focusing,
Computer architecture, Extraterrestrial measurements, MobileNets
BibRef
Zhang, B.[Beichen],
Wang, X.X.[Xiao-Xing],
Qin, X.H.[Xiao-Han],
Yan, J.C.[Jun-Chi],
Boosting Order-Preserving and Transferability for Neural Architecture
Search: A Joint Architecture Refined Search and Fine-Tuning Approach,
CVPR24(5662-5671)
IEEE DOI
2410
Training, Estimation, Computer architecture, Search problems,
Boosting
BibRef
Gao, T.X.[Tian-Xiao],
Guo, L.[Li],
Zhao, S.W.[Shan-Wei],
Xu, P.[Peihan],
Yang, Y.K.[Yu-Kun],
Liu, X.[Xionghao],
Wang, S.H.[Shi-Hao],
Zhu, S.[Shiai],
Zhou, D.J.[Da-Jiang],
QuantNAS: Quantization-aware Neural Architecture Search For Efficient
Deployment On Mobile Device,
NAS24(1704-1713)
IEEE DOI
2410
Training, Quantization (signal), Computational modeling,
Computer architecture, Mobile handsets, Deep learning
BibRef
An, T.[Taegun],
Joo, C.H.[Chang-Hee],
CycleGANAS: Differentiable Neural Architecture Search for CycleGAN,
NAS24(1655-1664)
IEEE DOI Code:
WWW Link.
2410
Dimensionality reduction, Search methods, Stacking,
Neural networks, Computer architecture,
CycleGAN
BibRef
Subbotko, K.[Konstanty],
Jablonski, W.[Wojciech],
Bilinski, P.[Piotr],
The devil is in discretization discrepancy. Robustifying
Differentiable NAS with Single-Stage Searching Protocol,
NAS24(1665-1674)
IEEE DOI
2410
Training, Protocols, Neural networks, DNA, Graphics processing units,
Computer architecture, Neural Architecture Search, NAS,
DARTS
BibRef
Huang, Y.C.[Yi-Cheng],
Li, W.H.[Wei-Hua],
Tsou, C.H.[Chih-Han],
Chen, J.C.[Jun-Cheng],
Chen, C.S.[Chu-Song],
UP-NAS: Unified Proxy for Neural Architecture Search,
NAS24(1675-1684)
IEEE DOI Code:
WWW Link.
2410
Training, Codes, Neural networks, Computer architecture
BibRef
Pham, C.[Chau],
Teterwak, P.[Piotr],
Nelson, S.[Soren],
Plummer, B.A.[Bryan A.],
MixtureGrowth: Growing Neural Networks by Recombining Learned
Parameters,
WACV24(2788-2797)
IEEE DOI Code:
WWW Link.
2404
Codes, Computational modeling, Noise, Training data,
Computer architecture, Artificial neural networks, Algorithms,
Image recognition and understanding
BibRef
Teterwak, P.[Piotr],
Nelson, S.[Soren],
Dryden, N.[Nikoli],
Bashkirova, D.[Dina],
Saenko, K.[Kate],
Plummer, B.A.[Bryan A.],
Learning to Compose SuperWeights for Neural Parameter Allocation
Search,
WACV24(2739-2748)
IEEE DOI
2404
Training, Weight measurement, Computational modeling,
Computer architecture, Network architecture, Size measurement
BibRef
Sinha, N.[Nilotpal],
Rostami, P.[Peyman],
El Rahman-Shabayek, A.[Abd],
Kacem, A.[Anis],
Aouada, D.[Djamila],
Multi-Objective Hardware Aware Neural Architecture Search using
Hardware Cost Diversity,
ECV24(8032-8039)
IEEE DOI
2410
Performance evaluation, Costs, Image edge detection,
Computer architecture, Search problems, Hardware, EdgeAI
BibRef
Sinha, N.[Nilotpal],
El Rahman-Shabayek, A.[Abd],
Kacem, A.[Anis],
Rostami, P.[Peyman],
Shneider, C.[Carl],
Aouada, D.[Djamila],
Hardware Aware Evolutionary Neural Architecture Search using
Representation Similarity Metric,
WACV24(2616-2625)
IEEE DOI
2404
Measurement, Training, Costs, Neural networks, Computer architecture,
Search problems, Algorithms, Machine learning architectures
BibRef
Chang, C.C.[Chi-Chih],
Sung, Y.Y.[Yuan-Yao],
Yu, S.X.[Shi-Xing],
Huang, N.C.[Ning-Chi],
Marculescu, D.[Diana],
Wu, K.C.A.[Kai-Chi-Ang],
FLORA: Fine-grained Low-Rank Architecture Search for Vision
Transformer,
WACV24(2470-2479)
IEEE DOI Code:
WWW Link.
2404
Training, Filtering, Flora, Computer architecture, Interference,
Transformers, Algorithms, Machine learning architectures,
Image recognition and understanding
BibRef
Yoshihama, Y.[Yutaka],
Yadani, K.[Kenichi],
Isobe, S.[Shota],
Hardware-Aware Zero-Shot Neural Architecture Search,
MVA23(1-5)
DOI Link
2403
Machine vision, Computer architecture, Search problems, Hardware,
Computational efficiency, Convolutional neural networks,
Low latency communication
BibRef
Wang, X.D.[Xu-Dong],
Zhang, L.L.[Li Lyna],
Xu, J.H.[Jia-Hang],
Zhang, Q.L.[Quan-Lu],
Wang, Y.J.[Yu-Jing],
Yang, Y.Q.[Yu-Qing],
Zheng, N.X.[Ning-Xin],
Cao, T.[Ting],
Yang, M.[Mao],
SpaceEvo: Hardware-Friendly Search Space Design for Efficient INT8
Inference,
ICCV23(5796-5805)
IEEE DOI
2401
BibRef
Chu, X.X.[Xiang-Xiang],
Lu, S.[Shun],
Li, X.D.[Xu-Dong],
Zhang, B.[Bo],
MixPath: A Unified Approach for One-shot Neural Architecture Search,
ICCV23(5949-5958)
IEEE DOI
2401
BibRef
Li, Y.H.[Yu-Hong],
Li, J.J.[Jia-Jie],
Hao, C.[Cong],
Li, P.[Pan],
Xiong, J.J.[Jin-Jun],
Chen, D.[Deming],
Extensible and Efficient Proxy for Neural Architecture Search,
ICCV23(6176-6187)
IEEE DOI Code:
WWW Link.
2401
BibRef
Priyadarshi, S.[Sweta],
Jiang, T.Y.[Tian-Yu],
Cheng, H.P.[Hsin-Pai],
Krishna, S.[Sendil],
Ganapathy, V.[Viswanath],
Patel, C.[Chirag],
DONNAv2: Lightweight Neural Architecture Search for Vision tasks,
REDLCV23(1376-1384)
IEEE DOI
2401
BibRef
Zhang, M.Y.[Ming-Yang],
Yu, X.Y.[Xin-Yi],
Zhao, H.D.[Hao-Dong],
Ou, L.L.[Lin-Lin],
ShiftNAS: Improving One-shot NAS via Probability Shift,
ICCV23(5896-5905)
IEEE DOI
2401
BibRef
Wang, X.X.[Xiao-Xing],
Chu, X.X.[Xiang-Xiang],
Fan, Y.[Yuda],
Zhang, Z.[Zhexi],
Zhang, B.[Bo],
Yang, X.K.[Xiao-Kang],
Yan, J.C.[Jun-Chi],
ROME: Robustifying Memory-Efficient NAS via Topology Disentanglement
and Gradient Accumulation,
ICCV23(5916-5926)
IEEE DOI
2401
BibRef
Addad, Y.[Youva],
Lechervy, A.[Alexis],
Jurie, F.[Frédéric],
Multi-Exit Resource-Efficient Neural Architecture for Image
Classification with Optimized Fusion Block,
REDLCV23(1478-1483)
IEEE DOI
2401
BibRef
Sridhar, S.N.[Sharath Nittur],
Kundu, S.[Souvik],
Sundaresan, S.[Sairam],
Szankin, M.[Maciej],
Sarah, A.[Anthony],
InstaTune: Instantaneous Neural Architecture Search During
Fine-Tuning,
REDLCV23(1515-1519)
IEEE DOI
2401
BibRef
García, J.L.L.[Jesús Leopoldo Llano],
Monroy, R.[Raúl],
Hernández, V.A.S.[Víctor Adrián Sosa],
An Experimental Protocol for Neural Architecture Search in
Super-Resolution,
LXCV-ICCV23(4141-4148)
IEEE DOI
2401
BibRef
Sun, Z.H.[Zi-Hao],
Sun, Y.[Yu],
Yang, L.X.[Long-Xing],
Lu, S.[Shun],
Mei, J.L.[Ji-Lin],
Zhao, W.X.[Wen-Xiao],
Hu, Y.[Yu],
Unleashing the Power of Gradient Signal-to-Noise Ratio for Zero-Shot NAS,
ICCV23(5740-5750)
IEEE DOI Code:
WWW Link.
2401
BibRef
Bhardwaj, K.[Kartikeya],
Cheng, H.P.[Hsin-Pai],
Priyadarshi, S.[Sweta],
Li, Z.[Zhuojin],
ZiCo-BC: A Bias Corrected Zero-Shot NAS for Vision Tasks,
REDLCV23(1345-1349)
IEEE DOI
2401
BibRef
Cavagnero, N.[Niccolň],
Robbiano, L.[Luca],
Pistilli, F.[Francesca],
Caputo, B.[Barbara],
Averta, G.[Giuseppe],
Entropic Score metric: Decoupling Topology and Size in Training-free NAS,
REDLCV23(1451-1460)
IEEE DOI
2401
BibRef
Soro, B.[Bedionita],
Song, C.[Chong],
Enhancing Differentiable Architecture Search: A Study on Small Number
of Cell Blocks in the Search Stage, and Important Branches-based
Cells Selection,
REDLCV23(1245-1253)
IEEE DOI
2401
BibRef
Siddiqui, S.[Shahid],
Kyrkou, C.[Christos],
Theocharides, T.[Theocharis],
True Rank Guided Efficient Neural Architecture Search for End to End
Low-complexity Network Discovery,
CAIP23(I:25-34).
