16.7 Vehicle Motion, Surveillance Applications, Motion Detection

Chapter Contents (Back)
Motion, Detection. Surveillance.


16.7.1 Surveillance, Human Motion, Surveys, Reviews, Overviews, Representations

Chapter Contents (Back)
Survey, Motion, Human. Survey, Surveillance.

PETS Benchmark Datasets,
Online2006 Dataset:
HTML Version. Dataset, Surveillance. 2014 Dataset:
HTML Version. 2015 Dataset:
HTML Version. 2016 Dataset:
HTML Version. BibRef 0600

The KITTI Vision Benchmark Suite,
Online2013
WWW Link. Dataset, Road Scenes. Award, Everingham Prize. Stereo, Lidar, GPS, etc.
See also Vision meets robotics: The KITTI dataset. BibRef 1300

Maybank, S.J.[Steve J.], Tan, T.N.[Tie-Niu],
Introduction: Surveillance,
IJCV(37), No. 2, June 2000, pp. 173-173.
DOI Link 0008
BibRef

Maybank, S.J., Tan, T.N.,
Special Issue on Visual Surveillance,
IVC(22), No. 7, July 2004, pp. iii.
Elsevier DOI 0405
BibRef

Regazzoni, C.S., Foresti, G.L.,
Guest Editorial: Video Processing and Communications in Real-Time Surveillance Systems,
RealTimeImg(7), No. 5, October 2001, pp. 381-388.
DOI Link 0110
BibRef

Collins, R.T.[Robert T.], Lipton, A.J.[Alan J.], Kanade, T.[Takeo],
Introduction to the Special Section on Video Surveillance,
PAMI(22), No. 8, August 2000, pp. 745-746.
IEEE DOI 0010
BibRef

Gong, S.G.[Shao-Gang], Buxton, H.[Hilary],
Understanding visual behaviour, Special Issue Introduction,
IVC(20), No. 12, October 2002, pp. 825-826.
Elsevier DOI 0210
BibRef

Buxton, H.[Hilary],
Learning and understanding dynamic scene activity: a review,
IVC(21), No. 1, January 2003, pp. 125-136.
Elsevier DOI 0301
BibRef

Namuduri, K.R.[Kameswara Rao], Ramaswamy, V.[Veeru],
Preface, Video Analysis,
PRL(25), No. 7, May 2004, pp. 753-754.
Elsevier DOI 0405
BibRef

Hu, W., Tan, T.N., Wang, L., Maybank, S.J.,
A Survey on Visual Surveillance of Object Motion and Behaviors,
SMC-C(34), No. 3, August 2004, pp. 334-352.
IEEE Abstract. 0409
Survey, Surveillance. BibRef

Chen, H., Wang, F.Y.[Fei-Yue], Zeng, D.,
Intelligence and security informatics for homeland security: information, communication, and transportation,
ITS(5), No. 4, December 2004, pp. 329-341.
IEEE Abstract. 0501
BibRef

Amer, A.[Aishy], Regazzoni, C.S.[Carlo S.],
Introduction to the special issue on video object processing for surveillance applications,
RealTimeImg(11), No. 3, June 2005, pp. 167-171.
Elsevier DOI 0508
BibRef
And: Erratum: RealTimeImg(11), No. 5-6, October-December 2005, pp. 474.
Elsevier DOI BibRef

Velastin, S.A.[Sergio A.],
Editorial. Special section on intelligent distributed surveillance systems,
VISP(152), No. 2, April 2005, pp. 191.
DOI Link 0510
BibRef

Valera, M., Velastin, S.A.[Sergio A.],
Intelligent distributed surveillance systems: a review,
VISP(152), No. 2, April 2005, pp. 192-204.
DOI Link 0510
BibRef

Town, C.[Christopher],
Ontological inference for image and video analysis,
MVA(17), No. 2, May 2006, pp. 94-115.
Springer DOI 0605
BibRef
Earlier:
Ontology-Driven Bayesian Networks for Dynamic Scene Understanding,
EventVideo04(116).
IEEE DOI 0502
BibRef

Weißenberg, N.[Norbert], Gartmann, R.[Rüdiger], Voisard, A.[Agnès],
An Ontology-Based Approach to Personalized Situation-Aware Mobile Service Supply,
GeoInfo(9), No. 1, March 2006, pp. 55-90.
Springer DOI 0605
Aware of situation to control PDA displays, etc. BibRef

