9.8.1.1 Single View 3D Reconstruction, Learning

Chapter Contents (Back)
Single View. Monocular Depth. CNN. Learning.

Choi, S.H.[Sung-Hwan], Min, D.B.[Dong-Bo], Ham, B.[Bumsub], Kim, Y.J.[Young-Jung], Oh, C.J.[Chang-Jae], Sohn, K.H.[Kwang-Hoon],
Depth Analogy: Data-Driven Approach for Single Image Depth Estimation Using Gradient Samples,
IP(24), No. 12, December 2015, pp. 5953-5966.
IEEE DOI 1512
Poisson distribution BibRef

Jung, H., Kim, Y.J.[Young-Jung], Min, D.B.[Dong-Bo], Oh, C.J.[Chang-Jae], Sohn, K.H.[Kwang-Hoon],
Depth prediction from a single image with conditional adversarial networks,
ICIP17(1717-1721)
IEEE DOI 1803
Databases, Estimation, Generators, Periodic structures, Spatial resolution, Training, Depth from a single image, generative adversarial learning BibRef

Kim, Y.J.[Young-Jung], Min, D.B.[Dong-Bo], Ham, B.[Bumsub], Sohn, K.H.[Kwang-Hoon],
Fast Domain Decomposition for Global Image Smoothing,
IP(26), No. 8, August 2017, pp. 4079-4091.
IEEE DOI 1707
concave programming, decomposition, least squares approximations, minimisation, computational photography application, edge-preserving smoothing, BibRef

Kim, Y.J.[Young-Jung], Jung, H., Min, D.B.[Dong-Bo], Sohn, K.H.[Kwang-Hoon],
Deeply Aggregated Alternating Minimization for Image Restoration,
CVPR17(284-292)
IEEE DOI 1711
Algorithm design and analysis, Data models, Image reconstruction, Image restoration, Minimization, Neural networks, Optimization BibRef

Kim, S.[Sunok], Choi, S.H.[Sung-Hwan], Sohn, K.H.[Kwang-Hoon],
Learning depth from a single image using visual-depth words,
ICIP15(1895-1899)
IEEE DOI 1512
K-means clustering BibRef

Kim, Y.J.[Young-Jung], Choi, S.H.[Sung-Hwan], Sohn, K.H.[Kwang-Hoon],
Data-driven single image depth estimation using weighted median statistics,
ICIP14(3808-3812)
IEEE DOI 1502
Based on matches to similar images. Wrong section, one of several, learn patterns from other images, apply. BibRef

Herrera, J.L.[Jose L.], del-Bianco, C.R.[Carlos R.], García, N.[Narciso],
Automatic Depth Extraction from 2D Images Using a Cluster-Based Learning Framework,
IP(27), No. 7, July 2018, pp. 3288-3299.
IEEE DOI 1805
BibRef
Earlier:
Learning 3D structure from 2D images using LBP features,
ICIP14(2022-2025)
IEEE DOI 1502
feature extraction, image colour analysis, image convertors, image filtering, image representation, image segmentation, machine learning BibRef

Herrera, J.L.[Jose L.], Konrad, J.[Janusz], del-Bianco, C.R.[Carlos R.], Garcia, N.[Narciso],
Learning-based depth estimation from 2D images using GIST and saliency,
ICIP15(4753-4757)
IEEE DOI 1512
2D-to-3D Image Conversion; Depth maps; GIST Descriptor; Saliency. Color BibRef

Zhang, Z., Xu, C., Yang, J., Gao, J., Cui, Z.,
Progressive Hard-Mining Network for Monocular Depth Estimation,
IP(27), No. 8, August 2018, pp. 3691-3702.
IEEE DOI 1806
data mining, estimation theory, feature extraction, image colour analysis, image resolution, recursive learning BibRef

Bostan, E., Kamilov, U.S., Waller, L.,
Learning-Based Image Reconstruction via Parallel Proximal Algorithm,
SPLetters(25), No. 7, July 2018, pp. 989-993.
IEEE DOI 1807
image reconstruction, iterative methods, learning (artificial intelligence), parallel algorithms, statistical modeling BibRef

Zeng, H.[Hui], Zhang, R.[Ran], Wang, X.Q.[Xiu-Qing], Fu, D.M.[Dong-Mei], Wei, Q.T.[Qing-Ting],
Dempster-Shafer evidence theory-based multi-feature learning and fusion method for non-rigid 3D model retrieval,
IET-CV(13), No. 3, April 2019, pp. 261-266.
DOI Link 1904
BibRef

Dai, R.Y.[Ren-Yue], Gao, Y.B.[Yong-Bin], Fang, Z.J.[Zhi-Jun], Jiang, X.Y.[Xiao-Yan], Wang, A.[Anjie], Zhang, J.[Juan], Zhong, C.S.[Ceng-Si],
Unsupervised learning of depth estimation based on attention model and global pose optimization,
SP:IC(78), 2019, pp. 284-292.
Elsevier DOI 1909
Depth estimation, Attention model, Global pose optimization BibRef

Wiles, O.[Olivia], Zisserman, A.[Andrew],
Learning to Predict 3D Surfaces of Sculptures from Single and Multiple Views,
IJCV(127), No. 11-12, December 2019, pp. 1780-1800.
Springer DOI 1911
BibRef
Earlier: Wiles, O.[Olivia], Zisserman, A.[Andrew],
3D Surface Reconstruction by Pointillism,
DeepLearn-G18(III:263-280).
Springer DOI 1905
BibRef

Moreau, A.[Ambroise], Mancas, M.[Matei], Dutoit, T.[Thierry],
Depth prediction from 2D images: A taxonomy and an evaluation study,
IVC(93), 2020, pp. 103825.
Elsevier DOI 2001
Depth prediction, Machine learning, Deep learning BibRef

Luo, C.X.[Chen-Xu], Yang, Z.H.[Zhen-Heng], Wang, P.[Peng], Wang, Y.[Yang], Xu, W.[Wei], Nevatia, R.[Ram], Yuille, A.L.[Alan L.],
Every Pixel Counts ++: Joint Learning of Geometry and Motion with 3D Holistic Understanding,
PAMI(42), No. 10, October 2020, pp. 2624-2641.
IEEE DOI 2009
Estimation, Optical imaging, Cameras, Videos, Geometry, Task analysis, Depth estimation, unsupervised learning BibRef

Yang, Z.H.[Zhen-Heng], Wang, P.[Peng], Wang, Y.[Yang], Xu, W.[Wei], Nevatia, R.[Ram],
Every Pixel Counts: Unsupervised Geometry Learning with Holistic 3D Motion Understanding,
ApolloScape18(V:691-709).
Springer DOI 1905
BibRef