Springer DOI
2312
BibRef
Wei, Z.M.[Zi-Mian],
Pan, H.Y.[Heng-Yue],
Li, L.[Lujun],
Dong, P.[Peijie],
Niu, X.[Xin],
Li, D.S.[Dong-Sheng],
MENAS: Multi-trial Evolutionary Neural Architecture Search with
Lottery Tickets,
ICIP23(3379-3383)
IEEE DOI
2312
BibRef
Lu, S.[Shun],
Hu, Y.[Yu],
Yang, L.X.[Long-Xing],
Sun, Z.H.[Zi-Hao],
Mei, J.L.[Ji-Lin],
Tan, J.C.[Jian-Chao],
Song, C.[Chengru],
PA&DA: Jointly Sampling PAth and DAta for Consistent NAS,
CVPR23(11940-11949)
IEEE DOI
2309
BibRef
Xie, B.[Beini],
Chang, H.[Heng],
Zhang, Z.W.[Zi-Wei],
Wang, X.[Xin],
Wang, D.[Daixin],
Zhang, Z.Q.[Zhi-Qiang],
Ying, R.[Rex],
Zhu, W.W.[Wen-Wu],
Adversarially Robust Neural Architecture Search for Graph Neural
Networks,
CVPR23(8143-8152)
IEEE DOI
2309
BibRef
Zhang, X.Y.[Xuan-Yang],
Li, Y.G.[Yong-Gang],
Zhang, X.Y.[Xiang-Yu],
Wang, Y.T.[Yong-Tao],
Sun, J.[Jian],
Differentiable Architecture Search with Random Features,
CVPR23(16060-16069)
IEEE DOI
2309
BibRef
Yamada, R.[Ryosuke],
Shinoda, R.[Risa],
Kataoka, H.[Hirokatsu],
Exploring the Potential of Neural Dataset Search,
NAS23(2259-2266)
IEEE DOI
2309
BibRef
Hendrickx, L.[Lotte],
Symons, A.[Arne],
van Ranst, W.[Wiebe],
Verhelst, M.[Marian],
Goedemé, T.[Toon],
Hardware-aware NAS by Genetic Optimisation with a Design Space
Exploration Simulator,
NAS23(2275-2283)
IEEE DOI
2309
BibRef
Liao, P.[Peng],
Jin, Y.C.[Yao-Chu],
Du, W.L.[Wen-Li],
EMT-NAS: Transferring architectural knowledge between tasks from
different datasets,
CVPR23(3643-3653)
IEEE DOI
2309
BibRef
Zhao, P.[Ping],
Chen, P.Y.[Pan-Yue],
Liu, G.M.[Guan-Ming],
Training-free NAS for 3d Point Cloud Processing,
ACCV22(I:296-310).
Springer DOI
2307
BibRef
Li, Z.W.[Zhuo-Wei],
Gao, Y.[Yibo],
Zha, Z.Z.[Zhen-Zhou],
Hu, Z.Q.[Zhi-Qiang],
Xia, Q.[Qing],
Zhang, S.T.[Shao-Ting],
Metaxas, D.N.[Dimitris N.],
Towards Self-supervised and Weight-preserving Neural Architecture
Search,
SelfLearn22(3-19).
Springer DOI
2304
BibRef
Li, Y.H.[Yun-Hong],
Li, S.[Shuai],
Yu, Z.H.[Zhen-Hua],
DARTS-PAP: Differentiable Neural Architecture Search by Polarization of
Instance Complexity Weighted Architecture Parameters,
MMMod23(II: 277-288).
Springer DOI
2304
BibRef
Yang, T.[Taojiannan],
Yang, L.J.[Lin-Jie],
Jin, X.J.[Xiao-Jie],
Chen, C.[Chen],
Revisiting Training-free NAS Metrics:
An Efficient Training-based Method,
WACV23(4740-4749)
IEEE DOI
2302
Measurement, Costs, Systematics, Correlation, Error analysis,
Graphics processing units, visual reasoning
BibRef
Cavagnero, N.[Niccolň],
Robbiano, L.[Luca],
Caputo, B.[Barbara],
Averta, G.[Giuseppe],
FreeREA: Training-Free Evolution-based Architecture Search,
WACV23(1493-1502)
IEEE DOI
2302
Training, Measurement, Costs, Computational modeling, Search methods,
Neural networks, Memory management, visual reasoning
BibRef
Vu, T.[Thanh],
Zhou, Y.Q.[Yan-Qi],
Wen, C.F.[Chun-Feng],
Li, Y.[Yueqi],
Frahm, J.M.[Jan-Michael],
Toward Edge-Efficient Dense Predictions with Synergistic Multi-Task
Neural Architecture Search,
WACV23(1400-1410)
IEEE DOI
2302
Training, Transfer learning, Benchmark testing, Multitasking,
Boosting, Algorithms: Machine learning architectures,
Embedded sensing/real-time techniques
BibRef
Yu, Z.W.[Zhe-Wen],
Bouganis, C.S.[Christos-Savvas],
SVD-NAS: Coupling Low-Rank Approximation and Neural Architecture
Search,
WACV23(1503-1512)
IEEE DOI
2302
Degradation, Deep learning, Couplings, Neural networks,
Space exploration, Algorithms: Machine learning architectures,
and algorithms (including transfer)
BibRef
Das, M.[Mayukh],
Singh, B.[Brijraj],
Chheda, H.K.[Harsh K.],
Sharma, P.[Pawan],
NS, P.[Pradeep],
AutoCoMet: Smart Neural Architecture Search via Co-Regulated Shaping
Reinforcement,
ICPR22(2568-2574)
IEEE DOI
2212
Training, Power demand, Production, Search problems, Hardware,
Behavioral sciences
BibRef
Hu, Y.[Yue],
Shen, C.[Chongfei],
Yang, L.X.[Li-Xin],
Wu, Z.P.[Zhi-Peng],
Liu, Y.[Yu],
A Novel Predictor with Optimized Sampling Method for Hardware-aware
NAS,
ICPR22(2114-2120)
IEEE DOI
2212
Training, Semiconductor device measurement, Neural networks,
Network architecture, Sampling methods, Hardware
BibRef
Nguyen, X.S.[Xuan Son],
A Gyrovector Space Approach for Symmetric Positive Semi-definite Matrix
Learning,
ECCV22(XXVII:52-68).
Springer DOI
2211
BibRef
Liu, Z.[Zechun],
Shen, Z.Q.[Zhi-Qiang],
Long, Y.[Yun],
Xing, E.[Eric],
Cheng, K.T.[Kwang-Ting],
Leichner, C.[Chas],
Data-Free Neural Architecture Search via Recursive Label Calibration,
ECCV22(XXIV:391-406).
Springer DOI
2211
BibRef
Wang, Q.[Qiang],
Shi, S.[Shaohuai],
Zhao, K.[Kaiyong],
Chu, X.W.[Xiao-Wen],
EASNet: Searching Elastic and Accurate Network Architecture for Stereo
Matching,
ECCV22(XXXII:437-453).
Springer DOI
2211
BibRef
He, W.[Wei],
Yao, Q.M.[Quan-Ming],
Yokoya, N.[Naoto],
Uezato, T.[Tatsumi],
Zhang, H.Y.[Hong-Yan],
Zhang, L.P.[Liang-Pei],
Spectrum-Aware and Transferable Architecture Search for Hyperspectral
Image Restoration,
ECCV22(XIX:19-37).
Springer DOI
2211
BibRef
Lukasik, J.[Jovita],
Jung, S.[Steffen],
Keuper, M.[Margret],
Learning Where to Look: Generative NAS is Surprisingly Efficient,
ECCV22(XXIII:257-273).
Springer DOI
2211
BibRef
Qian, Y.G.[Ya-Guan],
Huang, S.H.[Sheng-Hui],
Wang, B.[Bin],
Ling, X.[Xiang],
Guan, X.H.[Xiao-Hui],
Gu, Z.Q.[Zhao-Quan],
Zeng, S.N.[Shao-Ning],
Zhou, W.[Wujie],
Wang, H.J.[Hai-Jiang],
Robust Network Architecture Search via Feature Distortion Restraining,
ECCV22(V:122-138).
Springer DOI
2211
BibRef
You, H.R.[Hao-Ran],
Li, B.[Baopu],
Sun, Z.Y.[Zhan-Yi],
Ouyang, X.[Xu],
Lin, Y.Y.[Ying-Yan],
SuperTickets: Drawing Task-Agnostic Lottery Tickets from Supernets via
Jointly Architecture Searching and Parameter Pruning,
ECCV22(XI:674-690).
Springer DOI
2211
BibRef
Yüzügüler, A.C.[Ahmet Caner],
Dimitriadis, N.[Nikolaos],
Frossard, P.[Pascal],
U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture
Search,
ECCV22(XII:173-190).