Fuentes, L.M.[Luis M.], Velastin, S.A.[Sergio A.],
People tracking in surveillance applications,
IVC(24), No. 11, 1 November 2006, pp. 1165-1171.
Elsevier DOI 0610
BibRef
Earlier:
From tracking to advanced surveillance,
ICIP03(III: 121-124).
IEEE DOI 0312
CCTV Surveillance; Tracking; Automatic surveillance BibRef

Remagnino, P.[Paolo], Velastin, S.A.[Sergio A.], Foresti, G.L.[Gian Luca], Trivedi, M.M.[Mohan M.],
Novel concepts and challenges for the next generation of video surveillance systems,
MVA(18), No. 3-4, August 2007, pp. 135-137.
Springer DOI 0706
BibRef

Martinez-Tomas, R., Rincon, M., Bachiller, M., Mira, J.,
On the correspondence between objects and events for the diagnosis of situations in visual surveillance tasks,
PRL(29), No. 8, 1 June 2008, pp. 1117-1135.
Elsevier DOI 0804
Visual surveillance systems; Image understanding; Description levels; Visual surveillance ontology; Predictive diagnosis task; Semantic gap BibRef

Jones, G.A.[Graeme A.],
Special issue on Intelligent Visual Surveillance,
CVIU(111), No. 1, July 2008, pp. 1.
Elsevier DOI 0711
BibRef

Ahmad, I., He, Z., Liao, M., Pereira, F., Sun, M.T.,
Special Issue on Video Surveillance,
CirSysVideo(18), No. 8, August 2008, pp. 1001-1005.
IEEE DOI 0809
BibRef

Dee, H.M.[Hannah M.], Velastin, S.A.[Sergio A.],
How close are we to solving the problem of automated visual surveillance?: A review of real-world surveillance, scientific progress and evaluative mechanisms,
MVA(19), No. 5-6, October 2008, pp. xx-yy.
Springer DOI 0810
BibRef

Tao, H.[Hai], Sawhney, H.S.[Harpreet Singh],
Special issue on video surveillance research in industry and academia,
MVA(19), No. 5-6, October 2008, pp. xx-yy.
Springer DOI 0810
BibRef

Haering, N.C.[Niels C.], Venetianer, P.L.[Péter L.], Lipton, A.J.[Alan J.],
The evolution of video surveillance: an overview,
MVA(19), No. 5-6, October 2008, pp. xx-yy.
Springer DOI 0810
BibRef

Baumann, A.[Axel], Boltz, M.[Marco], Ebling, J.[Julia], Koenig, M.[Matthias], Loos, H.S.[Hartmut S.], Merkel, M.[Marcel], Niem, W.[Wolfgang], Warzelhan, J.K.[Jan Karl], Yu, J.[Jie],
A Review and Comparison of Measures for Automatic Video Surveillance Systems,
JIVP(2008), No. 2008, pp. xx-yy.
DOI Link 0811
BibRef

Lavee, G.[Gal], Rivlin, E.[Ehud], Rudzsky, M.[Michael],
Understanding Video Events: A Survey of Methods for Automatic Interpretation of Semantic Occurrences in Video,
SMC-C(39), No. 5, September 2009, pp. 489-504.
IEEE DOI 0909
BibRef

Lavee, G.[Gal], Rudzsky, M.[Michael], Rivlin, E.[Ehud], Borzin, A.[Artyom],
Video Event Modeling and Recognition in Generalized Stochastic Petri Nets,
CirSysVideo(20), No. 1, January 2010, pp. 102-118.
IEEE DOI 1002
BibRef
Earlier: A1, A4, A3, A2:
Building Petri Nets from Video Event Ontologies,
ISVC07(I: 442-451).
Springer DOI 0711
BibRef

Lavee, G.[Gal], Rudzsky, M.[Michael], Rivlin, E.[Ehud],
Propagating Certainty in Petri Nets for Activity Recognition,
CirSysVideo(23), No. 2, February 2013, pp. 326-337.
IEEE DOI 1301
BibRef
Earlier:
Propagating Uncertainty in Petri Nets for Activity Recognition,
ISVC10(II: 706-715).
Springer DOI 1011
BibRef

Govea, V.[Vasquez], Dizan, A.[Alejandro],
Incremental Learning for Motion Prediction of Pedestrians and Vehicles,
Springer2010, ISBN: 978-3-642-13641-2
WWW Link. Buy this book: Incremental Learning for Motion Prediction of Pedestrians and Vehicles (Springer Tracts in Advanced Robotics) 1007
BibRef