Rajeswar, S.[Sai], Mannan, F.[Fahim], Golemo, F.[Florian], Parent-Lévesque, J.[Jérôme], Vazquez, D.[David], Nowrouzezahrai, D.[Derek], Courville, A.[Aaron],
Pix2Shape: Towards Unsupervised Learning of 3D Scenes from Images Using a View-Based Representation,
IJCV(128), No. 10-11, November 2020, pp. 2478-2493.
Springer DOI 2009
BibRef

Xu, W.P.[Wan-Peng], Zou, L.[Ling], Wu, L.D.[Ling-Da], Fu, Z.P.[Zhi-Peng],
Self-Supervised Monocular Depth Learning in Low-Texture Areas,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Madhuanand, L.[Logambal], Nex, F.[Francesco], Yang, M.Y.[Michael Ying],
Self-supervised monocular depth estimation from oblique UAV videos,
PandRS(176), 2021, pp. 1-14.
Elsevier DOI 2106
Depth estimation, Monocular, UAV video, Self-supervised learning, Scene Understanding BibRef

Zhang, N.[Ning], Nex, F.[Francesco], Vosselman, G.[George], Kerle, N.[Norman],
Lite-Mono: A Lightweight CNN and Transformer Architecture for Self-Supervised Monocular Depth Estimation,
CVPR23(18537-18546)
IEEE DOI 2309
BibRef

Bian, J.W.[Jia-Wang], Zhan, H.Y.[Huang-Ying], Wang, N.Y.[Nai-Yan], Li, Z.C.[Zhi-Chao], Zhang, L.[Le], Shen, C.H.[Chun-Hua], Cheng, M.M.[Ming-Ming], Reid, I.D.[Ian D.],
Unsupervised Scale-Consistent Depth Learning from Video,
IJCV(129), No. 9, September 2021, pp. 2548-2564.
Springer DOI 2108
Learn from video input. BibRef

Hu, N.[Nian], Zhou, H.[Heyu], Liu, A.A.[An-An], Huang, X.D.[Xiang-Dong], Zhang, S.[Shenyuan], Jin, G.Q.[Guo-Qing], Guo, J.[Junbo], Li, X.[Xuanya],
Collaborative Distribution Alignment for 2D image-based 3D shape retrieval,
JVCIR(83), 2022, pp. 103426.
Elsevier DOI 2202
3D shape retrieval, Cross-domain retrieval, Multi-view learning BibRef

Jung, D.K.[Dong-Ki], Choi, J.[Jaehoon], Lee, Y.[Yonghan], Kim, D.[Deokhwa], Kim, C.[Changick], Manocha, D.[Dinesh], Lee, D.H.[Dong-Hwan],
DnD: Dense Depth Estimation in Crowded Dynamic Indoor Scenes,
ICCV21(12777-12787)
IEEE DOI 2203
Training, Tracking, Dynamics, Estimation, Cameras, 3D from a single image and shape-from-x, Vision for robotics and autonomous vehicles BibRef

Peluso, V.[Valentino], Cipolletta, A.[Antonio], Calimera, A.[Andrea], Poggi, M.[Matteo], Tosi, F.[Fabio], Aleotti, F.[Filippo], Mattoccia, S.[Stefano],
Monocular Depth Perception on Microcontrollers for Edge Applications,
CirSysVideo(32), No. 3, March 2022, pp. 1524-1536.
IEEE DOI 2203
Estimation, Cameras, Standards, Power demand, Monitoring, Microcontrollers, Hardware, depth estimation, deep learning, micro-controllers BibRef

Chen, S.[Shu], Pu, Z.D.[Zheng-Dong], Fan, X.[Xiang], Zou, B.[Beiji],
Fixing Defect of Photometric Loss for Self-Supervised Monocular Depth Estimation,
CirSysVideo(32), No. 3, March 2022, pp. 1328-1338.
IEEE DOI 2203
Cameras, Geometry, Estimation, Optical variables control, Optical imaging, Deep learning, Photometric consistency, epipolar geometry BibRef

Nie, W.Z.[Wei-Zhi], Zhao, Y.[Yue], Nie, J.[Jie], Liu, A.A.[An-An], Zhao, S.C.[Si-Cheng],
CLN: Cross-Domain Learning Network for 2D Image-Based 3D Shape Retrieval,
CirSysVideo(32), No. 3, March 2022, pp. 992-1005.
IEEE DOI 2203
Shape, Feature extraction, Task analysis, Visualization, Computer architecture, Image processing, information retrieval, multimedia computing BibRef

Hu, N.[Nian], Huang, X.D.[Xiang-Dong], Li, W.H.[Wen-Hui], Li, X.Y.[Xuan-Ya], Liu, A.A.[An-An],
Cross-Domain Image-Object Retrieval Based on Weighted Optimal Transport,
MultMed(25), 2023, pp. 9557-9571.
IEEE DOI 2312
BibRef

Ling, C.W.[Chuan-Wu], Zhang, X.G.[Xiao-Gang], Chen, H.[Hua],
Unsupervised Monocular Depth Estimation Using Attention and Multi-Warp Reconstruction,
MultMed(24), 2022, pp. 2938-2949.
IEEE DOI 2206
Estimation, Image reconstruction, Convolution, Task analysis, Training, Videos, Unsupervised learning, multi-Warp reconstruction BibRef

Meng, X.Y.[Xu-Yang], Fan, C.X.[Chun-Xiao], Ming, Y.[Yue], Yu, H.[Hui],
CORNet: Context-Based Ordinal Regression Network for Monocular Depth Estimation,
CirSysVideo(32), No. 7, July 2022, pp. 4841-4853.
IEEE DOI 2207
Estimation, Image reconstruction, Training, Deep learning, Cameras, Convergence, Monocular depth estimation, ordinal regression, spatial attention BibRef

Lee, S.[Seokju], Rameau, F.[Francois], Im, S.H.[Sung-Hoon], Kweon, I.S.[In So],
Self-Supervised Monocular Depth and Motion Learning in Dynamic Scenes: Semantic Prior to Rescue,
IJCV(130), No. 9, September 2022, pp. 2265-2285.
Springer DOI 2208
BibRef

