Hoffman, J.[Judy],
Rodner, E.[Erik],
Donahue, J.[Jeff],
Kulis, B.[Brian],
Saenko, K.[Kate],
Asymmetric and Category Invariant Feature Transformations for Domain
Adaptation,
IJCV(109), No. 1-2, August 2014, pp. 28-41.
Springer DOI
1407
BibRef
Tzeng, E.,
Hoffman, J.[Judy],
Saenko, K.[Kate],
Darrell, T.J.[Trevor J.],
Adversarial Discriminative Domain Adaptation,
CVPR17(2962-2971)
IEEE DOI
1711
BibRef
Earlier: A2, A4, A3, Only:
Continuous Manifold Based Adaptation for Evolving Visual Domains,
CVPR14(867-874)
IEEE DOI
1409
Adaptation models, Image reconstruction,
Standards, Training, Visualization
BibRef
Tzeng, E.,
Hoffman, J.,
Darrell, T.J.,
Saenko, K.,
Simultaneous Deep Transfer Across Domains and Tasks,
ICCV15(4068-4076)
IEEE DOI
1602
Adaptation models
BibRef
Hoffman, J.[Judy],
Kulis, B.[Brian],
Darrell, T.J.[Trevor J.],
Saenko, K.[Kate],
Discovering Latent Domains for Multisource Domain Adaptation,
ECCV12(II: 702-715).
Springer DOI
1210
BibRef
Kulis, B.[Brian],
Saenko, K.[Kate],
Darrell, T.J.[Trevor J.],
What you saw is not what you get:
Domain adaptation using asymmetric kernel transforms,
CVPR11(1785-1792).
IEEE DOI
1106
Training is not adequate. Domain adaptation.
BibRef
Saenko, K.[Kate],
Kulis, B.[Brian],
Fritz, M.[Mario],
Darrell, T.J.[Trevor J.],
Adapting Visual Category Models to New Domains,
ECCV10(IV: 213-226).
Springer DOI
1009
BibRef
Donahue, J.[Jeff],
Hoffman, J.[Judy],
Rodner, E.[Erik],
Saenko, K.[Kate],
Darrell, T.J.[Trevor J.],
Semi-supervised Domain Adaptation with Instance Constraints,
CVPR13(668-675)
IEEE DOI
1309
domain adaptation; visual recognition
BibRef
Shao, M.[Ming],
Kit, D.[Dmitry],
Fu, Y.[Yun],
Generalized Transfer Subspace Learning Through Low-Rank Constraint,
IJCV(109), No. 1-2, August 2014, pp. 74-93.
Springer DOI
1407
Using existing data for transfer to new domains.
BibRef
Ding, Z.M.[Zheng-Ming],
Fu, Y.[Yun],
Robust Transfer Metric Learning for Image Classification,
IP(26), No. 2, February 2017, pp. 660-670.
IEEE DOI
1702
computational complexity
BibRef
Ding, Z.M.[Zheng-Ming],
Fu, Y.[Yun],
Deep Domain Generalization With Structured Low-Rank Constraint,
IP(27), No. 1, January 2018, pp. 304-313.
IEEE DOI
1712
learning (artificial intelligence), neural nets,
common knowledge, consistent knowledge,
low-rank constraint
BibRef
Ding, Z.M.[Zheng-Ming],
Shao, M.[Ming],
Fu, Y.[Yun],
Generative Zero-Shot Learning via Low-Rank Embedded Semantic
Dictionary,
PAMI(41), No. 12, December 2019, pp. 2861-2874.
IEEE DOI
1911
BibRef
Earlier:
Low-Rank Embedded Ensemble Semantic Dictionary for Zero-Shot Learning,
CVPR17(6005-6013)
IEEE DOI
1711
BibRef
Earlier:
Deep Robust Encoder Through Locality Preserving Low-Rank Dictionary,
ECCV16(VI: 567-582).
Springer DOI
1611
Semantics, Visualization, Dictionaries,
Generative adversarial networks, Training data, Data models,
zero-shot learning.