Räty, T.D.,
Survey on Contemporary Remote Surveillance Systems for Public Safety,
SMC-C(40), No. 5, September 2010, pp. 493-515.
IEEE DOI 1008
Survey, Surveillance. State of the art. BibRef

Chellappa, R., Heinzelman, W., Konrad, J., Schonfeld, D., Wolf, M.,
Special Section on Distributed Camera Networks: Sensing, Processing, Communication, and Implementation,
IP(19), No. 10, October 2010, pp. 2513-2515.
IEEE DOI 1003
BibRef

Schneiderman, R.,
Trends In Video Surveillance Give DSP an Apps Boost,
SPMag(27), No. 6, 2010, pp. 6-12.
IEEE DOI 1011
Special Reports. BibRef

di Stefano, L.[Luigi], Regazzoni, C.S.[Carlo S.], Schonfeld, D.[Dan],
Advanced Video-Based Surveillance,
JIVP(2011), No. 2011, pp. xx-yy.
DOI Link 1104
BibRef

Agaian, S., Tang, J., Jassim, S., Chen, C.L.P., Zhang, C., Cao, Y.,
Guest Editorial Introduction to the Special Issue on Pattern Recognition Technologies for Anti-Terrorism Applications,
SMC-C(41), No. 5, September 2011, pp. 561-564.
IEEE DOI 1109
BibRef

Denecke, K.[Kerstin],
Event-Driven Surveillance: Possibilities and Challenges,
SpringerNew-York, 2012. ISBN: 978-3-642-28134-1
WWW Link.

1203
Monitoring techniques. General data, not images. BibRef

Aggarwal, J.K., Ryoo, M.S.,
Toward a unified framework of motion understanding,
IVC(30), No. 8, August 2012, pp. 465-466.
Elsevier DOI 1209
Opinion paper; Motion understanding; Human activity recognition BibRef

Lu, G.L.[Guo-Liang], Kudo, M.[Mineichi], Toyama, J.[Jun],
Temporal segmentation and assignment of successive actions in a long-term video,
PRL(34), No. 15, 2013, pp. 1936-1944.
Elsevier DOI 1309
Action segmentation BibRef

Wang, X.G.[Xiao-Gang],
Intelligent multi-camera video surveillance: A review,
PRL(34), No. 1, 1 January 2013, pp. 3-19.
Elsevier DOI 1211
Multi-camera video surveillance; Multi-camera calibration; Topology of camera networks; Multi-camera tracking; Object re-identification; Multi-camera activity analysis BibRef

Porikli, F.M., Bremond, F., Dockstader, S.L., Ferryman, J.M., Hoogs, A., Lovell, B.C., Pankanti, S., Rinner, B., Tu, P., Venetianer, P.L.,
Video Surveillance: Past, Present, and Now the Future,
SPMag(30), No. 3, 2012, pp. 190-198.
IEEE DOI 1304
Survey, Surveillance. DSP Forum. BibRef

Moon, Y.J.[Young-Jun],
Keynote lecture 3: 'Intelligent transport systems (ITS) for next generation with advanced surveillance',
AVSS14(XVI-XVI)
IEEE DOI 1411
Artificial intelligence BibRef

Zhang, S.P.[Sheng-Ping], Zhou, H.Y.[Hui-Yu], Zhang, B.C.[Bao-Chang], Han, Z.J.[Zhen-Jun], Guo, Y.L.[Yu-Liang],
Signal, image and video processing special issue: Semantic representations for social behavior analysis in video surveillance systems,
SIViP(8), No. S1, December 2014, pp. 73-74.
Springer DOI 1411
BibRef

Gao, W.[Wen], Tian, Y.H.[Yong-Hong], Huang, T.J.[Tie-Jun], Ma, S.W.[Si-Wei], Zhang, X.G.[Xian-Guo],
The IEEE 1857 Standard: Empowering Smart Video Surveillance Systems,
IEEE_Int_Sys(29), No. 5, September 2014, pp. 30-39.
IEEE DOI 1402
BibRef
Earlier: A5, A3, A2, A1, Only:
Overview of the IEEE 1857 surveillance groups,
ICIP13(1505-1509)
IEEE DOI 1402
IEEE 1857
See also Optimizing the Hierarchical Prediction and Coding in HEVC for Surveillance and Conference Videos With Background Modeling. BibRef