Liu, S.L.[Sheng-Li], Zhu, X.W.[Xiao-Wen], Cao, Z.W.[Ze-Wei], Wang, G.[Gang],
Deep 1D Landmark Representation Learning for Space Target Pose Estimation,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Poggi, M.[Matteo], Tosi, F.[Fabio], Aleotti, F.[Filippo], Mattoccia, S.[Stefano],
Real-Time Self-Supervised Monocular Depth Estimation Without GPU,
ITS(23), No. 10, October 2022, pp. 17342-17353.
IEEE DOI 2210
BibRef
Earlier: A1, A3, A2, A4:
On the Uncertainty of Self-Supervised Monocular Depth Estimation,
CVPR20(3224-3234)
IEEE DOI 2008
Estimation, Feature extraction, Real-time systems, Hardware, Decoding, deep learning, deep architectures, unsupervised learning. Uncertainty, Task analysis, Predictive models, Training, Optical imaging BibRef

Zhao, C.Q.[Chao-Qiang], Zhang, Y.M.[You-Min], Poggi, M.[Matteo], Tosi, F.[Fabio], Guo, X.[Xianda], Zhu, Z.[Zheng], Huang, G.[Guan], Tang, Y.[Yang], Mattoccia, S.[Stefano],
MonoViT: Self-Supervised Monocular Depth Estimation with a Vision Transformer,
3DV22(668-678)
IEEE DOI Code:
WWW Link. 2408
Convolutional codes, Training, Source coding, Estimation, Predictive models, Network architecture BibRef

Andraghetti, L., Myriokefalitakis, P., Dovesi, P.L., Luque, B., Poggi, M., Pieropan, A., Mattoccia, S.,
Enhancing Self-Supervised Monocular Depth Estimation with Traditional Visual Odometry,
3DV19(424-433)
IEEE DOI 1911
Estimation, Training, Cameras, Visual odometry, Pipelines, Feature extraction, self supervised BibRef

Zhao, C.Q.[Chao-Qiang], Poggi, M.[Matteo], Tosi, F.[Fabio], Zhou, L.[Lei], Sun, Q.Y.[Qi-Yu], Tang, Y.[Yang], Mattoccia, S.[Stefano],
GasMono: Geometry-Aided Self-Supervised Monocular Depth Estimation for Indoor Scenes,
ICCV23(16163-16174)
IEEE DOI Code:
WWW Link. 2401
BibRef

Ramirez, P.Z.[Pierluigi Zama], Poggi, M.[Matteo], Tosi, F.[Fabio], Mattoccia, S.[Stefano], di Stefano, L.[Luigi],
Geometry Meets Semantics for Semi-supervised Monocular Depth Estimation,
ACCV18(III:298-313).
Springer DOI 1906
BibRef

Li, R.[Runze], Ji, P.[Pan], Xu, Y.[Yi], Bhanu, B.[Bir],
MonoIndoor++: Towards Better Practice of Self-Supervised Monocular Depth Estimation for Indoor Environments,
CirSysVideo(33), No. 2, February 2023, pp. 830-846.
IEEE DOI 2302
BibRef
Earlier: A2, A1, A4, A3:
MonoIndoor: Towards Good Practice of Self-Supervised Monocular Depth Estimation for Indoor Environments,
ICCV21(12767-12776)
IEEE DOI 2203
Training, Cameras, Pose estimation, Indoor environment, Transformers, Videos, Monocular depth prediction, self-supervised learning. Predictive models, 3D from a single image and shape-from-x, Transfer/Low-shot/Semi/Unsupervised Learning BibRef

Yang, L.[Lei], Zhang, X.Y.[Xin-Yu], Li, J.[Jun], Wang, L.[Li], Zhu, M.H.[Ming-Han], Zhang, C.[Chuang], Liu, H.P.[Hua-Ping],
Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection,
CirSysVideo(33), No. 11, November 2023, pp. 6832-6844.
IEEE DOI 2311
BibRef

Sun, L.[Libo], Bian, J.W.[Jia-Wang], Zhan, H.Y.[Huang-Ying], Yin, W.[Wei], Reid, I.D.[Ian D.], Shen, C.H.[Chun-Hua],
SC-DepthV3: Robust Self-Supervised Monocular Depth Estimation for Dynamic Scenes,
PAMI(46), No. 1, January 2024, pp. 497-508.
IEEE DOI 2312
Monocular depth estimation, unsupervised learning, self-supervised learning, knowledge distillation BibRef

Lee, S.[Sebin], Im, W.B.[Woo-Bin], Yoon, S.E.[Sung-Eui],
Multi-resolution distillation for self-supervised monocular depth estimation,
PRL(176), 2023, pp. 215-222.
Elsevier DOI 2312
Monocular depth estimation, Self-supervised learning, Self-distillation, Deep learning BibRef

Li, G.B.[Guan-Bin], Huang, R.C.[Ri-Cong], Li, H.F.[Hao-Feng], You, Z.Z.[Zun-Zhi], Chen, W.K.[Wei-Kai],
SENSE: Self-Evolving Learning for Self-Supervised Monocular Depth Estimation,
IP(33), 2024, pp. 439-450.
IEEE DOI 2401
BibRef

Kim, J.[Junoh], Gao, R.[Rui], Park, J.[Jisun], Yoon, J.[Jinsoo], Cho, K.[Kyungeun],
Switchable-Encoder-Based Self-Supervised Learning Framework for Monocular Depth and Pose Estimation,
RS(15), No. 24, 2023, pp. 5739.
DOI Link 2401
BibRef

Shao, S.W.[Shu-Wei], Pei, Z.C.[Zhong-Cai], Chen, W.H.[Wei-Hai], Li, R.[Ran], Liu, Z.[Zhong], Li, Z.G.[Zheng-Guo],
URCDC-Depth: Uncertainty Rectified Cross-Distillation With CutFlip for Monocular Depth Estimation,
MultMed(26), 2024, pp. 3341-3353.
IEEE DOI Code:
WWW Link. 2402
Transformers, Uncertainty, Estimation, Training, Computational modeling, Task analysis, Data models, data augmentation BibRef

Zhou, Z.K.[Zhong-Kai], Fan, X.[Xinnan], Shi, P.F.[Peng-Fei], Xin, Y.Y.X.[Yuan-Yan-Xue], Wang, X.T.[Xiao-Tian],
R-LKDepth: Recurrent Depth Learning With Larger Kernel,
SPLetters(31), 2024, pp. 601-605.
IEEE DOI 2402
Estimation, Kernel, Feature extraction, Standards, Decoding, Training, Image resolution, Monocular depth estimation, larger receptive fields BibRef

Bello, J.L.G.[Juan Luis Gonzalez], Moon, J.[Jaeho], Kim, M.C.[Mun-Churl],
Self-Supervised Monocular Depth Estimation With Positional Shift Depth Variance and Adaptive Disparity Quantization,
IP(33), 2024, pp. 2074-2089.
IEEE DOI 2403
Videos, Cameras, Estimation, Quantization (signal), Training, Task analysis, Depth from videos, deep convolutional neural networks BibRef