Gold, Information science, Machine learning, Semantics,
Training, Visualization
BibRef
Ding, Z.M.[Zheng-Ming],
Shao, M.[Ming],
Fu, Y.[Yun],
Missing Modality Transfer Learning via Latent Low-Rank Constraint,
IP(24), No. 11, November 2015, pp. 4322-4334.
IEEE DOI
1509
learning (artificial intelligence)
BibRef
Long, M.S.[Ming-Sheng],
Cao, Y.[Yue],
Cao, Z.J.[Zhang-Jie],
Wang, J.M.[Jian-Min],
Jordan, M.I.[Michael I.],
Transferable Representation Learning with Deep Adaptation Networks,
PAMI(41), No. 12, December 2019, pp. 3071-3085.
IEEE DOI
1911
BibRef
Earlier: A3, A1, A4, A5, Only:
Partial Transfer Learning with Selective Adversarial Networks,
CVPR18(2724-2732)
IEEE DOI
1812
Task analysis, Learning systems, Adaptation models,
Convolutional neural networks, Deep learning, Domain adaptation,
multiple kernel learning.
Feature extraction, Task analysis, Standards, Big Data, Bridges,
Training, Labeling
BibRef
Zhu, R.X.[Rui-Xi],
Yan, L.[Li],
Mo, N.[Nan],
Liu, Y.[Yi],
Semi-supervised center-based discriminative adversarial learning for
cross-domain scene-level land-cover classification of aerial images,
PandRS(155), 2019, pp. 72-89.
Elsevier DOI
1908
Semi-supervised domain adaptation,
Scene-level land-cover classification, Triplet network,
Center loss
BibRef
Ma, X.H.[Xin-Hong],
Zhang, T.Z.[Tian-Zhu],
Xu, C.S.[Chang-Sheng],
Deep Multi-Modality Adversarial Networks for Unsupervised Domain
Adaptation,
MultMed(21), No. 9, September 2019, pp. 2419-2431.
IEEE DOI
1909
BibRef
And:
GCAN: Graph Convolutional Adversarial Network for Unsupervised Domain
Adaptation,
CVPR19(8258-8268).
IEEE DOI
2002
Feature extraction, Task analysis, Semantics, Training,
Adaptation models, Correlation, Data mining,
social event recognition
BibRef
Ma, X.H.[Xin-Hong],
Gao, J.Y.[Jun-Yu],
Xu, C.S.[Chang-Sheng],
Active Universal Domain Adaptation,
ICCV21(8948-8957)
IEEE DOI
2203
Adaptation models, Uncertainty, Target recognition, Annotations,
Computational modeling, Semantics, Representation learning
BibRef
Zuo, Y.K.[Yu-Kun],
Yao, H.T.[Han-Tao],
Zhuang, L.S.[Lian-Sheng],
Xu, C.S.[Chang-Sheng],
Dual Structural Knowledge Interaction for Domain Adaptation,
MultMed(25), 2023, pp. 9057-9070.
IEEE DOI
2312
BibRef
Zhou, Q.A.[Qi-Ang],
Zhou, W.[Wen'an],
Yang, B.[Bin],
Huan, J.[Jun],
Deep cycle autoencoder for unsupervised domain adaptation with
generative adversarial networks,
IET-CV(13), No. 7, Octomber 2019, pp. 659-665.
DOI Link
1911
BibRef
Shao, R.[Rui],
Lan, X.Y.[Xiang-Yuan],
Adversarial auto-encoder for unsupervised deep domain adaptation,
IET-IPR(13), No. 14, 12 December 2019, pp. 2772-2777.
DOI Link
1912
BibRef
Yang, S.[Shu],
Wang, Y.W.[Yao-Wei],
Shi, Y.M.[Ye-Min],
Fei, Z.S.[Ze-Song],
Can Categories and Attributes Be Learned in a Multi-Task Way?,
MultMed(21), No. 12, December 2019, pp. 3194-3204.