Lebeda, K.[Karel], Hadfield, S.[Simon], Bowden, R.[Richard],
TMAGIC: A Model-Free 3D Tracker,
IP(26), No. 9, September 2017, pp. 4378-4388.
IEEE DOI 1708
image motion analysis, image reconstruction, image sequences, object tracking, 2D trackers, 3D motion modelling, TMAGIC, model-free 3D tracker, object properties, online leader-board, out-of-plane motion, structure from motion, visual tracking, Cameras, Feature extraction, Solid modeling, Tracking, Visualization, 3D tracking, Gaussian process, Machine vision, SLAM, image motion, structure from motion, visual, tracking BibRef

Xian, Y.[Yang], Rong, X.J.[Xue-Jian], Yang, X.D.[Xiao-Dong], Tian, Y.L.[Ying-Li],
Evaluation of Low-Level Features for Real-World Surveillance Event Detection,
CirSysVideo(27), No. 3, March 2017, pp. 624-634.
IEEE DOI 1703
Encoding BibRef

Huang, K., Tan, T., Maybank, S.J.[Stephen J.], Chellappa, R., Aggarval, J.,
Guest Editorial Introduction to the Special Issue on Large-Scale Video Analytics for Enhanced Security: Algorithms and Systems,
SMCS(47), No. 4, April 2017, pp. 589-592.
IEEE DOI 1704
Algorithm design and analysis BibRef

Zhang, Q., Sun, H., Wu, X., Zhong, H.,
Edge Video Analytics for Public Safety: A Review,
PIEEE(107), No. 8, August 2019, pp. 1675-1696.
IEEE DOI 1908
Safety, Cameras, Law enforcement, Video surveillance, Streaming media, Image edge detection, Robot vision systems, video analytics BibRef

Ahmed, Z.[Zayneb], Hussain, A.J.[Abir Jaafar], Khan, W.[Wasiq], Baker, T.[Thar], Al-Askar, H.[Haya], Lunn, J.[Janet], Al-Shabandar, R.[Raghad], Al-Jumeily, D.[Dhiya], Liatsis, P.[Panos],
Lossy and Lossless Video Frame Compression: A Novel Approach for High-Temporal Video Data Analytics,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Elharrouss, O.[Omar], Almaadeed, N.[Noor], Al-Maadeed, S.[Somaya],
A review of video surveillance systems,
JVCIR(77), 2021, pp. 103116.
Elsevier DOI 2106
Video surveillance system, Video analysis, Video surveillance systems trends BibRef

Zhao, Y.Y.[Ying-Ying], Dong, M.Z.[Ming-Zhi], Wang, Y.J.[Yu-Jiang], Feng, D.[Da], Lv, Q.[Qin], Dick, R.P.[Robert P.], Li, D.S.[Dong-Sheng], Lu, T.[Tun], Gu, N.[Ning], Shang, L.[Li],
A Reinforcement-Learning-Based Energy-Efficient Framework for Multi-Task Video Analytics Pipeline,
MultMed(24), No. 2022, pp. 2150-2163.
IEEE DOI 2204
Task analysis, Visual analytics, Energy resolution, Streaming media, Pipelines, Object detection, energy-efficient, reinforcement learning BibRef

Liao, Y.[Yiyi], Xie, J.[Jun], Geiger, A.[Andreas],
KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D,
PAMI(45), No. 3, March 2023, pp. 3292-3310.
IEEE DOI 2302
Semantics, Annotations, Task analysis, Benchmark testing, Cameras, Point cloud labeling, semantic label transfer, performance evaluation
See also KITTI Vision Benchmark Suite, The. BibRef


O'Brien, K.[Kyle], Rybak, M.[Michelle], Huang, J.[Jiong], Stevens, A.[Adam], Fredriksz, M.[Madeline], Chaberski, M.[Michael], Russell, D.[Danielle], Castin, L.[Lindsey], Jou, M.[Michelle], Gurrapadi, N.[Nishant], Bosch, M.[Marc],
Accenture-MM1: A Multimodal Person Recognition Dataset,
RWSurvil24(112-122)
IEEE DOI 2404
Legged locomotion, Image quality, Protocols, Image recognition, Target recognition, Surveillance, Face recognition BibRef