Springer DOI
2211
BibRef
Cai, H.[He],
Zhang, Z.[Zhaokai],
Feng, T.P.[Tian-Peng],
Guo, Y.D.[Yan-Dong],
DARTS-PD: Differentiable Architecture Search with Path-Wise Weight
Sharing Derivation,
ICIP22(1256-1260)
IEEE DOI
2211
Search methods, Artificial neural networks, Optimization,
Neural Architecture Search, path-wise weight sharing derivation
BibRef
Pourchot, A.[Aloďs],
Bailly, K.[Kévin],
Ducarouge, A.[Alexis],
Sigaud, O.[Olivier],
Neural Architecture Search for Fracture Classification,
ICIP22(3226-3230)
IEEE DOI
2211
Protocols, Computational modeling, Transfer learning,
Search problems, Computational efficiency, Fracture Classification
BibRef
Ying, G.H.[Guo-Hao],
He, X.[Xin],
Gao, B.[Bin],
Han, B.[Bo],
Chu, X.W.[Xiao-Wen],
EAGAN: Efficient Two-Stage Evolutionary Architecture Search for GANs,
ECCV22(XVI:37-53).
Springer DOI
2211
BibRef
Xue, C.[Chao],
Wang, X.X.[Xiao-Xing],
Yan, J.C.[Jun-Chi],
Li, C.G.[Chun-Guang],
A Max-Flow Based Approach for Neural Architecture Search,
ECCV22(XX:685-701).
Springer DOI
2211
BibRef
Liu, J.[Jihao],
Huang, X.[Xin],
Song, G.[Guanglu],
Li, H.S.[Hong-Sheng],
Liu, Y.[Yu],
UniNet: Unified Architecture Search with Convolution, Transformer, and
MLP,
ECCV22(XXI:33-49).
Springer DOI
2211
BibRef
Su, X.[Xiu],
You, S.[Shan],
Xie, J.[Jiyang],
Zheng, M.[Mingkai],
Wang, F.[Fei],
Qian, C.[Chen],
Zhang, C.S.[Chang-Shui],
Wang, X.G.[Xiao-Gang],
Xu, C.[Chang],
ViTAS: Vision Transformer Architecture Search,
ECCV22(XXI:139-157).
Springer DOI
2211
BibRef
Liu, C.X.[Chen-Xi],
Leng, Z.Q.[Zhao-Qi],
Sun, P.[Pei],
Cheng, S.Y.[Shu-Yang],
Qi, C.R.[Charles R.],
Zhou, Y.[Yin],
Tan, M.X.[Ming-Xing],
Anguelov, D.[Dragomir],
LidarNAS: Unifying and Searching Neural Architectures for 3D Point
Clouds,
ECCV22(XXI:158-175).
Springer DOI
2211
BibRef
Zhang, M.[Miao],
Pan, S.R.[Shi-Rui],
Chang, X.J.[Xiao-Jun],
Su, S.[Steven],
Hu, J.L.[Ji-Lin],
Haffari, G.[Gholamreza],
Yang, B.[Bin],
BaLeNAS:
Differentiable Architecture Search via the Bayesian Learning Rule,
CVPR22(11861-11870)
IEEE DOI
2210
Deep learning, Costs, Memory management, Optimization methods,
Benchmark testing, Gaussian distribution,
Optimization methods
BibRef
Xiao, H.[Han],
Wang, Z.W.[Zi-Wei],
Zhu, Z.[Zheng],
Zhou, J.[Jie],
Lu, J.W.[Ji-Wen],
Shapley-NAS: Discovering Operation Contribution for Neural
Architecture Search,
CVPR22(11882-11891)
IEEE DOI
2210
Costs, Monte Carlo methods, Fluctuations, Codes,
Approximation algorithms,
Deep learning architectures and techniques
BibRef
Huang, T.[Tao],
You, S.[Shan],
Wang, F.[Fei],
Qian, C.[Chen],
Zhang, C.S.[Chang-Shui],
Wang, X.G.[Xiao-Gang],
Xu, C.[Chang],
GreedyNASv2: Greedier Search with a Greedy Path Filter,
CVPR22(11892-11901)
IEEE DOI
2210
Training, Reliability,
Deep learning architectures and techniques, retrieval
BibRef
Zhou, Q.Q.[Qin-Qin],
Sheng, K.[Kekai],
Zheng, X.[Xiawu],
Li, K.[Ke],
Sun, X.[Xing],
Tian, Y.H.[Yong-Hong],
Chen, J.[Jie],
Ji, R.R.[Rong-Rong],
Training-free Transformer Architecture Search,
CVPR22(10884-10893)
IEEE DOI
2210
Graphics processing units, Transformers,
Task analysis, Explainable computer vision
BibRef
Ye, P.[Peng],
Li, B.[Baopu],
Li, Y.[Yikang],
Chen, T.[Tao],
Fan, J.Y.[Jia-Yuan],
Ouyang, W.L.[Wan-Li],
beta-DARTS: Beta-Decay Regularization for Differentiable Architecture
Search,
CVPR22(10864-10873)
IEEE DOI
2210
Training, Deep learning, Costs, Neural networks,
Search problems, retrieval
BibRef
Hendrickx, L.[Lotte],
van Ranst, W.[Wiebe],
Goedemé, T.[Toon],
Hot-started NAS for Task-specific Embedded Applications,
NAS22(1970-1977)
IEEE DOI
2210
Knowledge engineering, Neural networks,
Size measurement, Search problems
BibRef
Moser, B.[Brian],
Raue, F.[Federico],
Hees, J.[Jörn],
Dengel, A.[Andreas],
Less is More: Proxy Datasets in NAS approaches,
NAS22(1952-1960)
IEEE DOI
2210
Training, Neural networks, Training data,
Search problems
BibRef
Li, W.S.[Wen-Shuo],
Chen, X.H.[Xing-Hao],
Bai, J.Y.[Jin-Yu],
Ning, X.F.[Xue-Fei],
Wang, Y.H.[Yun-He],
Searching for Energy-Efficient Hybrid Adder-Convolution Neural
Networks,
NAS22(1942-1951)
IEEE DOI
2210
Training, Energy consumption, Convolution, Computational modeling,
Neural networks, Computer architecture
BibRef
Geada, R.[Rob],
McGough, A.S.[Andrew Stephen],
SpiderNet: Hybrid Differentiable-Evolutionary Architecture Search via
Train-Free Metrics,
NAS22(1961-1969)
IEEE DOI
2210
Measurement, Runtime, Heuristic algorithms, Microprocessors,
Neural networks, Manuals
BibRef
Ding, Y.D.[Ya-Dong],
Wu, Y.[Yu],
Huang, C.Y.[Cheng-Yue],
Tang, S.L.[Si-Liang],
Yang, Y.[Yi],
Wei, L.[Longhui],
Zhuang, Y.T.[Yue-Ting],
Tian, Q.[Qi],
Learning to Learn by Jointly Optimizing Neural Architecture and
Weights,
CVPR22(129-138)
IEEE DOI
2210
Training, Backpropagation, Adaptation models,
Computational efficiency,
Self- semi- meta- unsupervised learning
BibRef
Arican, M.E.[Metin Ersin],
Kara, O.[Ozgur],
Bredell, G.[Gustav],
Konukoglu, E.[Ender],
ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image
Prior,
CVPR22(1950-1958)
IEEE DOI
2210
Training, Computational modeling, Superresolution,
Image restoration,
Self- semi- meta- unsupervised learning
BibRef
Wang, H.X.[Hao-Xiang],
Wang, Y.[Yite],
Sun, R.[Ruoyu],
Li, B.[Bo],
Global Convergence of MAML and Theory-Inspired Neural Architecture
Search for Few-Shot Learning,
CVPR22(9787-9798)
IEEE DOI
2210
Deep learning, Costs, Neural networks, Supervised learning,
Kernel,
Self- semi- meta- Transfer/low-shot/long-tail learning
BibRef
Pan, J.[Junyi],
Sun, C.[Chong],
Zhou, Y.Z.[Yi-Zhou],
Zhang, Y.[Ying],
Li, C.[Chen],
Distribution Consistent Neural Architecture Search,
CVPR22(10874-10883)
IEEE DOI
2210
Training, Couplings, Weight measurement, Computational modeling,
Benchmark testing, Search problems, retrieval
BibRef
Mok, J.[Jisoo],
Na, B.[Byunggook],
Kim, J.H.[Ji-Hoon],
Han, D.Y.[Dong-Yoon],
Yoon, S.[Sungroh],
Demystifying the Neural Tangent Kernel from a Practical Perspective:
Can it be trusted for Neural Architecture Search without training?,
CVPR22(11851-11860)
IEEE DOI
2210
Training, Measurement, Costs, Correlation,
Deep learning architectures and techniques
BibRef
Huang, M.B.[Min-Bin],
Huang, Z.J.[Zhi-Jian],
Li, C.L.[Chang-Lin],
Chen, X.[Xin],
Xu, H.[Hang],
Li, Z.G.[Zhen-Guo],
Liang, X.D.[Xiao-Dan],
Arch-Graph: Acyclic Architecture Relation Predictor for
Task-Transferable Neural Architecture Search,
CVPR22(11871-11881)
IEEE DOI
2210
Knowledge engineering, Correlation,
Predictive models, Prediction algorithms, Multitasking,
Transfer/low-shot/long-tail learning
BibRef
Zheng, X.[Xiawu],
Fei, X.[Xiang],
Zhang, L.[Lei],
Wu, C.L.[Cheng-Lin],
Chao, F.[Fei],
Liu, J.Z.[Jian-Zhuang],
Zeng, W.[Wei],
Tian, Y.H.[Yong-Hong],
Ji, R.R.[Rong-Rong],
Neural Architecture Search with Representation Mutual Information,
CVPR22(11902-11911)
IEEE DOI
2210
Training, Performance evaluation, Deep learning, Architecture,
Estimation,
Efficient learning and inferences
BibRef
Peng, C.[Cheng],
Myronenko, A.[Andriy],
Hatamizadeh, A.[Ali],
Nath, V.[Vishwesh],
Siddiquee, M.M.R.[Md Mahfuzur Rahman],
He, Y.F.[Yu-Fan],
Xu, D.[Daguang],
Chellappa, R.[Rama],
Yang, D.[Dong],