IEEE DOI
1912
Task analysis, Object recognition, Birds, Training, Dogs, Cats,
Predictive models, Multi-task learning,
regularization
BibRef
Yang, S.[Shu],
Wang, Y.W.[Yao-Wei],
Chen, K.[Ke],
Zeng, W.[Wei],
Fei, Z.S.[Ze-Song],
Attribute-Aware Feature Encoding for Object Recognition and
Segmentation,
MultMed(24), 2022, pp. 3611-3623.
IEEE DOI
2207
Correlation, Semantics, Training data, Benchmark testing,
Multitasking, Feature extraction, Encoding, Object recognition, regularization
BibRef
Chadha, A.,
Andreopoulos, Y.,
Improved Techniques for Adversarial Discriminative Domain Adaptation,
IP(29), 2020, pp. 2622-2637.
IEEE DOI
2001
Task analysis, Training, Sensors, Proposals, Cameras,
Neuromorphics, Adversarial methods, domain adaptation,
neuromorphic vision sensing
BibRef
Gholami, B.,
Sahu, P.,
Rudovic, O.,
Bousmalis, K.,
Pavlovic, V.,
Unsupervised Multi-Target Domain Adaptation:
An Information Theoretic Approach,
IP(29), 2020, pp. 3993-4002.
IEEE DOI
2002
Domain adaptation, mutual information, variational inference,
adversarial learning
BibRef
Yan, L.,
Fan, B.,
Liu, H.,
Huo, C.,
Xiang, S.,
Pan, C.,
Triplet Adversarial Domain Adaptation for Pixel-Level Classification
of VHR Remote Sensing Images,
GeoRS(58), No. 5, May 2020, pp. 3558-3573.
IEEE DOI
2005
Domain adaptation (DA), pixel-level classification,
self-training, triplet adversarial learning, very high resolution (VHR)
BibRef
Rahman, M.M.[Mohammad Mahfujur],
Fookes, C.[Clinton],
Baktashmotlagh, M.[Mahsa],
Sridharan, S.[Sridha],
Correlation-aware adversarial domain adaptation and generalization,
PR(100), 2020, pp. 107124.
Elsevier DOI
2005
Domain adaptation, Domain generalization,
Correlation-alignment, Adversarial learning
BibRef
Bu, K.,
He, Y.,
Jing, X.,
Han, J.,
Adversarial Transfer Learning for Deep Learning Based Automatic
Modulation Classification,
SPLetters(27), 2020, pp. 880-884.
IEEE DOI
2006
Adversarial transfer learning, domain adaptation,
modulation recognition, sampling frequency
BibRef
Hou, X.X.[Xian-Xu],
Liu, J.X.[Jing-Xin],
Xu, B.[Bolei],
Wang, X.L.[Xiao-Long],
Liu, B.Z.[Bo-Zhi],
Qiu, G.P.[Guo-Ping],
Class-aware domain adaptation for improving adversarial robustness,
IVC(99), 2020, pp. 103926.
Elsevier DOI
2006
Domain adaptation, Adversarial robustness
BibRef
Chen, W.D.[Wen-Dong],
Hu, H.F.[Hai-Feng],
Generative attention adversarial classification network for
unsupervised domain adaptation,
PR(107), 2020, pp. 107440.
Elsevier DOI
2008
Unsupervised domain adaptation, Generated adversarial network,
Attention learning, Pseudo labels
BibRef
Qiu, W.J.[Wen-Jie],
Chen, W.D.[Wen-Dong],
Hu, H.F.[Hai-Feng],
Partial domain adaptation based on shared class oriented adversarial
network,
CVIU(199), 2020, pp. 103018.
Elsevier DOI
2009
Knowledge transfer, Partial domain adaptation,
Adversarial network, Weighted class sampling
BibRef
Yuan, Y.[Yumeng],
Li, Y.H.[Yu-Hua],
Zhu, Z.L.[Zhen-Long],
Li, R.X.[Rui-Xuan],
Gu, X.[Xiwu],
Adversarial joint domain adaptation of asymmetric feature mapping
based on least squares distance,
PRL(136), 2020, pp. 251-256.