Ahuja, N.[Nilesh], Datta, P.[Parual], Kanzariya, B.[Bhavya], Somayazulu, V.S.[V. Srinivasa], Tickoo, O.[Omesh],
Neural Rate Estimator and Unsupervised Learning for Efficient Distributed Image Analytics in Split-DNN models,
CVPR23(2022-2030)
IEEE DOI 2309
BibRef

Paul, S.[Sibendu], Rao, K.[Kunal], Coviello, G.[Giuseppe], Sankaradas, M.[Murugan], Po, O.[Oliver], Hu, Y.C.[Y. Charlie], Chakradhar, S.[Srimat],
Why Is the Video Analytics Accuracy Fluctuating, and What Can We Do About It?,
AdvRob22(430-448).
Springer DOI 2304
BibRef

Kiefer, B.[Benjamin], Žust, L.[Lojze], Kristan, M.[Matej], Perš, J.[Janez], Teršek, M.[Matija], Wiliem, A.[Arnold], Messmer, M.[Martin], Yang, C.Y.[Cheng-Yen], Huang, H.W.[Hsiang-Wei], Jiang, Z.Y.[Zhong-Yu], Kuo, H.C.[Heng-Cheng], Mei, J.[Jie], Hwang, J.N.[Jenq-Neng], Stadler, D.[Daniel], Sommer, L.[Lars], Huang, K.[Kaer], Zheng, A.[Aiguo], Chong, W.[Weitu], Lertniphonphan, K.[Kanokphan], Xie, J.[Jun], Chen, F.[Feng], Li, J.[Jian], Wang, Z.[Zhepeng], Zedda, L.[Luca], Loddo, A.[Andrea], di Ruberto, C.[Cecilia], Vu, T.A.[Tuan-Anh], Nguyen-Truong, H.[Hai], Ha, T.S.[Tan-Sang], Pham, Q.D.[Quan-Dung], Yeung, S.K.[Sai-Kit], Feng, Y.[Yuan], Thien, N.T.[Nguyen Thanh], Tian, L.X.[Li-Xin], Kuan, S.Y.[Sheng-Yao], Ho, Y.H.[Yuan-Hao], Rodriguez, A.B.[Angel Bueno], Carrillo-Perez, B.[Borja], Klein, A.[Alexander], Alex, A.[Antje], Steiniger, Y.[Yannik], Sattler, F.[Felix], Solano-Carrillo, E.[Edgardo], Fabijanic, M.[Matej], Šumunec, M.[Magdalena], Kapetanovic, N.[Nadir], Michel, A.[Andreas], Gross, W.[Wolfgang], Weinmann, M.[Martin],
2nd Workshop on Maritime Computer Vision (MaCVi) 2024: Challenge Results,
Maritime24(869-891)
IEEE DOI Code:
WWW Link. 2404
Computational modeling, Object detection, Feature extraction, Autonomous aerial vehicles, Transformers BibRef

Kiefer, B.[Benjamin], Kristan, M.[Matej], Perš, J.[Janez], Žust, L.[Lojze], Poiesi, F.[Fabio], de Alcantara-Andrade, F.A.[Fabio Augusto], Bernardino, A.[Alexandre], Dawkins, M.[Matthew], Raitoharju, J.[Jenni], Quan, Y.T.[Yi-Tong], Atmaca, A.[Adem], Höfer, T.[Timon], Zhang, Q.M.[Qi-Ming], Xu, Y.F.[Yu-Fei], Zhang, J.[Jing], Tao, D.C.[Da-Cheng], Sommer, L.[Lars], Spraul, R.[Raphael], Zhao, H.Y.[Hang-Yue], Zhang, H.[Hongpu], Zhao, Y.[Yanyun], Augustin, J.L.[Jan Lukas], Jeon, E.I.[Eui-Ik], Lee, I.Y.[Imp-Yeong], Zedda, L.[Luca], Loddo, A.[Andrea], Ruberto, C.D.[Cecilia Di], Verma, S.[Sagar], Gupta, S.[Siddharth], Muralidhara, S.[Shishir], Hegde, N.[Niharika], Xing, D.[Daitao], Evangeliou, N.[Nikolaos], Tzes, A.[Anthony], Bartl, V.[Vojtech], Španhel, J.[Jakub], Herout, A.[Adam], Bhowmik, N.[Neelanjan], Breckon, T.P.[Toby P.], Kundargi, S.[Shivanand], Anvekar, T.[Tejas], Tabib, R.A.[Ramesh Ashok], Mudengudi, U.[Uma], Vats, A.[Arpita], Song, Y.[Yang], Liu, D.[Delong], Li, Y.L.[Yong-Lin], Li, S.[Shuman], Tan, C.H.[Chen-Hao], Lan, L.[Long], Somers, V.[Vladimir], de Vleeschouwer, C.[Christophe], Alahi, A.[Alexandre], Huang, H.W.[Hsiang-Wei], Yang, C.Y.[Cheng-Yen], Hwang, J.N.[Jenq-Neng], Kim, P.K.[Pyong-Kun], Kim, K.[Kwangju], Lee, K.[Kyoungoh], Jiang, S.[Shuai], Li, H.[Haiwen], Zi-Qiang, Z.[Zheng], Vu, T.A.[Tuan-Anh], Nguyen-Truong, H.[Hai], Yeung, S.K.[Sai-Kit], Jia, Z.[Zhuang], Yang, S.[Sophia], Hsu, C.C.[Chih-Chung], Hou, X.Y.[Xiu-Yu], Jhang, Y.A.[Yu-An], Yang, S.[Simon], Yang, M.T.[Mau-Tsuen],
1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results,
Maritime23(265-302)
IEEE DOI 2302
Training, Conferences, Object detection, Detectors, Benchmark testing, Autonomous aerial vehicles BibRef