HyperSegNAS: Bridging One-Shot Neural Architecture Search with 3D
Medical Image Segmentation using HyperNet,
CVPR22(20709-20719)
IEEE DOI
2210
Training, Image segmentation, Shape,
Network architecture, Topology, Medical, grouping and shape analysis
BibRef
Xu, K.[Kepeng],
He, G.[Gang],
DNAS:A Decoupled Global Neural Architecture Search Method,
NAS22(1978-1984)
IEEE DOI
2210
Analytical models, Search methods,
Benchmark testing
BibRef
Akin, B.[Berkin],
Gupta, S.[Suyog],
Long, Y.[Yun],
Spiridonov, A.[Anton],
Wang, Z.[Zhuo],
White, M.[Marie],
Xu, H.[Hao],
Zhou, P.[Ping],
Zhou, Y.Q.[Yan-Qi],
Searching for Efficient Neural Architectures for On-Device ML on Edge
TPUs,
ECV22(2666-2675)
IEEE DOI
2210
Tensors, Costs, Convolution, Image edge detection,
Throughput
BibRef
Qian, G.[Guocheng],
Zhang, X.[Xuanyang],
Li, G.H.[Guo-Hao],
Zhao, C.[Chen],
Chen, Y.[Yukang],
Zhang, X.Y.[Xiang-Yu],
Ghanem, B.[Bernard],
Sun, J.[Jian],
When NAS Meets Trees:
An Efficient Algorithm for Neural Architecture Search,
ECV22(2781-2786)
IEEE DOI
2210
Costs, Codes, Graphics processing units,
Pattern recognition
BibRef
Chen, Z.[Ziye],
Zhan, Y.B.[Yi-Bing],
Yu, B.[Baosheng],
Gong, M.M.[Ming-Ming],
Du, B.[Bo],
Not All Operations Contribute Equally: Hierarchical
Operation-adaptive Predictor for Neural Architecture Search,
ICCV21(10488-10497)
IEEE DOI
2203
Microprocessors, Logic gates,
Representation learning, Recognition and classification
BibRef
Wang, R.C.[Ruo-Chen],
Chen, X.N.[Xiang-Ning],
Cheng, M.[Minhao],
Tang, X.C.[Xiao-Cheng],
Hsieh, C.J.[Cho-Jui],
RANK-NOSH: Efficient Predictor-Based Architecture Search via
Non-Uniform Successive Halving,
ICCV21(10357-10366)
IEEE DOI
2203
Training, Costs, Scheduling algorithms,
Prediction algorithms, Computational efficiency,
Representation learning
BibRef
Lin, M.[Ming],
Wang, P.[Pichao],
Sun, Z.H.[Zhen-Hong],
Chen, H.[Hesen],
Sun, X.[Xiuyu],
Qian, Q.[Qi],
Li, H.[Hao],
Jin, R.[Rong],
Zen-NAS: A Zero-Shot NAS for High-Performance Image Recognition,
ICCV21(337-346)
IEEE DOI
2203
Training, Image recognition, Architecture, Computational modeling,
Graphics processing units,
Machine learning architectures and formulations
BibRef
Ci, Y.Z.[Yuan-Zheng],
Lin, C.[Chen],
Sun, M.[Ming],
Chen, B.[Boyu],
Zhang, H.W.[Hong-Wen],
Ouyang, W.L.[Wan-Li],
Evolving Search Space for Neural Architecture Search,
ICCV21(6639-6649)
IEEE DOI
2203
Codes, Automation, Extraterrestrial phenomena,
Performance gain, Search problems,
BibRef
Chu, X.X.[Xiang-Xiang],
Zhang, B.[Bo],
Xu, R.J.[Rui-Jun],
FairNAS: Rethinking Evaluation Fairness of Weight Sharing Neural
Architecture Search,
ICCV21(12219-12228)
IEEE DOI
2203
Training, Computational modeling, Pipelines,
Graphics processing units,
Recognition and classification
BibRef
Moons, B.[Bert],
Noorzad, P.[Parham],
Skliar, A.[Andrii],
Mariani, G.[Giovanni],
Mehta, D.[Dushyant],
Lott, C.[Chris],
Blankevoort, T.[Tijmen],
Distilling Optimal Neural Networks: Rapid Search in Diverse Spaces,
ICCV21(12209-12218)
IEEE DOI
2203
Knowledge engineering, Image coding, Pipelines, Neural networks,
Graphics processing units,
grouping and shape
BibRef
Wang, Y.M.[Yao-Ming],
Liu, Y.C.[Yu-Chen],
Dai, W.R.[Wen-Rui],
Li, C.L.[Cheng-Lin],
Zou, J.[Junni],
Xiong, H.K.[Hong-Kai],
Learning Latent Architectural Distribution in Differentiable Neural
Architecture Search via Variational Information Maximization,
ICCV21(12292-12301)
IEEE DOI
2203
Error analysis, Search problems,
Data models, Convolutional neural networks, Mutual information,
BibRef
Mok, J.[Jisoo],
Na, B.G.[Byung-Gook],
Choe, H.[Hyeokjun],
Yoon, S.[Sungroh],
AdvRush: Searching for Adversarially Robust Neural Architectures,
ICCV21(12302-12312)
IEEE DOI
2203
Training, Deep learning, Neural networks,
Benchmark testing, Linear programming,
BibRef
Peng, J.F.[Jie-Feng],
Zhang, J.Q.[Ji-Qi],
Li, C.L.[Chang-Lin],
Wang, G.R.[Guang-Run],
Liang, X.D.[Xiao-Dan],
Lin, L.[Liang],
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet
Training Consistency Shift,
ICCV21(12334-12344)
IEEE DOI
2203
Training, Correlation, Search problems,
Task analysis, Machine learning architectures and formulations,
Recognition and classification
BibRef
Chen, B.[Boyu],
Li, P.X.[Pei-Xia],
Li, C.[Chuming],
Li, B.[Baopu],
Bai, L.[Lei],
Lin, C.[Chen],
Sun, M.[Ming],
Yan, J.J.[Jun-Jie],
Ouyang, W.L.[Wan-Li],
GLiT: Neural Architecture Search for Global and Local Image
Transformer,
ICCV21(12-21)
IEEE DOI
2203
Visualization, Image recognition, Correlation,
Evolutionary computation, Transformers,
BibRef
Chen, B.[Boyu],
Li, P.X.[Pei-Xia],
Li, B.[Baopu],
Lin, C.[Chen],
Li, C.[Chuming],
Sun, M.[Ming],
Yan, J.J.[Jun-Jie],
Ouyang, W.L.[Wan-Li],
BN-NAS: Neural Architecture Search with Batch Normalization,
ICCV21(307-316)
IEEE DOI
2203
Training, Codes, Network architecture,
Convergence, Recognition and classification,
BibRef
Zhou, D.Q.[Da-Quan],
Jin, X.J.[Xiao-Jie],
Lian, X.C.[Xiao-Chen],
Yang, L.J.[Lin-Jie],
Xue, Y.J.[Yu-Jing],
Hou, Q.B.[Qi-Bin],
Feng, J.S.[Jia-Shi],
AutoSpace: Neural Architecture Search with Less Human Interference,
ICCV21(327-336)
IEEE DOI
2203
Knowledge engineering, Costs, Computational modeling,
Interference, Manuals,
Machine learning architectures and formulations
BibRef
Simon, C.[Christian],
Koniusz, P.[Piotr],
Petersson, L.[Lars],
Han, Y.[Yan],
Harandi, M.[Mehrtash],
Towards a Robust Differentiable Architecture Search under Label Noise,
WACV22(3584-3594)
IEEE DOI
2202
Convolution, Neural networks, Focusing,
Manuals, Games, Statistical Methods,
Learning and Optimization Deep Learning
BibRef
Wan, X.C.[Xing-Chen],
Ru, B.X.[Bin-Xin],
Esparança, P.M.[Pedro M.],
Carlucci, F.M.[Fabio M.],
Approximate Neural Architecture Search via Operation Distribution
Learning,
WACV22(3545-3554)
IEEE DOI
2202
Costs, Microprocessors,
Search problems, Encoding, Robustness,
Deep Learning neural network architectures
BibRef
Xia, X.[Xin],
Xiao, X.F.[Xue-Feng],
Wang, X.[Xing],
Zheng, M.[Min],
Progressive Automatic Design of Search Space for One-Shot Neural
Architecture Search,
WACV22(3525-3534)
IEEE DOI
2202
Couplings, Costs, Neural networks,
Search problems, Hardware,
Deep Learning Deep Learning -> Efficient Training and
Inference Methods for Networks
BibRef
Chitty-Venkata, K.T.[Krishna Teja],
Somani, A.K.[Arun K.],
Kothandaraman, S.[Sreenivas],
Searching Architecture and Precision for U-net based Image
Restoration Tasks,
ICIP21(1989-1993)
IEEE DOI
2201
Deep learning, Measurement, Quantization (signal), Tensors,
Computational modeling, Microprocessors,
Mixed Precision
BibRef
Lin, J.L.[Jun-Liang],
Sung, Y.L.[Yi-Lin],
Hong, C.Y.[Cheng-Yao],
Lee, H.H.[Han-Hung],
Liu, T.L.[Tyng-Luh],
The Maximum a Posterior Estimation of Darts,
ICIP21(419-423)
IEEE DOI
2201
Couplings, Image processing, Estimation, Network architecture,
Benchmark testing, Search problems, Neural Architecture Search,
Deep Learning
BibRef
Jiang, B.[Borui],
Mu, Y.D.[Ya-Dong],
Russian Doll Network: Learning Nested Networks for Sample-Adaptive
Dynamic Inference,
NeruArch21(336-344)
IEEE DOI
2112
Bridges, Computational modeling,
Transforms, Optimization