Xiang, M.[Mochu], Dai, Y.C.[Yu-Chao], Zhang, F.Y.[Fei-Yu], Shi, J.W.[Jia-Wei], Tian, X.Y.[Xin-Yu], Zhang, Z.S.[Zhen-Song],
Towards a Unified Network for Robust Monocular Depth Estimation: Network Architecture, Training Strategy and Dataset,
IJCV(132), No. 4, April 2024, pp. 1012-1028.
Springer DOI 2404
BibRef

Wang, H.T.[Hao-Tian], Yang, M.[Meng], Zheng, N.N.[Nan-Ning],
G2-MonoDepth: A General Framework of Generalized Depth Inference From Monocular RGB+X Data,
PAMI(46), No. 5, May 2024, pp. 3753-3771.
IEEE DOI 2404
Task analysis, Data models, Estimation, Training, Semantics, Pipelines, Service robots, Robot, unified model, generalization, depth enhancement BibRef

Wang, F.[Fei], Cheng, J.[Jun],
HQDec: Self-Supervised Monocular Depth Estimation Based on a High-Quality Decoder,
CirSysVideo(34), No. 4, April 2024, pp. 2453-2468.
IEEE DOI 2404
Estimation, Feature extraction, Decoding, Adaptation models, Fuses, Transformers, Videos, Depth estimation, high-quality decoder, self-supervised learning BibRef

Kim, G.[Gyeongnyeon], Jang, W.[Wooseok], Lee, G.[Gyuseong], Hong, S.[Susung], Seo, J.Y.[Jun-Young], Kim, S.[Seungryong],
Depth-aware guidance with self-estimated depth representations of diffusion models,
PR(153), 2024, pp. 110474.
Elsevier DOI Code:
WWW Link. 2405
Diffusion models, Depth estimation, Diffusion guidance BibRef

Zhao, H.L.[Hai-Liang], Kong, Y.Y.[Yong-Yi], Zhang, C.H.[Chong-Hao], Zhang, H.J.[Hao-Ji], Zhao, J.S.[Jian-Sen],
Learning Effective Geometry Representation from Videos for Self-Supervised Monocular Depth Estimation,
IJGI(13), No. 6, 2024, pp. 193.
DOI Link 2406
BibRef

Li, Z.Y.[Zhen-Yu], Wang, X.Y.[Xu-Yang], Liu, X.M.[Xian-Ming], Jiang, J.J.[Jun-Jun],
BinsFormer: Revisiting Adaptive Bins for Monocular Depth Estimation,
IP(33), 2024, pp. 3964-3976.
IEEE DOI Code:
WWW Link. 2407
Estimation, Transformers, Task analysis, Decoding, Probabilistic logic, Training, Monocular depth estimation, transformer BibRef

Choi, S.[Sangwon], Choi, D.[Daejune], Kim, D.[Duksu],
TIE-KD: Teacher-independent and explainable knowledge distillation for monocular depth estimation,
IVC(148), 2024, pp. 105110.
Elsevier DOI 2407
Lightweight, Knowledge distillation, Explainable feature map, Depth estimation BibRef

Li, L.[Lei], Zhou, Z.Y.[Zhi-Yuan], Wu, S.[Suping], Li, P.[Pan], Zhang, B.Y.[Bo-Yang],
Multi-granularity relationship reasoning network for high-fidelity 3D shape reconstruction,
PR(155), 2024, pp. 110647.
Elsevier DOI Code:
WWW Link. 2408
3D reconstruction, Multi-granularity, Cycle loss, High-fidelity BibRef

Cong, R.[Runmin], Wu, C.L.[Chun-Lei], Song, X.B.[Xi-Bin], Zhang, W.[Wei], Kwong, S.[Sam], Li, H.D.[Hong-Dong], Ji, P.[Pan],
SRNSD: Structure-Regularized Night-Time Self-Supervised Monocular Depth Estimation for Outdoor Scenes,
IP(33), 2024, pp. 5538-5550.
IEEE DOI 2410
Estimation, Periodic structures, Lighting, Adaptation models, Training, Feature extraction, Visualization, Urban areas, structure regularization BibRef

Wei, J.S.[Jian-Sheng], Pan, S.[Shuguo], Gao, W.[Wang], Guo, P.[Peng],
LAM-Depth: Laplace-Attention Module-Based Self-Supervised Monocular Depth Estimation,
ITS(25), No. 10, October 2024, pp. 13706-13716.
IEEE DOI 2410
Estimation, Laplace equations, Training, Laser radar, Decoding, Data models, Scene perception, monocular depth estimation, attention unit BibRef

Cheng, Z.Y.[Zhi-Yuan], Han, C.[Cheng], Liang, J.[James], Wang, Q.F.[Qi-Fan], Zhang, X.Y.[Xiang-Yu], Liu, D.F.[Dong-Fang],
Self-Supervised Adversarial Training of Monocular Depth Estimation Against Physical-World Attacks,
PAMI(46), No. 12, December 2024, pp. 9084-9101.
IEEE DOI 2411
Training, Perturbation methods, Cameras, Solid modeling, Robustness, Estimation, Adversarial training, and adversarial robustness, self-supervised learning BibRef


Stotko, D.[David], Wandel, N.[Nils], Klein, R.[Reinhard],
Physics-guided Shape-from-Template: Monocular Video Perception through Neural Surrogate Models,
CVPR24(11895-11904)
IEEE DOI 2410
Geometry, Solid modeling, Shape, Video sequences, Reconstruction algorithms, Bending, shape from template, neural surrogate model BibRef

Yang, L.[Lihe], Kang, B.[Bingyi], Huang, Z.L.[Zi-Long], Xu, X.G.[Xiao-Gang], Feng, J.S.[Jia-Shi], Zhao, H.S.[Heng-Shuang],
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data,
CVPR24(10371-10381)
IEEE DOI 2410
robust monocular depth estimation. Measurement, Visualization, Computational modeling, Semantic segmentation, Semantics, Estimation, Data augmentation BibRef

Dabhi, M.[Mosam], Jeni, L.A.[László A.], Lucey, S.[Simon],
3D-LFM: Lifting Foundation Model,
CVPR24(10466-10475)
IEEE DOI 2410
Limiting, Noise, Training data, Transformers, Distortion, 3D Reconstruction, 2D-3D Lifting, Geometric Foundation Model BibRef

Marsal, R.[Rémi], Chabot, F.[Florian], Loesch, A.[Angelique], Grolleau, W.[William], Sahbi, H.[Hichem],
MonoProb: Self-Supervised Monocular Depth Estimation with Interpretable Uncertainty,
WACV24(3625-3634)
IEEE DOI Code:
WWW Link. 2404
Training, Uncertainty, Measurement uncertainty, Neural networks, Estimation, Predictive models, Probabilistic logic, Algorithms BibRef