Ravichandran, B.[Bharadwaj], Collins, R.[Roderic], Fieldhouse, K.[Keith], Corona, K.[Kellie], Hoogs, A.J.[Anthony J.],
From Leaderboard To Operations: DIVA Transition Experiences,
Activity22(143-150)
IEEE DOI 2202
Deep Intermodal Video Analytics (DIVA) program has sponsored the development of systems that detect and recognize activities in security video. Measurement, Visual analytics, Conferences, Software, Security, Software engineering BibRef

Le, H., Smailis, C., Shi, L., Kakadiaris, I.,
EDGE20: A Cross Spectral Evaluation Dataset for Multiple Surveillance Problems,
WACV20(2674-2683)
IEEE DOI 2006
Cameras, Image edge detection, Face detection, Face recognition, Face, Data acquisition BibRef

Giannakeris, P., Avgerinakis, K., Karakostas, A., Vrochidis, S., Kompatsiaris, I.,
People and Vehicles in Danger: A Fire and Flood Detection System in Social Media,
IVMSP18(1-5)
IEEE DOI 1809
Electromagnetic compatibility, Flickr, Image segmentation, Estimation, Safety, Machine learning, deep learning, object detection BibRef

Zhang, C.Y.[Chong-Yang], Ni, B.B.[Bing-Bing], Song, L.[Li], Zhai, G.T.[Guang-Tao], Yang, X.K.[Xiao-Kang], Zhang, W.J.[Wen-Jun],
BEST: Benchmark and Evaluation of Surveillance Task,
BEST16(III: 393-407).
Springer DOI 1704
BibRef

Hu, C.P.[Chuan-Ping], Xue, G.J.[Geng-Jian], Mei, L.[Lin], Qi, L.[Li], Shao, J.[Jie], Shang, Y.F.[Yan-Feng], Wang, J.[Jian],
Building an intelligent video and image analysis evaluation platform for public security,
AVSS17(1-6)
IEEE DOI 1806
public administration, video signal processing, video surveillance, IVIAEPPS, effective evaluation metrics, Tools BibRef

Xue, G.J.[Geng-Jian], Wang, W.F.[Wen-Fei], Shao, J.[Jie], Liang, C.[Chen], Wu, J.J.[Jin-Jing], Yang, H.[Hui], Zhang, X.T.[Xiao-Teng], Mei, L.[Lin], Hu, C.P.[Chuan-Ping],
Public Security Video and Image Analysis Challenge: A Retrospective,
BEST16(III: 441-452).
Springer DOI 1704
BibRef

Mann, S.,
Surveillance (Oversight), Sousveillance (Undersight), and Metaveillance (Seeing Sight Itself),
MoveSurveillance16(1408-1417)
IEEE DOI 1612
BibRef

Per, J.[Janez], Kenk, V.S.[Vildana Sulic], Mandeljc, R.[Rok], Kristan, M.[Matej], Kovacic, S.[Stanislav],
Dana36: A Multi-camera Image Dataset for Object Identification in Surveillance Scenarios,
AVSS12(64-69).
IEEE DOI 1211
Dataset,Surveillance. BibRef