Elsevier DOI
2008
Joint domain adaptation, Adversarial learning,
Asymmetric feature mapping, Conditional distribution alignment
BibRef
Zhang, Y.[Yun],
Wang, N.B.[Nian-Bin],
Cai, S.B.[Shao-Bin],
Adversarial sliced Wasserstein domain adaptation networks,
IVC(102), 2020, pp. 103974.
Elsevier DOI
2010
Transfer learning, Domain adaptation, Image classification,
Adversarial learning
BibRef
Guan, D.[Dayan],
Huang, J.X.[Jia-Xing],
Lu, S.J.[Shi-Jian],
Xiao, A.[Aoran],
Scale variance minimization for unsupervised domain adaptation in
image segmentation,
PR(112), 2021, pp. 107764.
Elsevier DOI
2102
Unsupervised domain adaptation, Image segmentation,
Semantic structure, Variance minimization, Adversarial learning
BibRef
Ma, C.[Chenhui],
Sha, D.[Dexuan],
Mu, X.D.[Xiao-Dong],
Unsupervised Adversarial Domain Adaptation with Error-Correcting
Boundaries and Feature Adaption Metric for Remote-Sensing Scene
Classification,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Dundar, A.[Aysegul],
Liu, M.Y.[Ming-Yu],
Yu, Z.D.[Zhi-Ding],
Wang, T.C.[Ting-Chun],
Zedlewski, J.[John],
Kautz, J.[Jan],
Domain Stylization: A Fast Covariance Matching Framework Towards
Domain Adaptation,
PAMI(43), No. 7, July 2021, pp. 2360-2372.
IEEE DOI
2106
Image segmentation, Semantics, Training, Task analysis,
Adaptation models, Data models, Domain adaptation,
object detection
BibRef
Zhang, W.C.[Wei-Chen],
Xu, D.[Dong],
Ouyang, W.L.[Wan-Li],
Li, W.[Wen],
Self-Paced Collaborative and Adversarial Network for Unsupervised
Domain Adaptation,
PAMI(43), No. 6, June 2021, pp. 2047-2061.
IEEE DOI
2106
BibRef
Earlier: A1, A3, A4, A2:
Collaborative and Adversarial Network for Unsupervised Domain
Adaptation,
CVPR18(3801-3809)
IEEE DOI
1812
Task analysis, Streaming media, Training, Collaboration,
Object recognition, Visualization, Optical imaging,
self-paced learning.
Training, Feature extraction, Adaptation models, Task analysis
BibRef
Zhao, S.C.[Si-Cheng],
Li, B.[Bo],
Xu, P.F.[Peng-Fei],
Yue, X.Y.[Xiang-Yu],
Ding, G.G.[Gui-Guang],
Keutzer, K.[Kurt],
MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation,
IJCV(129), No. 8, August 2021, pp. 2399-2424.
Springer DOI
2108
BibRef
Xu, L.[Li],
Zhou, Y.D.[Yao-Dong],
Luo, B.[Bing],
Li, B.[Bo],
Zhang, C.[Chao],
Adversarial domain adaptation with Siamese network for video object
cosegmentation,
SP:IC(123), 2024, pp. 117109.
Elsevier DOI
2403
Video object cosegmentation, Domain adaption,
Adversarial learning, Siamese network, Classifying network
BibRef
Wang, Z.[Zi],
Sun, X.L.[Xiao-Liang],
Su, A.[Ang],
Wang, G.[Gang],
Li, Y.[Yang],
Yu, Q.F.[Qi-Feng],
Improve conditional adversarial domain adaptation using self-training,
IET-IPR(15), No. 10, 2021, pp. 2169-2178.
DOI Link
2108
BibRef
Li, J.J.[Jing-Jing],
Chen, E.[Erpeng],
Ding, Z.M.[Zheng-Ming],
Zhu, L.[Lei],
Lu, K.[Ke],
Shen, H.T.[Heng Tao],
Maximum Density Divergence for Domain Adaptation,
PAMI(43), No. 11, November 2021, pp. 3918-3930.