BibRef
Shen, B.[Biluo],
Xiao, A.[Anqi],
Tian, J.[Jie],
Hu, Z.H.[Zhen-Hua],
PP-NAS: Searching for Plug-and-Play Blocks on Convolutional Neural
Network,
NeruArch21(365-372)
IEEE DOI
2112
Training, Image segmentation, Semantics,
Transfer learning, Object detection, Computer architecture
BibRef
Liu, C.H.[Chia-Hsiang],
Han, Y.S.[Yu-Shin],
Sung, Y.Y.[Yuan-Yao],
Lee, Y.[Yi],
Chiang, H.Y.[Hung-Yueh],
Wu, K.C.A.[Kai-Chi-Ang],
FOX-NAS: Fast, On-device and Explainable Neural Architecture Search,
LPCV21(789-797)
IEEE DOI
2112
Costs, Search methods, Neural networks,
Graphics processing units, Computer architecture
BibRef
Chatzianastasis, M.[Michail],
Dasoulas, G.[George],
Siolas, G.[Georgios],
Vazirgiannis, M.[Michalis],
Graph-based Neural Architecture Search with Operation Embeddings,
NeruArch21(393-402)
IEEE DOI
2112
Training, Correlation, Pipelines,
Network architecture
BibRef
Hou, P.F.[Peng-Fei],
Jin, Y.[Ying],
Chen, Y.[Yukang],
Single-DARTS: Towards Stable Architecture Search,
NeruArch21(373-382)
IEEE DOI
2112
Systematics, Costs, Codes,
Stability analysis
BibRef
Devaguptapu, C.[Chaitanya],
Agarwal, D.[Devansh],
Mittal, G.[Gaurav],
Gopalani, P.[Pulkit],
Balasubramanian, V.N.[Vineeth N],
On Adversarial Robustness: A Neural Architecture Search perspective,
AROW21(152-161)
IEEE DOI
2112
Training, Measurement, Deep learning, Analytical models,
Network topology, Neural networks, Computer architecture
BibRef
Chu, X.X.[Xiang-Xiang],
Zhang, B.[Bo],
Li, Q.Y.[Qing-Yuan],
Xu, R.J.[Rui-Jun],
Li, X.D.[Xu-Dong],
SCARLET-NAS: Bridging the Gap between Stability and Scalability in
Weight-sharing Neural Architecture Search,
NeruArch21(317-325)
IEEE DOI
2112
Training, Scalability, Perturbation methods,
Stability analysis
BibRef
Su, X.[Xiu],
Huang, T.[Tao],
Li, Y.X.[Yan-Xi],
You, S.[Shan],
Wang, F.[Fei],
Qian, C.[Chen],
Zhang, C.S.[Chang-Shui],
Xu, C.[Chang],
Prioritized Architecture Sampling with Monto-Carlo Tree Search,
CVPR21(10963-10972)
IEEE DOI
2111
Training, Monte Carlo methods, Costs, Codes,
Computational modeling, Computer architecture
BibRef
Li, S.[Sheng],
Tan, M.X.[Ming-Xing],
Pang, R.[Ruoming],
Li, A.[Andrew],
Cheng, L.Q.[Li-Qun],
Le, Q.V.[Quoc V.],
Jouppi, N.P.[Norman P.],
Searching for Fast Model Families on Datacenter Accelerators,
CVPR21(8081-8091)
IEEE DOI
2111
Convolutional codes, Convolution,
Computational modeling, Search methods, Parallel processing, Hardware
BibRef
Xu, L.[Lumin],
Guan, Y.[Yingda],
Jin, S.[Sheng],
Liu, W.T.[Wen-Tao],
Qian, C.[Chen],
Luo, P.[Ping],
Ouyang, W.L.[Wan-Li],
Wang, X.G.[Xiao-Gang],
ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search,
CVPR21(16067-16076)
IEEE DOI
2111
Training, Costs, Pose estimation,
Streaming media, Real-time systems
BibRef
Hosseini, R.[Ramtin],
Yang, X.Y.[Xing-Yi],
Xie, P.[Pengtao],
DSRNA: Differentiable Search of Robust Neural Architectures,
CVPR21(6192-6201)
IEEE DOI
2111
Measurement, Jacobian matrices, Deep learning, Training,
Perturbation methods, Search problems
BibRef
Huang, S.Y.[Sian-Yao],
Chu, W.T.[Wei-Ta],
Searching by Generating: Flexible and Efficient One-Shot NAS with
Architecture Generator,
CVPR21(983-992)
IEEE DOI
2111
Training, Costs, Codes, Memory management,
Graphics processing units, Search problems
BibRef
Dai, X.L.[Xiao-Liang],
Wan, A.[Alvin],
Zhang, P.Z.[Pei-Zhao],
Wu, B.C.[Bi-Chen],
He, Z.J.[Zi-Jian],
Wei, Z.[Zhen],
Chen, K.[Kan],
Tian, Y.D.[Yuan-Dong],
Yu, M.[Matthew],
Vajda, P.[Peter],
Gonzalez, J.E.[Joseph E.],
FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining,
CVPR21(16271-16280)
IEEE DOI
2111
Training, Search methods, Neural networks,
Manuals, Performance gain, Prediction algorithms
BibRef
Xiong, Y.Y.[Yun-Yang],
Liu, H.X.[Han-Xiao],
Gupta, S.[Suyog],
Akin, B.[Berkin],
Bender, G.[Gabriel],
Wang, Y.Z.[Yong-Zhe],
Kindermans, P.J.[Pieter-Jan],
Tan, M.X.[Ming-Xing],
Singh, V.[Vikas],
Chen, B.[Bo],
MobileDets:
Searching for Object Detection Architectures for Mobile Accelerators,
CVPR21(3824-3833)
IEEE DOI
2111
Convolutional codes, Image edge detection, Neural networks,
Object detection, Network architecture, Search problems
BibRef
He, Y.F.[Yu-Fan],
Yang, D.[Dong],
Roth, H.[Holger],
Zhao, C.[Can],
Xu, D.[Daguang],
DiNTS: Differentiable Neural Network Topology Search for 3D Medical
Image Segmentation,
CVPR21(5837-5846)
IEEE DOI
2111
Image segmentation, Solid modeling,
Network topology, Graphics processing units, Benchmark testing, Topology
BibRef
Ding, M.Y.[Ming-Yu],
Lian, X.C.[Xiao-Chen],
Yang, L.J.[Lin-Jie],
Wang, P.[Peng],
Jin, X.J.[Xiao-Jie],
Lu, Z.W.[Zhi-Wu],
Luo, P.[Ping],
HR-NAS: Searching Efficient High-Resolution Neural Architectures with
Lightweight Transformers,
CVPR21(2981-2991)
IEEE DOI
2111
Convolutional codes, Image segmentation, Computational modeling,
Transformers, Search problems, Encoding
BibRef
Chen, M.H.[Ming-Hao],
Fu, J.L.[Jian-Long],
Ling, H.B.[Hai-Bin],
One-Shot Neural Ensemble Architecture Search by Diversity-Guided
Search Space Shrinking,
CVPR21(16525-16534)
IEEE DOI
2111
Codes, Benchmark testing,
Extraterrestrial measurements, Robustness, Complexity theory
BibRef
Yan, B.[Bin],
Peng, H.[Houwen],
Wu, K.[Kan],
Wang, D.[Dong],
Fu, J.L.[Jian-Long],
Lu, H.C.[Hu-Chuan],
LightTrack: Finding Lightweight Neural Networks for Object Tracking
via One-Shot Architecture Search,
CVPR21(15175-15184)
IEEE DOI
2111
Oceans, Neural networks, Graphics processing units,
Real-time systems
BibRef
Yan, Z.C.[Zhi-Cheng],
Dai, X.L.[Xiao-Liang],
Zhang, P.Z.[Pei-Zhao],
Tian, Y.D.[Yuan-Dong],
Wu, B.C.[Bi-Chen],
Feiszli, M.[Matt],
FP-NAS: Fast Probabilistic Neural Architecture Search,
CVPR21(15134-15143)
IEEE DOI
2111
Adaptation models, Computational modeling,
Memory management, Probabilistic logic, Sampling methods
BibRef
Li, Z.G.[Zhen-Gang],
Yuan, G.[Geng],
Niu, W.[Wei],
Zhao, P.[Pu],
Li, Y.Y.[Yan-Yu],
Cai, Y.X.[Yu-Xuan],
Shen, X.[Xuan],
Zhan, Z.[Zheng],
Kong, Z.L.[Zheng-Lun],
Jin, Q.[Qing],
Chen, Z.Y.[Zhi-Yu],
Liu, S.J.[Si-Jia],
Yang, K.Y.[Kai-Yuan],
Ren, B.[Bin],
Wang, Y.Z.[Yan-Zhi],
Lin, X.[Xue],
NPAS: A Compiler-aware Framework of Unified Network Pruning and
Architecture Search for Beyond Real-Time Mobile Acceleration,
CVPR21(14250-14261)
IEEE DOI
2111
Training, Performance evaluation, Codes, Computational modeling,
Reinforcement learning, Network architecture
BibRef
Zhang, X.[Xiong],
Xu, H.M.[Hong-Min],
Mo, H.[Hong],
Tan, J.C.[Jian-Chao],
Yang, C.[Cheng],
Wang, L.[Lei],
Ren, W.Q.[Wen-Qi],
DCNAS: Densely Connected Neural Architecture Search for Semantic
Image Segmentation,
CVPR21(13951-13962)
IEEE DOI
2111
Training, Image segmentation, Visualization,
Semantics, Memory management, Network architecture
BibRef
Gu, Y.C.[Yu-Chao],
Wang, L.J.[Li-Juan],
Liu, Y.[Yun],
Yang, Y.[Yi],
Wu, Y.H.[Yu-Huan],
Lu, S.P.[Shao-Ping],
Cheng, M.M.[Ming-Ming],
DOTS: Decoupling Operation and Topology in Differentiable
Architecture Search,
CVPR21(12306-12315)
IEEE DOI
2111
Codes, Microprocessors, Image edge detection, Search problems
BibRef
Liu, H.X.[Han-Xiao],
Simonyan, K.[Karen],
Yang, Y.M.[Yi-Ming],
DARTS: Differentiable architecture search,
ICLR19
WWW Link.