Shyam, P.[Pranjay], Okon, A.[Alexandre], Yoo, H.J.[Hyun-Jin],
Enhancing Self-Supervised Monocular Depth Estimation via Piece-Wise Pose Estimation and Geometric Constraints,
RWSurvil24(221-231)
IEEE DOI 2404
Pose estimation, Dynamics, Estimation, Network architecture, Cameras BibRef

Pal, H.[Harsh], Khandelwal, R.[Ritwik], Pande, S.[Shivam], Banerjee, B.[Biplab], Karanam, S.[Srikrishna],
Domain Adaptive 3D Shape Retrieval from Monocular Images,
WACV24(3180-3189)
IEEE DOI 2404
Training, Shape, Semantics, Benchmark testing, Minimization, Algorithms, 3D computer vision BibRef

Dang, Y.Y.[Yuan-Yuan], Zhang, X.H.[Xian-He], Liu, B.[Bing], Zhong, Z.[Zhaohao],
LKLM: A Large-Kernel Lightweight CNN Model for Monocular Depth Estimation,
CVIDL23(499-502)
IEEE DOI 2403
Deep learning, Costs, Convolution, Computational modeling, Estimation, Network architecture, CNN BibRef

Spencer, J.[Jaime], Hadfield, S.[Simon], Russell, C.[Chris], Bowden, R.[Richard],
Kick Back & Relax: Learning to Reconstruct the World by Watching SlowTV,
ICCV23(15722-15733)
IEEE DOI Code:
WWW Link. 2401
BibRef

Hornauer, J.[Julia], Holzbock, A.[Adrian], Belagiannis, V.[Vasileios],
Out-of-Distribution Detection for Monocular Depth Estimation,
ICCV23(1911-1921)
IEEE DOI 2401
BibRef

Cai, S.Q.[Sheng-Qu], Chan, E.R.[Eric Ryan], Peng, S.[Songyou], Shahbazi, M.[Mohamad], Obukhov, A.[Anton], Van Gool, L.J.[Luc J.], Wetzstein, G.[Gordon],
DiffDreamer: Towards Consistent Unsupervised Single-view Scene Extrapolation with Conditional Diffusion Models,
ICCV23(2139-2150)
IEEE DOI Code:
WWW Link. 2401
BibRef

Guizilini, V.[Vitor], Vasiljevic, I.[Igor], Chen, D.[Dian], Ambrus, R.[Rares], Gaidon, A.[Adrien],
Towards Zero-Shot Scale-Aware Monocular Depth Estimation,
ICCV23(9199-9209)
IEEE DOI Code:
WWW Link. 2401
BibRef

Mishima, N.[Nao], Seki, A.[Akihito], Hiura, S.[Shinsaku],
Self-Supervised Learning for Context-Independent DfD Network using Multi-View Rank Supervision,
ICIP23(835-839)
IEEE DOI 2312
BibRef

Shin, U.[Ukcheol], Park, K.Y.[Kwan-Yong], Lee, B.U.[Byeong-Uk], Lee, K.[Kyunghyun], Kweon, I.S.[In So],
Self-supervised Monocular Depth Estimation from Thermal Images via Adversarial Multi-spectral Adaptation,
WACV23(5787-5796)
IEEE DOI 2302
Training, Data acquisition, Estimation, Self-supervised learning, Network architecture, Feature extraction, Applications: Robotics, 3D computer vision BibRef

Chen, M.H.[Ming-Hui], Zhang, P.P.[Ping-Ping], Chen, Z.[Zhuo], Zhang, Y.[Yun], Wang, X.[Xu], Kwong, S.[Sam],
End-To-End Depth Map Compression Framework Via Rgb-To-Depth Structure Priors Learning,
ICIP22(3206-3210)
IEEE DOI 2211
Image coding, Codecs, Fuses, Redundancy, Rate-distortion, Feature extraction, Data mining, Depth map compression, feature fusion BibRef

Lu, J.C.[Jia-Chen], Zhou, Z.Y.[Zhe-Yuan], Zhu, X.T.[Xia-Tian], Xu, H.[Hang], Zhang, L.[Li],
Learning Ego 3D Representation as Ray Tracing,
ECCV22(XXVI:129-144).
Springer DOI 2211
BibRef

Yu, X.L.[Xuan-Long], Franchi, G.[Gianni], Aldea, E.[Emanuel],
On Monocular Depth Estimation and Uncertainty Quantification Using Classification Approaches for Regression,
ICIP22(1481-1485)
IEEE DOI 2211
Deep learning, Uncertainty, Taxonomy, Estimation, Automobiles, Depth estimation, Uncertainty Estimation BibRef

Zhou, K.[Kaichen], Hong, L.[Lanqing], Chen, C.[Changhao], Xu, H.[Hang], Ye, C.Q.[Chao-Qiang], Hu, Q.Y.[Qing-Yong], Li, Z.G.[Zhen-Guo],
DevNet: Self-supervised Monocular Depth Learning via Density Volume Construction,
ECCV22(XXIX:125-142).
Springer DOI 2211
BibRef

Zhou, Y.[Yunwen], Kar, A.[Abhishek], Turner, E.[Eric], Kowdle, A.[Adarsh], Guo, C.X.[Chao X.], DuToit, R.C.[Ryan C.], Tsotsos, K.[Konstantine],
Learned Monocular Depth Priors in Visual-Inertial Initialization,
ECCV22(XXII:552-570).
Springer DOI 2211
BibRef

Zhou, Z.M.[Zheng-Ming], Dong, Q.[Qiulei],
Self-distilled Feature Aggregation for Self-supervised Monocular Depth Estimation,
ECCV22(I:709-726).
Springer DOI 2211
BibRef

Walia, A.[Amanpreet], Walz, S.[Stefanie], Bijelic, M.[Mario], Mannan, F.[Fahim], Julca-Aguilar, F.[Frank], Langer, M.[Michael], Ritter, W.[Werner], Heide, F.[Felix],
Gated2Gated: Self-Supervised Depth Estimation from Gated Images,
CVPR22(2801-2811)
IEEE DOI 2210
Training, Laser radar, Image resolution, Video sequences, Estimation, Logic gates, Reflection, 3D from single images, Self- semi- meta- unsupervised learning BibRef

Zhao, Z.[Zimeng], Zuo, B.H.[Bing-Hui], Xie, W.[Wei], Wang, Y.G.[Yan-Gang],
Stability-driven Contact Reconstruction From Monocular Color Images,
CVPR22(1633-1643)
IEEE DOI 2210
Shape, Stability criteria, Pipelines, Image reconstruction, Physics, 3D from single images, Self- semi- meta- unsupervised learning BibRef