Birchbauer, J.A.,
Active video analytics one leap ahead applicability and entering new dimensions,
AVSBS11(508-509).
IEEE DOI 1111
Industrial paper. What can really be done, focus on doable systems. BibRef

Filipowicz, W.[Wiktor], Habela, P.[Piotr], Kaczmarski, K.[Krzysztof], Kulbacki, M.[Marek],
A Generic Approach to Design and Querying of Multi-purpose Human Motion Database,
ICCVG10(I: 105-113).
Springer DOI 1009
BibRef

Cristani, M., Murino, V., Vinciarelli, A.,
Socially intelligent surveillance and monitoring: Analysing social dimensions of physical space,
SISM10(51-58).
IEEE DOI 1006
BibRef

Ko, T.,
A survey on behavior analysis in video surveillance for homeland security applications,
AIPR08(1-8).
IEEE DOI 0810
BibRef

Haering, N.C.[Niels C.],
What Would You Pay for Automated Video Analysis?,
AVSBS09(286-286).
IEEE DOI 0909
BibRef

Garibotto, G.[Giovanni],
Video Surveillance and Biometric Technology Applications,
AVSBS09(288-288).
IEEE DOI 0909
BibRef

Ravichandran, A.[Avinash], Wang, C.H.[Chao-Hui], Raptis, M.[Michalis], Soatto, S.[Stefano],
SuperFloxels: A Mid-level Representation for Video Sequences,
ARTEMIS12(III: 131-140).
Springer DOI 1210
BibRef

Raptis, M.[Michalis], Kokkinos, I.[Iasonas], Soatto, S.[Stefano],
Discovering discriminative action parts from mid-level video representations,
CVPR12(1242-1249).
IEEE DOI 1208
BibRef

Xu, L.Q.[Li-Qun],
Issues in video analytics and surveillance systems: Research/prototyping vs. applications/user requirements,
AVSBS07(10-14).
IEEE DOI 0709
BibRef

Coleman, A.[Andy],
Technology, applications and innovations in physical security: A home office perspective,
AVSBS07(5-5).
IEEE DOI 0709
BibRef

Chen, T.H.[Tsu-Han],
A journey from signal processing to surveillance,
AVSBS07(2-2).
IEEE DOI 0709
BibRef

Zhu, Z.G.[Zhi-Gang], Huang, T.S.[Thomas S.],
Multimodal Surveillance: an Introduction,
VS07(1-6).
IEEE DOI 0706
BibRef

Zhang, B.L.[Bai-Ling], Park, J.[Junbum], Ko, H.S.[Han-Seok],
Combination of self-organization map and kernel mutual subspace method for video surveillance,
AVSBS07(123-128).
IEEE DOI 0709
BibRef

Kankanhalli, M.S.,
Multimedia Surveillance and Monitoring,
AVSBS06(1-1).
IEEE DOI 0611
BibRef

Piccardi, M.,
Video Surveillance at the Beginning of the Third Millennium: The Viewpoint of Research, Industry, Government Bodies, Research Funding Agencies and the Community,
AVSBS06(71-71).
IEEE DOI 0611
BibRef

Trivedi, M.M.,
Computer Vision for Homeland Security: A Perspective on its Promise and Pitfalls,
AVSBS05(299-301).
IEEE DOI 0602
BibRef

Strat, T.M.,
Battlefields that see,
AVSBS03(1-1).
IEEE DOI 0310
BibRef

Duong, V., Howard, R., Hill, G., Toal, P., King, S., Gong, S., Thomere, J., Hyde, J.,
The Representation of Event, Behaviour and Scene,
TRD201, Esprit Project 2152: Views, 1990. BibRef 9000

Mohnhaupt, M.[Michael], Neumann, B.[Bernd],
On the use of motion concepts for top-down control in traffic scenes,
ECCV90(598-600).
Springer DOI 9004
BibRef

Mohnhaupt, M.[Michael], Neumann, B.[Bernd],
Understanding Object Motion: Recognition, Learning And Spatiotemporal Reasoning,
TRFBI-HH-B-145/90, University Of Hamburg, 1990. BibRef 9000

Neumann, B.,
Natural Language Description of Time-Varying Scenes,
TRFBI-HH-B-105/84, Fachbereich Informatik der Universitat Hamburg, FRG, 1984. BibRef 8400

Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Surveillance Systems, Privacy Protection, Issues, Techniques, Face Obscuration .


Last update:Jul 13, 2024 at 15:27:21