BibRef
1900
Zhang, X.Y.[Xuan-Yang],
Hou, P.F.[Peng-Fei],
Zhang, X.Y.[Xiang-Yu],
Sun, J.[Jian],
Neural Architecture Search with Random Labels,
CVPR21(10902-10911)
IEEE DOI
2111
Training,
Task analysis
BibRef
Yang, Z.H.[Zhao-Hui],
Wang, Y.H.[Yun-He],
Chen, X.H.[Xing-Hao],
Guo, J.Y.[Jian-Yuan],
Zhang, W.[Wei],
Xu, C.[Chao],
Xu, C.J.[Chun-Jing],
Tao, D.C.[Da-Cheng],
Xu, C.[Chang],
HourNAS: Extremely Fast Neural Architecture Search Through an
Hourglass Lens,
CVPR21(10891-10901)
IEEE DOI
2111
Deep learning, Costs, Neural networks, Graphics processing units,
Complexity theory
BibRef
Liang, T.T.[Ting-Ting],
Wang, Y.T.[Yong-Tao],
Tang, Z.[Zhi],
Hu, G.S.[Guo-Sheng],
Ling, H.B.[Hai-Bin],
OPANAS: One-Shot Path Aggregation Network Architecture Search for
Object Detection,
CVPR21(10190-10198)
IEEE DOI
2111
Training, Visualization, Costs, Graphics processing units,
Object detection, Network architecture
BibRef
Yang, Y.[Yibo],
You, S.[Shan],
Li, H.Y.[Hong-Yang],
Wang, F.[Fei],
Qian, C.[Chen],
Lin, Z.C.[Zhou-Chen],
Towards Improving the Consistency, Efficiency, and Flexibility of
Differentiable Neural Architecture Search,
CVPR21(6663-6672)
IEEE DOI
2111
Training, Costs, Error analysis, Search methods,
Memory management, Computer architecture
BibRef
Cai, S.F.[Shao-Fei],
Li, L.[Liang],
Deng, J.C.[Jin-Can],
Zhang, B.C.[Bei-Chen],
Zha, Z.J.[Zheng-Jun],
Su, L.[Li],
Huang, Q.M.[Qing-Ming],
Rethinking Graph Neural Architecture Search from Message-passing,
CVPR21(6653-6662)
IEEE DOI
2111
Filtering, Message passing, Manuals,
Search problems, Feature extraction, Graph neural networks
BibRef
Wang, D.[Dilin],
Li, M.[Meng],
Gong, C.Y.[Cheng-Yue],
Chandra, V.[Vikas],
AttentiveNAS: Improving Neural Architecture Search via Attentive
Sampling,
CVPR21(6414-6423)
IEEE DOI
2111
Training, Codes
BibRef
Duan, Y.W.[Ya-Wen],
Chen, X.[Xin],
Xu, H.[Hang],
Chen, Z.W.[Ze-Wei],
Liang, X.D.[Xiao-Dan],
Zhang, T.[Tong],
Li, Z.G.[Zhen-Guo],
TransNAS-Bench-101: Improving transferability and Generalizability of
Cross-Task Neural Architecture Search,
CVPR21(5247-5256)
IEEE DOI
2111
Training, Knowledge engineering,
Design methodology, Transfer learning, Benchmark testing
BibRef
Xu, Y.X.[Yi-Xing],
Wang, Y.H.[Yun-He],
Han, K.[Kai],
Tang, Y.H.[Ye-Hui],
Jui, S.L.[Shang-Ling],
Xu, C.J.[Chun-Jing],
Xu, C.[Chang],
ReNAS: Relativistic Evaluation of Neural Architecture Search,
CVPR21(4409-4418)
IEEE DOI
2111
Training, Performance evaluation, Tensors, Costs, Microprocessors,
Refining, Estimation
BibRef
Yang, T.J.[Tien-Ju],
Liao, Y.L.[Yi-Lun],
Sze, V.[Vivienne],
NetAdaptV2: Efficient Neural Architecture Search with Fast
Super-Network Training and Architecture Optimization,
CVPR21(2402-2411)
IEEE DOI
2111
Training, Measurement, Deep learning, Technological innovation,
Costs, Estimation, Computer architecture
BibRef
Chu, G.[Grace],
Arikan, O.[Okan],
Bender, G.[Gabriel],
Wang, W.J.[Wei-Jun],
Brighton, A.[Achille],
Kindermans, P.J.[Pieter-Jan],
Liu, H.X.[Han-Xiao],
Akin, B.[Berkin],
Gupta, S.[Suyog],
Howard, A.[Andrew],
Discovering Multi-Hardware Mobile Models via Architecture Search,
ECV21(3016-3025)
IEEE DOI
2109
Graphics processing units, Focusing,
Debugging, Extraterrestrial measurements
BibRef
Chu, X.X.[Xiang-Xiang],
Zhang, B.[Bo],
Ma, H.L.[Hai-Long],
Xu, R.J.[Rui-Jun],
Li, Q.Y.[Qing-Yuan],
Fast, Accurate and Lightweight Super-Resolution with Neural
Architecture Search,
ICPR21(59-64)
IEEE DOI
2105
Training, Performance evaluation, PSNR, Image coding,
Superresolution, Reinforcement learning
BibRef
Zhang, H.G.[Hui-Gang],
Wang, L.[Liuan],
Sun, J.[Jun],
Sun, L.[Li],
Kobashi, H.[Hiromichi],
Imamura, N.[Nobutaka],
NAS-EOD: an end-to-end Neural Architecture Search method for
Efficient Object Detection,
ICPR21(1446-1451)
IEEE DOI
2105
Performance evaluation, Training, Adaptation models,
Image edge detection, Search methods, Pipelines, Graphics processing units
BibRef
Jordao, A.[Artur],
Akio, F.[Fernando],
Lie, M.[Maiko],
Schwartz, W.R.[William Robson],
Stage-Wise Neural Architecture Search,
ICPR21(1985-1992)
IEEE DOI
2105
Design methodology, Memory management,
Search problems
BibRef
López, J.G.[Javier García],
Agudo, A.[Antonio],
Moreno-Noguer, F.[Francesc],
E-DNAS: Differentiable Neural Architecture Search for Embedded
Systems,
ICPR21(4704-4711)
IEEE DOI
2105
Measurement, Training, Embedded systems, Search methods,
Presence network agents, System-on-chip, Kernel, Deep Learning,
Convolutional Meta Kernels
BibRef
Ahn, J.Y.[Joon Young],
Cho, N.I.[Nam Ik],
Neural Architecture Search for Image Super-Resolution Using Densely
Constructed Search Space: DeCoNAS,
ICPR21(4829-4836)
IEEE DOI
2105
Superresolution, Network architecture, Search problems,
Complexity theory,
Task analysis
BibRef
Peter, D.[David],
Roth, W.[Wolfgang],
Pernkopf, F.[Franz],
Resource-Efficient DNNs for Keyword Spotting using Neural
Architecture Search and Quantization,
ICPR21(9273-9279)
IEEE DOI
2105
Performance evaluation, Quantization (signal), Microcontrollers,
Memory management, Internet,
weight quantization
BibRef
Siddiqui, S.[Shahid],
Kyrkou, C.[Christos],
Theocharides, T.[Theocharis],
Operation and Topology Aware Fast Differentiable Architecture Search,
ICPR21(9666-9673)
IEEE DOI
2105
Convolution, Microprocessors, Architecture,
Network architecture, Search problems, Topology
BibRef
Donegan, C.[Ciarán],
Yous, H.[Hamza],
Sinha, S.[Saksham],
Byrne, J.[Jonathan],
VPU Specific CNNs through Neural Architecture Search,
ICPR21(9772-9779)
IEEE DOI
2105
Performance evaluation, Training, Knowledge engineering,
Neural networks, Graphics processing units, Computer architecture
BibRef
Gallo, I.[Ignazio],
Magistrali, G.,
Landro, N.[Nicola],
La Grassa, R.[Riccardo],
Improving the Efficient Neural Architecture Search via Rewarding
Modifications,
IVCNZ20(1-6)
IEEE DOI
2012
Training, Deep learning, Recurrent neural networks,
Reinforcement learning, Task analysis,
Classification
BibRef
Yuan, G.,
Xue, B.,
Zhang, M.,
A Graph-Based Approach to Automatic Convolutional Neural Network
Construction for Image Classification,
IVCNZ20(1-6)
IEEE DOI
2012
Neural networks,
Classification algorithms, Convolutional neural networks,
neural architecture search
BibRef
Li, J.H.[Ji-Hao],
Diao, W.H.[Wen-Hui],
Sun, X.[Xian],
Feng, Y.C.[Ying-Chao],
Zhang, W.K.[Wen-Kai],
Chang, Z.H.[Zhong-Han],
Fu, K.[Kun],
Automated and Lightweight Network Design Via Random Search for Remote
Sensing Image Scene Classification,
ISPRS20(B2:1217-1224).