Petrovai, A.[Andra], Nedevschi, S.[Sergiu],
Exploiting Pseudo Labels in a Self-Supervised Learning Framework for Improved Monocular Depth Estimation,
CVPR22(1568-1578)
IEEE DOI 2210
Training, Solid modeling, Image resolution, Filtering, Pose estimation, Self-supervised learning, 3D from single images, Self- semi- meta- unsupervised learning BibRef

Kuo, W.C.[Wei-Cheng], Angelova, A.[Anelia], Lin, T.Y.[Tsung-Yi], Dai, A.[Angela],
Patch2CAD: Patchwise Embedding Learning for In-the-Wild Shape Retrieval from a Single Image,
ICCV21(12569-12579)
IEEE DOI 2203
Geometry, Solid modeling, Shape, Databases, Grounding, 3D from a single image and shape-from-x, Scene analysis and understanding BibRef

Persson, P.[Patrik], Öström, L.[Linn], Olsson, C.[Carl], Åström, K.[Kalle],
Parameterization of Ambiguity in Monocular Depth Prediction,
3DV21(761-770)
IEEE DOI 2201
Geometry, Training, Measurement, Image recognition, Neural networks, Estimation, 3D Reconstruction, Monocular Depth Parameterization, Machine Learning BibRef

Hirose, N.[Noriaki], Taguchi, S.[Shun], Kawano, K.[Keisuke], Koide, S.[Satoshi],
Variational Monocular Depth Estimation for Reliability Prediction,
3DV21(637-647)
IEEE DOI 2201
Training, Solid modeling, Uncertainty, Supervised learning, Estimation, Reliability theory, depth estimation, self supervised learning BibRef

Chen, X.Y.[Xing-Yu], Zhang, R.N.[Ruo-Nan], Jiang, J.[Ji], Wang, Y.[Yan], Li, G.[Ge], Li, T.H.[Thomas H.],
Self-Supervised Monocular Depth Estimation: Solving the Edge-Fattening Problem,
WACV23(5765-5775)
IEEE DOI 2302
Measurement, Computational modeling, Estimation, Optimization, Algorithms: 3D computer vision, Low-level and physics-based vision BibRef

Li, K.[Keyao], Li, G.[Ge], Li, T.H.[Thomas H.],
Rethinking Training Objective for Self-Supervised Monocular Depth Estimation: Semantic Cues To Rescue,
ICIP21(3308-3312)
IEEE DOI 2201
Training, Integrated optics, Solid modeling, Semantics, Estimation, Optical variables control, self-supervised learning, semantic cues BibRef

Jiang, C.W.[Chen-Weinan], Liu, H.C.[Hai-Chun], Li, L.Z.[Lan-Zhen], Pan, C.C.[Chang-Chun],
Attention-Based Self-Supervised Learning Monocular Depth Estimation With Edge Refinement,
ICIP21(3218-3222)
IEEE DOI 2201
Image edge detection, Neural networks, Brightness, Estimation, Feature extraction, Videos, self-supervised learning, monocular, edge refinement BibRef

Wang, Y.Z.[Yi-Zhi], Huang, Z.[Zeyu], Shamir, A.[Ariel], Huang, H.[Hui], Zhang, H.[Hao], Hu, R.Z.[Rui-Zhen],
ARO-Net: Learning Implicit Fields from Anchored Radial Observations,
CVPR23(3572-3581)
IEEE DOI 2309
BibRef

Li, M.Y.[Man-Yi], Zhang, H.[Hao],
D2IM-Net: Learning Detail Disentangled Implicit Fields from Single Images,
CVPR21(10241-10250)
IEEE DOI 2111
Surface reconstruction, Laplace equations, Shape, Decoding, Pattern recognition BibRef

Bechtold, J.[Jan], Tatarchenko, M.[Maxim], Fischer, V.[Volker], Brox, T.[Thomas],
Fostering Generalization in Single-view 3D Reconstruction by Learning a Hierarchy of Local and Global Shape Priors,
CVPR21(15875-15884)
IEEE DOI 2111
Training, Shape, Training data, Computer architecture, Network architecture BibRef

Kluger, F.[Florian], Ackermann, H.[Hanno], Brachmann, E.[Eric], Yang, M.Y.[Michael Ying], Rosenhahn, B.[Bodo],
Cuboids Revisited: Learning Robust 3D Shape Fitting to Single RGB Images,
CVPR21(13065-13074)
IEEE DOI 2111
Training, Measurement, Shape, Annotations, Fitting, Neural networks BibRef

Lienen, J.[Julian], Hüllermeier, E.[Eyke], Ewerth, R.[Ralph], Nommensen, N.[Nils],
Monocular Depth Estimation via Listwise Ranking using the Plackett-Luce Model,
CVPR21(14590-14599)
IEEE DOI 2111
Training, Neural networks, Estimation, Training data, Predictive models, Data models, Probability distribution BibRef

Yin, W.[Wei], Zhang, J.M.[Jian-Ming], Wang, O.[Oliver], Niklaus, S.[Simon], Mai, L.[Long], Chen, S.[Simon], Shen, C.H.[Chun-Hua],
Learning to Recover 3D Scene Shape from a Single Image,
CVPR21(204-213)
IEEE DOI 2111
Training, Geometry, Shape, Estimation, Reconstruction algorithms, Predictive models BibRef

Buquet, J.[Julie], Zhang, J.S.[Jin-Song], Roulet, P.[Patrice], Thibault, S.[Simon], Lalonde, J.F.[Jean-François],
Evaluating the Impact of Wide-Angle Lens Distortion on Learning-based Depth Estimation,
OmniCV21(3688-3696)
IEEE DOI 2109
Training, Nonlinear distortion, Neural networks, Estimation, Tools, Cameras BibRef

Wang, Y.R.[Yi-Ran], Li, X.Y.[Xing-Yi], Shi, M.[Min], Xian, K.[Ke], Cao, Z.G.[Zhi-Guo],
Knowledge Distillation for Fast and Accurate Monocular Depth Estimation on Mobile Devices,
MAI21(2457-2465)
IEEE DOI 2109
Knowledge engineering, Performance evaluation, Training, Visualization, Neural networks, Estimation BibRef

Leroy, R., Trouvé-Peloux, P., Champagnat, F., Le Saux, B., Carvalho, M.,
Pix2Point: Learning Outdoor 3D Using Sparse Point Clouds and Optimal Transport,
MVA21(1-5)
DOI Link 2109
Training, Measurement, Neural networks, Estimation, Prediction methods BibRef

Chen, Z.W.[Zi-Wen], Guo, Z.X.[Zi-Xuan], Weinman, J.[Jerod],
Improved Point Transformation Methods For Self-Supervised Depth Prediction,
CRV21(111-118)
IEEE DOI 2108
Learn using stereo pairs. Training, Machine learning algorithms, Estimation, Machine learning, Predictive models, Network architecture, neural networks BibRef

Wang, Y., Luo, L., Shen, X., Mei, X.,
DynOcc: Learning Single-View Depth from Dynamic Occlusion Cues,
3DV20(514-523)
IEEE DOI 2102
Videos, Estimation, Image edge detection, Training, Optical imaging, Reliability BibRef

Du, D., Zhang, Z., Han, X., Cui, S., Liu, L.,
VIPNet: A Fast and Accurate Single-View Volumetric Reconstruction by Learning Sparse Implicit Point Guidance,
3DV20(553-562)
IEEE DOI 2102
Shape, Image reconstruction, Topology, Network topology, Decoding, hybrid shape learning BibRef

Han, Z.Z.[Zhi-Zhong], Qiao, G.H.[Guan-Hui], Liu, Y.S.[Yu-Shen], Zwicker, M.[Matthias],
SeqXY2SeqZ: Structure Learning for 3d Shapes by Sequentially Predicting 1D Occupancy Segments from 2d Coordinates,
ECCV20(XXIV:607-625).
Springer DOI 2012
BibRef

Wang, J.R.[Jian-Ren], Fang, Z.Y.[Zhao-Yuan],
GSIR: Generalizable 3d Shape Interpretation and Reconstruction,
ECCV20(XIII:498-514).
Springer DOI 2011
Jointly learn 3D shape interpretation and reconstruction. BibRef

Li, Y.C.[Yi-Chen], Mo, K.C.[Kai-Chun], Shao, L.[Lin], Sung, M.[Minhyuk], Guibas, L.J.[Leonidas J.],
Learning 3d Part Assembly from a Single Image,
ECCV20(VI:664-682).
Springer DOI 2011
BibRef

Ramamonjisoa, M., Du, Y., Lepetit, V.,
Predicting Sharp and Accurate Occlusion Boundaries in Monocular Depth Estimation Using Displacement Fields,
CVPR20(14636-14645)
IEEE DOI 2008
Image reconstruction, Estimation, Machine learning, Training, Task analysis, Manuals BibRef

Spencer, J., Bowden, R., Hadfield, S.,
DeFeat-Net: General Monocular Depth via Simultaneous Unsupervised Representation Learning,
CVPR20(14390-14401)
IEEE DOI 2008
Estimation, Robustness, Task analysis, Training, Feature extraction, Decoding, Meteorology BibRef

Henzler, P., Mitra, N.J., Ritschel, T.,
Learning a Neural 3D Texture Space From 2D Exemplars,
CVPR20(8353-8361)
IEEE DOI 2008
Stochastic processes, Interpolation, Decoding, Graphics, Training BibRef

Kulkarni, N.[Nilesh], Misra, I.[Ishan], Tulsiani, S.[Shubham], Gupta, A.[Abhinav],
3D-RelNet: Joint Object and Relational Network for 3D Prediction,
ICCV19(2212-2221)
IEEE DOI 2004
learning (artificial intelligence), pose estimation, solid modelling, relational network, independent predictions, BibRef

Huang, J., Zhou, Y., Funkhouser, T., Guibas, L.J.,
FrameNet: Learning Local Canonical Frames of 3D Surfaces From a Single RGB Image,
ICCV19(8637-8646)
IEEE DOI 2004
augmented reality, computational geometry, computer graphics, feature extraction, geometry, image colour analysis, Robustness BibRef

Gadelha, M.[Matheus], RoyChowdhury, A.[Aruni], Sharma, G.[Gopal], Kalogerakis, E.[Evangelos], Cao, L.L.[Liang-Liang], Learned-Miller, E.G.[Erik G.], Wang, R.[Rui], Maji, S.[Subhransu],
Label-efficient Learning on Point Clouds Using Approximate Convex Decompositions,
ECCV20(X:473-491).
Springer DOI 2011
BibRef

Watson, J., Firman, M., Brostow, G., Turmukhambetov, D.,
Self-Supervised Monocular Depth Hints,
ICCV19(2162-2171)
IEEE DOI 2004
regression analysis, stereo image processing, supervised learning, monocular depth estimators, Laser radar BibRef

Zhang, Y.[Yinda], Wadhwa, N.[Neal], Orts-Escolano, S.[Sergio], Häne, C.[Christian], Fanello, S.[Sean], Garg, R.[Rahul],
Du2net: Learning Depth Estimation from Dual-cameras and Dual-pixels,
ECCV20(I:582-598).
Springer DOI 2011
BibRef

Garg, R.[Rahul], Wadhwa, N.[Neal], Ansari, S., Barron, J.,
Learning Single Camera Depth Estimation Using Dual-Pixels,
ICCV19(7627-7636)
IEEE DOI 2004
cameras, image colour analysis, image matching, image sensors, stereo image processing, supervised learning, Training BibRef

Pinheiro, P.O., Rostamzadeh, N., Ahn, S.,
Domain-Adaptive Single-View 3D Reconstruction,
ICCV19(7637-7646)
IEEE DOI 2004
image reconstruction, image representation, learning (artificial intelligence), Decoding BibRef

Riegler, G.[Gernot], Liao, Y.[Yiyi], Donne, S.[Simon], Koltun, V.[Vladlen], Geiger, A.[Andreas],
Connecting the Dots: Learning Representations for Active Monocular Depth Estimation,
CVPR19(7616-7625).
IEEE DOI 2002
BibRef

Tosi, F.[Fabio], Aleotti, F.[Filippo], Poggi, M.[Matteo], Mattoccia, S.[Stefano],
Learning Monocular Depth Estimation Infusing Traditional Stereo Knowledge,
CVPR19(9791-9801).
IEEE DOI 2002
BibRef

Poggi, M., Tosi, F., Mattoccia, S.,
Learning Monocular Depth Estimation with Unsupervised Trinocular Assumptions,
3DV18(324-333)
IEEE DOI 1812
image motion analysis, image reconstruction, image sensors, learning (artificial intelligence), stereo image processing, trinocular BibRef

Zhi, S.F.[Shuai-Feng], Bloesch, M.[Michael], Leutenegger, S.[Stefan], Davison, A.J.[Andrew J.],
SceneCode: Monocular Dense Semantic Reconstruction Using Learned Encoded Scene Representations,
CVPR19(11768-11777).
IEEE DOI 2002
BibRef