DOI Link
2012
BibRef
Chen, Y.C.[Yun-Chun],
Gao, C.[Chen],
Robb, E.[Esther],
Huang, J.B.[Jia-Bin],
NAS-DIP: Learning Deep Image Prior with Neural Architecture Search,
ECCV20(XVIII:442-459).
Springer DOI
2012
BibRef
Hu, Y.[Yibo],
Wu, X.[Xiang],
He, R.[Ran],
TF-NAS: Rethinking Three Search Freedoms of Latency-constrained
Differentiable Neural Architecture Search,
ECCV20(XV:123-139).
Springer DOI
2011
BibRef
Xu, H.[Hang],
Wang, S.J.[Shao-Ju],
Cai, X.Y.[Xin-Yue],
Zhang, W.[Wei],
Liang, X.D.[Xiao-Dan],
Li, Z.G.[Zhen-Guo],
Curvelane-NAS:
Unifying Lane-sensitive Architecture Search and Adaptive Point Blending,
ECCV20(XV:689-704).
Springer DOI
2011
BibRef
Chu, X.X.[Xiang-Xiang],
Zhou, T.B.[Tian-Bao],
Zhang, B.[Bo],
Li, J.X.[Ji-Xiang],
Fair Darts: Eliminating Unfair Advantages in Differentiable
Architecture Search,
ECCV20(XV:465-480).
Springer DOI
2011
BibRef
Dai, X.Y.[Xi-Yang],
Chen, D.D.[Dong-Dong],
Liu, M.C.[Meng-Chen],
Chen, Y.P.[Yin-Peng],
Yuan, L.[Lu],
DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search,
ECCV20(XXVII:584-600).
Springer DOI
2011
BibRef
Hu, Y.[Yutao],
Jiang, X.L.[Xiao-Long],
Liu, X.H.[Xu-Hui],
Zhang, B.C.[Bao-Chang],
Han, J.G.[Jun-Gong],
Cao, X.B.[Xian-Bin],
Doermann, D.[David],
NAS-Count: Counting-by-density with Neural Architecture Search,
ECCV20(XXII:747-766).
Springer DOI
2011
BibRef
Howard-Jenkins, H.[Henry],
Li, Y.W.[Yi-Wen],
Prisacariu, V.A.[Victor Adrian],
Gross: Group-size Series Decomposition for Grouped Architecture Search,
ECCV20(XXVI:18-33).
Springer DOI
2011
BibRef
Hu, Y.M.[Yi-Ming],
Liang, Y.D.[Yu-Ding],
Guo, Z.C.[Zi-Chao],
Wan, R.[Ruosi],
Zhang, X.Y.[Xiang-Yu],
Wei, Y.C.[Yi-Chen],
Gu, Q.Y.[Qing-Yi],
Sun, J.[Jian],
Angle-based Search Space Shrinking for Neural Architecture Search,
ECCV20(XIX:119-134).
Springer DOI
2011
BibRef
Chen, X.[Xin],
Duan, Y.W.[Ya-Wen],
Chen, Z.W.[Ze-Wei],
Xu, H.[Hang],
Chen, Z.H.[Zi-Hao],
Liang, X.D.[Xiao-Dan],
Zhang, T.[Tong],
Li, Z.G.[Zhen-Guo],
Catch: Context-based Meta Reinforcement Learning for Transferrable
Architecture Search,
ECCV20(XIX:185-202).
Springer DOI
2011
BibRef
Yu, J.H.[Jia-Hui],
Jin, P.C.[Peng-Chong],
Liu, H.X.[Han-Xiao],
Bender, G.[Gabriel],
Kindermans, P.J.[Pieter-Jan],
Tan, M.X.[Ming-Xing],
Huang, T.[Thomas],
Song, X.D.[Xiao-Dan],
Pang, R.M.[Ruo-Ming],
Le, Q.[Quoc],
Bignas: Scaling up Neural Architecture Search with Big Single-stage
Models,
ECCV20(VII:702-717).
Springer DOI
2011
BibRef
Tian, Y.[Yuan],
Wang, Q.[Qin],
Huang, Z.W.[Zhi-Wu],
Li, W.[Wen],
Dai, D.X.[Deng-Xin],
Yang, M.H.[Ming-Hao],
Wang, J.[Jun],
Fink, O.[Olga],
Off-policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search,
ECCV20(VII:175-192).
Springer DOI
2011
BibRef
Bulat, A.[Adrian],
Martinez, B.[Brais],
Tzimiropoulos, G.[Georgios],
Bats: Binary Architecture Search,
ECCV20(XXIII:309-325).
Springer DOI
2011
BibRef
Yuan, Z.H.[Zhi-Hang],
Wu, B.Z.[Bing-Zhe],
Sun, G.Y.[Guang-Yu],
Liang, Z.[Zheng],
Zhao, S.W.[Shi-Wan],
Bi, W.C.[Wei-Chen],
S2dnas: Transforming Static Cnn Model for Dynamic Inference via Neural
Architecture Search,
ECCV20(II:175-192).
Springer DOI
2011
BibRef
Liu, C.X.[Chen-Xi],
Dollár, P.[Piotr],
He, K.M.[Kai-Ming],
Girshick, R.[Ross],
Yuille, A.L.[Alan L.],
Xie, S.N.[Sai-Ning],
Are Labels Necessary for Neural Architecture Search?,
ECCV20(IV:798-813).
Springer DOI
2011
BibRef
Wen, W.[Wei],
Liu, H.X.[Han-Xiao],
Chen, Y.R.[Yi-Ran],
Li, H.[Hai],
Bender, G.[Gabriel],
Kindermans, P.J.[Pieter-Jan],
Neural Predictor for Neural Architecture Search,
ECCV20(XXIX: 660-676).
Springer DOI
2010
BibRef
Vahdat, A.,
Mallya, A.,
Liu, M.,
Kautz, J.,
UNAS: Differentiable Architecture Search Meets Reinforcement Learning,
CVPR20(11263-11272)
IEEE DOI
2008
Search problems, DNA, Linear programming,
Task analysis, Estimation, Loss measurement
BibRef
Berman, M.[Maxim],
Pishchulin, L.[Leonid],
Xu, N.[Ning],
Blaschko, M.B.[Matthew B.],
Medioni, G.[Gérard],
AOWS: Adaptive and Optimal Network Width Search With Latency
Constraints,
CVPR20(11214-11223)
IEEE DOI
2008
Training, Computational modeling,
Task analysis, Neural networks, Hardware, Measurement
BibRef
Bender, G.,
Liu, H.,
Chen, B.,
Chu, G.,
Cheng, S.,
Kindermans, P.,
Le, Q.V.,
Can Weight Sharing Outperform Random Architecture Search? An
Investigation With TuNAS,
CVPR20(14311-14320)
IEEE DOI
2008
Search problems, Google,
Inference algorithms, Task analysis, Training
BibRef
Wan, A.,
Dai, X.,
Zhang, P.,
He, Z.,
Tian, Y.,
Xie, S.,
Wu, B.,
Yu, M.,
Xu, T.,
Chen, K.,
Vajda, P.,
Gonzalez, J.E.,
FBNetV2: Differentiable Neural Architecture Search for Spatial and
Channel Dimensions,
CVPR20(12962-12971)
IEEE DOI
2008
DNA, Convolution, Neural networks, Training,
Computational efficiency, Space exploration
BibRef
Mozejko, M.,
Latkowski, T.,
Treszczotko, L.,
Szafraniuk, M.,
Trojanowski, K.,
Superkernel Neural Architecture Search for Image Denoising,
NTIRE20(2002-2011)
IEEE DOI
2008
Training, Task analysis, Image denoising, Kernel, Memory management, Graphics processing units
BibRef
Zhang, L.L.,
Yang, Y.,
Jiang, Y.,
Zhu, W.,
Liu, Y.,
Fast Hardware-Aware Neural Architecture Search,
EDLCV20(2959-2967)
IEEE DOI
2008
Hardware, Graphics processing units,
Hurricanes, Training, Measurement
BibRef
Gao, Y.,
Bai, H.,
Jie, Z.,
Ma, J.,
Jia, K.,
Liu, W.,
MTL-NAS: Task-Agnostic Neural Architecture Search Towards
General-Purpose Multi-Task Learning,
CVPR20(11540-11549)
IEEE DOI
2008
Task analysis, Entropy, Neural networks,
Feature extraction, Semantics, Convolution
BibRef
Zhou, D.,
Zhou, X.,
Zhang, W.,
Loy, C.C.,
Yi, S.,
Zhang, X.,
Ouyang, W.,
EcoNAS: Finding Proxies for Economical Neural Architecture Search,
CVPR20(11393-11401)
IEEE DOI
2008
Training, Reliability,
Graphics processing units, Acceleration, Measurement
BibRef
Zheng, X.,
Ji, R.,
Wang, Q.,
Ye, Q.,
Li, Z.,
Tian, Y.,
Tian, Q.,
Rethinking Performance Estimation in Neural Architecture Search,
CVPR20(11353-11362)
IEEE DOI
2008
Estimation, Microprocessors, Training,
Optimization, Search problems, Learning (artificial intelligence)
BibRef
Fang, J.,
Sun, Y.,
Zhang, Q.,
Li, Y.,
Liu, W.,
Wang, X.,
Densely Connected Search Space for More Flexible Neural Architecture
Search,
CVPR20(10625-10634)
IEEE DOI
2008
Routing, Tensile stress, Estimation,
Approximation algorithms, Spatial resolution, Microprocessors
BibRef
Li, Y.,
Jin, X.,
Mei, J.,
Lian, X.,
Yang, L.,
Xie, C.,
Yu, Q.,
Zhou, Y.,
Bai, S.,
Yuille, A.L.,
Neural Architecture Search for Lightweight Non-Local Networks,
CVPR20(10294-10303)
IEEE DOI
2008
Neural networks, Computational modeling,
Task analysis, Graphics processing units, Mobile handsets,
Computational complexity
BibRef
Hu, S.K.[Shou-Kang],
Xie, S.R.[Si-Rui],
Zheng, H.H.[He-Hui],
Liu, C.X.[Chun-Xiao],
Shi, J.P.[Jian-Ping],
Liu, X.Y.[Xun-Ying],
Lin, D.H.[Da-Hua],