Tatarchenko, M.[Maxim], Richter, S.R.[Stephan R.], Ranftl, R.[Rene], Li, Z.[Zhuwen], Koltun, V.[Vladlen], Brox, T.[Thomas],
What Do Single-View 3D Reconstruction Networks Learn?,
CVPR19(3400-3409).
IEEE DOI 2002
BibRef

Yu, Y.[Ye], Smith, W.A.P.[William A. P.],
InverseRenderNet: Learning Single Image Inverse Rendering,
CVPR19(3150-3159).
IEEE DOI 2002
BibRef

Kato, H.[Hiroharu], Harada, T.[Tatsuya],
Learning View Priors for Single-View 3D Reconstruction,
CVPR19(9770-9779).
IEEE DOI 2002
BibRef

Chen, W.F.[Wei-Feng], Qian, S.Y.[Sheng-Yi], Deng, J.[Jia],
Learning Single-Image Depth From Videos Using Quality Assessment Networks,
CVPR19(5597-5606).
IEEE DOI 2002
BibRef

Kaushik, V., Lall, B.,
UnDispNet: Unsupervised Learning for Multi-Stage Monocular Depth Prediction,
3DV19(633-642)
IEEE DOI 1911
Training, Estimation, Image resolution, Image reconstruction, Computer architecture, Cameras, Depth Prediction BibRef

Jack, D.[Dominic], Pontes, J.K.[Jhony K.], Sridharan, S.[Sridha], Fookes, C.[Clinton], Shirazi, S.[Sareh], Maire, F.[Frederic], Eriksson, A.[Anders],
Learning Free-Form Deformations for 3D Object Reconstruction,
ACCV18(II:317-333).
Springer DOI 1906
BibRef

Pontes, J.K.[Jhony K.], Kong, C.[Chen], Sridharan, S.[Sridha], Lucey, S.[Simon], Eriksson, A.[Anders], Fookes, C.[Clinton],
Image2Mesh: A Learning Framework for Single Image 3D Reconstruction,
ACCV18(I:365-381).
Springer DOI 1906
BibRef

Yusiong, J.P., Naval, P.,
AsiANet: Autoencoders in Autoencoder for Unsupervised Monocular Depth Estimation,
WACV19(443-451)
IEEE DOI 1904
image classification, image motion analysis, learning (artificial intelligence), neural nets, Network architecture BibRef

Kumar, A.C.S.[Arun C.S.], Bhandarkar, S.M.[Suchendra M.], Prasad, M.[Mukta],
Learning Hierarchical Models for Class-Specific Reconstruction from Natural Data,
AutoDrive18(1170-11708)
IEEE DOI 1812
Shape, Solid modeling, Image reconstruction, Deformable models, Strain BibRef

Tulsiani, S.[Shubham], Efros, A.A.[Alexei A.], Malik, J.[Jitendra],
Multi-view Consistency as Supervisory Signal for Learning Shape and Pose Prediction,
CVPR18(2897-2905)
IEEE DOI 1812
Shape, Training, Geometry, Cameras, Loss measurement, Image reconstruction BibRef

Pan, J., Li, J., Han, X., Jia, K.,
Residual MeshNet: Learning to Deform Meshes for Single-View 3D Reconstruction,
3DV18(719-727)
IEEE DOI 1812
approximation theory, image reconstruction, learning (artificial intelligence), mesh generation, neural nets, Mesh BibRef

Bednarik, J., Fua, P., Salzmann, M.,
Learning to Reconstruct Texture-Less Deformable Surfaces from a Single View,
3DV18(606-615)
IEEE DOI 1812
image reconstruction, image representation, learning (artificial intelligence), mesh generation, shape recovery BibRef

Li, Z., Snavely, N.,
MegaDepth: Learning Single-View Depth Prediction from Internet Photos,
CVPR18(2041-2050)
IEEE DOI 1812
Semantics, Image reconstruction, Training data, Internet, Training, Image segmentation BibRef

Clark, R.[Ronald], Bloesch, M.[Michael], Czarnowski, J.[Jan], Leutenegger, S.[Stefan], Davison, A.J.[Andrew J.],
Learning to Solve Nonlinear Least Squares for Monocular Stereo,
ECCV18(VIII: 291-306).
Springer DOI 1810
BibRef

Guo, X.Y.[Xiao-Yang], Li, H.S.[Hong-Sheng], Yi, S.[Shuai], Ren, J.[Jimmy], Wang, X.G.[Xiao-Gang],
Learning Monocular Depth by Distilling Cross-Domain Stereo Networks,
ECCV18(XI: 506-523).
Springer DOI 1810
BibRef

Yang, G.[Guandao], Cui, Y.[Yin], Belongie, S.[Serge], Hariharan, B.[Bharath],
Learning Single-View 3D Reconstruction with Limited Pose Supervision,
ECCV18(XV: 90-105).
Springer DOI 1810
BibRef

Wu, J.J.[Jia-Jun], Zhang, C.K.[Cheng-Kai], Zhang, X.M.[Xiu-Ming], Zhang, Z.T.[Zhou-Tong], Freeman, W.T.[William T.], Tenenbaum, J.B.[Joshua B.],
Learning Shape Priors for Single-View 3D Completion And Reconstruction,
ECCV18(XI: 673-691).
Springer DOI 1810
BibRef

Jayaraman, D.[Dinesh], Gao, R.[Ruohan], Grauman, K.[Kristen],
ShapeCodes: Self-supervised Feature Learning by Lifting Views to Viewgrids,
ECCV18(XVI: 126-144).
Springer DOI 1810
BibRef

Kurenkov, A., Ji, J., Garg, A., Mehta, V., Gwak, J., Choy, C., Savarese, S.,
DeformNet: Free-Form Deformation Network for 3D Shape Reconstruction from a Single Image,
WACV18(858-866)
IEEE DOI 1806
CAD, augmented reality, image reconstruction, learning (artificial intelligence), object recognition, BibRef

Yao, Q., Luo, G., Zhu, Y.,
Depth estimation for outdoor image using couple dictionary learning and region detection,
VCIP17(1-4)
IEEE DOI 1804
edge detection, image representation, image retrieval, learning (artificial intelligence), single image depth estimation BibRef

Baig, M.H.[Mohammad Haris], Torresani, L.[Lorenzo],
Coupled depth learning,
WACV16(1-10)
IEEE DOI 1606
Computational modeling. Depth from single image via learning. BibRef

Chapter on 3-D Shape from X -- Shading, Textures, Lasers, Structured Light, Focus, Line Drawings continues in
Single View 3D Reconstruction, Convolutional Neural Networks, CNN .


Last update:Nov 26, 2024 at 16:40:19