DSNAS: Direct Neural Architecture Search Without Parameter Retraining,
CVPR20(12081-12089)
IEEE DOI
2008
Task analysis, Optimization, Training,
Search problems, Measurement, Machine learning
BibRef
Atzmon, M.[Matan],
Nagano, K.[Koki],
Fidler, S.[Sanja],
Khamis, S.[Sameh],
Lipman, Y.[Yaron],
Frame Averaging for Equivariant Shape Space Learning,
CVPR22(621-631)
IEEE DOI
2210
Training, Representation learning, Shape, Neural networks,
Decoding, Representation learning
BibRef
Li, Z.,
Xi, T.,
Deng, J.,
Zhang, G.,
Wen, S.,
He, R.,
GP-NAS: Gaussian Process Based Neural Architecture Search,
CVPR20(11930-11939)
IEEE DOI
2008
Correlation, Kernel, Training, Task analysis,
Network architecture, Mutual information
BibRef
He, C.,
Ye, H.,
Shen, L.,
Zhang, T.,
MiLeNAS: Efficient Neural Architecture Search via Mixed-Level
Reformulation,
CVPR20(11990-11999)
IEEE DOI
2008
Mathematical model, Training,
Optimization methods, Training data, Neural networks
BibRef
Liu, P.,
Wu, B.,
Ma, H.,
Seok, M.,
MemNAS: Memory-Efficient Neural Architecture Search With Grow-Trim
Learning,
CVPR20(2105-2113)
IEEE DOI
2008
Memory management, Neural networks, Correlation,
Performance evaluation, Computational modeling
BibRef
Gao, C.[Chen],
Chen, Y.P.[Yun-Peng],
Liu, S.[Si],
Tan, Z.X.[Zhen-Xiong],
Yan, S.C.[Shui-Cheng],
AdversarialNAS: Adversarial Neural Architecture Search for GANs,
CVPR20(5679-5688)
IEEE DOI
2008
Generators, Task analysis,
Convolution, Generative adversarial networks
BibRef
Li, G.H.[Guo-Hao],
Qian, G.C.[Guo-Cheng],
Delgadillo, I.C.[Itzel C.],
Müller, M.[Matthias],
Thabet, A.[Ali],
Ghanem, B.[Bernard],
SGAS: Sequential Greedy Architecture Search,
CVPR20(1617-1627)
IEEE DOI
2008
Neural Architecture Search.
Correlation, Search problems, Task analysis,
Optimization, Computational efficiency, Microprocessors
BibRef
Chen, X.[Xin],
Xie, L.X.[Ling-Xi],
Wu, J.[Jun],
Tian, Q.[Qi],
Progressive Differentiable Architecture Search:
Bridging the Depth Gap Between Search and Evaluation,
ICCV19(1294-1303)
IEEE DOI
2004
Code, Search.
WWW Link. approximation theory, image recognition,
learning (artificial intelligence), neural net architecture,
Computational modeling
BibRef
Xiong, Y.,
Mehta, R.,
Singh, V.,
Resource Constrained Neural Network Architecture Search:
Will a Submodularity Assumption Help?,
ICCV19(1901-1910)
IEEE DOI
2004
learning (artificial intelligence), neural nets, optimisation,
neural network architecture search, empirical feedback,
Heuristic algorithms
BibRef
Zhao, R.,
Luk, W.,
Efficient Structured Pruning and Architecture Searching for Group
Convolution,
NeruArch19(1961-1970)
IEEE DOI
2004
convolutional neural nets, group theory, network theory (graphs),
neural net architecture, search problems, network pruning,
efficient inference
BibRef
Li, X.[Xin],
Zhou, Y.M.[Yi-Ming],
Pan, Z.[Zheng],
Feng, J.S.[Jia-Shi],
Partial Order Pruning: For Best Speed/Accuracy Trade-Off in Neural
Architecture Search,
CVPR19(9137-9145).
IEEE DOI
2002
BibRef
Guo, M.H.[Ming-Hao],
Zhong, Z.[Zhao],
Wu, W.[Wei],
Lin, D.[Dahua],
Yan, J.J.[Jun-Jie],
IRLAS: Inverse Reinforcement Learning for Architecture Search,
CVPR19(9013-9021).
IEEE DOI
2002
search network structures that are topologically inspired by
human-designed network
BibRef
Yan, S.,
Fang, B.,
Zhang, F.,
Zheng, Y.,
Zeng, X.,
Zhang, M.,
Xu, H.,
HM-NAS: Efficient Neural Architecture Search via Hierarchical Masking,
NeruArch19(1942-1950)
IEEE DOI
2004
Code, Neural Netowrks.
WWW Link. learning (artificial intelligence), neural net architecture,
multilevel architecture, flexible network architectures,
Hierarchical Masking
BibRef
Wu, B.C.[Bi-Chen],
Dai, X.L.[Xiao-Liang],
Zhang, P.Z.[Pei-Zhao],
Wang, Y.H.[Yang-Han],
Sun, F.[Fei],
Wu, Y.M.[Yi-Ming],
Tian, Y.D.[Yuan-Dong],
Vajda, P.[Peter],
Jia, Y.Q.[Yang-Qing],
Keutzer, K.[Kurt],
FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable
Neural Architecture Search,
CVPR19(10726-10734).
IEEE DOI
2002
BibRef
Cui, J.,
Chen, P.,
Li, R.,
Liu, S.,
Shen, X.,
Jia, J.,
Fast and Practical Neural Architecture Search,
ICCV19(6508-6517)
IEEE DOI
2004
learning (artificial intelligence), neural nets, FPNAS,
search process, bi-level optimization problem, design networks,
Network architecture
BibRef
Bashivan, P.[Pouya],
Tensen, M.[Mark],
Dicarlo, J.[James],
Teacher Guided Architecture Search,
ICCV19(5319-5328)
IEEE DOI
2004
convolutional neural nets,
learning (artificial intelligence), neural net architecture,
Network architecture
BibRef
Zheng, X.,
Ji, R.,
Tang, L.,
Zhang, B.,
Liu, J.,
Tian, Q.,
Multinomial Distribution Learning for Effective Neural Architecture
Search,
ICCV19(1304-1313)
IEEE DOI
2004
Code, Neural Networks.
WWW Link. graphics processing units,
learning (artificial intelligence), neural nets,
Search problems
BibRef
Zhu, H.,
An, Z.,
Yang, C.,
Xu, K.,
Zhao, E.,
Xu, Y.,
EENA: Efficient Evolution of Neural Architecture,
NeruArch19(1891-1899)
IEEE DOI
2004
learning (artificial intelligence), neural net architecture,
search problems, crossover operations, evolution process,
guidance of experience gained
BibRef
Tan, M.X.[Ming-Xing],
Chen, B.[Bo],
Pang, R.[Ruoming],
Vasudevan, V.[Vijay],
Sandler, M.[Mark],
Howard, A.[Andrew],
Le, Q.V.[Quoc V.],
MnasNet: Platform-Aware Neural Architecture Search for Mobile,
CVPR19(2815-2823).
IEEE DOI
2002
BibRef
Dong, X.Y.[Xuan-Yi],
Yang, Y.[Yi],
Searching for a Robust Neural Architecture in Four GPU Hours,
CVPR19(1761-1770).
IEEE DOI
2002
BibRef
Dong, X.Y.[Xuan-Yi],
Yang, Y.[Yi],
One-Shot Neural Architecture Search via Self-Evaluated Template
Network,
ICCV19(3680-3689)
IEEE DOI
2004
image sampling, knowledge based systems,
learning (artificial intelligence), neural net architecture,
BibRef
Cheng, H.,
Zhang, T.,
Yang, Y.,
Yan, F.,
Teague, H.,
Chen, Y.,
Li, H.,
MSNet: Structural Wired Neural Architecture Search for Internet of
Things,
NeruArch19(2033-2036)
IEEE DOI
2004
convolutional neural nets, Internet of Things,
learning (artificial intelligence), mobile computing,
neural architecture search
BibRef
Liu, C.X.[Chen-Xi],
Zoph, B.[Barret],
Neumann, M.[Maxim],
Shlens, J.[Jonathon],
Hua, W.[Wei],
Li, L.J.[Li-Jia],
Fei-Fei, L.[Li],
Yuille, A.L.[Alan L.],
Huang, J.[Jonathan],
Murphy, K.[Kevin],
Progressive Neural Architecture Search,
ECCV18(I: 19-35).
Springer DOI
1810
New method for learning CNN
BibRef
Yang, Z.H.[Zhao-Hui],
Wang, Y.H.[Yun-He],
Chen, X.H.[Xing-Hao],
Shi, B.X.[Bo-Xin],
Xu, C.[Chao],
Xu, C.J.[Chun-Jing],
Tian, Q.[Qi],
Xu, C.[Chang],
CARS: Continuous Evolution for Efficient Neural Architecture Search,
CVPR20(1826-1835)
IEEE DOI
2008
Optimization, Nickel, Network architecture,
Sorting, Training, Automobiles
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Neural Networks for Classification and Pattern Recognition .