IEEE DOI
2110
Measurement, Training, Kernel, Task analysis, Adaptation models,
Benchmark testing, Games, Domain adaptation, transfer learning,
adversarial learning
BibRef
Li, Y.Z.[Yue-Zun],
Chang, M.C.[Ming-Ching],
Sun, P.[Pu],
Qi, H.G.[Hong-Gang],
Dong, J.Y.[Jun-Yu],
Lyu, S.W.[Si-Wei],
TransRPN: Towards the Transferable Adversarial Perturbations using
Region Proposal Networks and Beyond,
CVIU(213), 2021, pp. 103302.
Elsevier DOI
2112
Transferable adversarial perturbation, Object detection
BibRef
Hu, D.P.[Da-Peng],
Liang, J.[Jian],
Hou, Q.B.[Qi-Bin],
Yan, H.[Hanshu],
Chen, Y.P.[Yun-Peng],
Adversarial Domain Adaptation With Prototype-Based Normalized Output
Conditioner,
IP(30), 2021, pp. 9359-9371.
IEEE DOI
2112
Training, Task analysis, Semantics, Sensitivity, Object recognition,
Predictive models, Prototypes, Domain adaptation,
pseudo-labels
BibRef
Han, K.[Keji],
Xia, B.[Bin],
Li, Y.[Yun],
(AD)2: Adversarial domain adaptation to defense with adversarial
perturbation removal,
PR(122), 2022, pp. 108303.
Elsevier DOI
2112
Deep learning, Adversarial example, Domain adaptation
BibRef
Ge, Y.[Yao],
Li, Y.[Yun],
Han, K.[Keji],
Rethinking the validity of perturbation in single-step adversarial
training,
PR(158), 2025, pp. 111007.
Elsevier DOI
2411
Adversarial robustness, Single-step adversarial training,
Trade-off, Catastrophic overfitting, Robust overfitting
BibRef
Wu, Y.[Yuan],
Inkpen, D.[Diana],
El-Roby, A.[Ahmed],
Towards Category and Domain Alignment: Category-Invariant Feature
Enhancement for Adversarial Domain Adaptation,
AROW21(132-141)
IEEE DOI
2112
Adaptation models, System performance,
Measurement uncertainty, Benchmark testing, Distortion measurement
BibRef
Duan, Y.X.[Ye-Xin],
Zou, J.H.[Jun-Hua],
Zhou, X.Y.[Xing-Yu],
Zhang, W.[Wu],
Zhang, J.[Jin],
Pan, Z.S.[Zhi-Song],
Enhancing transferability of adversarial examples via
rotation-invariant attacks,
IET-CV(16), No. 1, 2022, pp. 1-11.
DOI Link
2202
BibRef
Chen, J.W.[Jia-Wei],
Zhang, Z.Q.[Zi-Qi],
Xie, X.P.[Xin-Peng],
Li, Y.X.[Yue-Xiang],
Xu, T.[Tao],
Ma, K.[Kai],
Zheng, Y.F.[Ye-Feng],
Beyond Mutual Information: Generative Adversarial Network for Domain
Adaptation Using Information Bottleneck Constraint,
MedImg(41), No. 3, March 2022, pp. 595-607.
IEEE DOI
2203
Generative adversarial networks, Task analysis,
Image segmentation, Adaptation models, Training, domain adaptation
BibRef
Wen, J.[Jun],
Yuan, J.S.[Jun-Song],
Zheng, Q.[Qian],
Liu, R.S.[Ri-Sheng],
Gong, Z.F.[Zhe-Feng],
Zheng, N.G.[Neng-Gan],
Hierarchical domain adaptation with local feature patterns,
PR(124), 2022, pp. 108445.
Elsevier DOI
2203
Domain adaptation, Local feature patterns,
Adversarial learning, Hierarchical alignment
BibRef
Wang, B.[Biao],
Zhu, L.X.[Ling-Xuan],
Guo, X.[Xing],
Wang, X.B.[Xia-Bing],
Wu, J.J.[Jia-Ji],
SDTGAN: Generation Adversarial Network for Spectral Domain
Translation of Remote Sensing Images of the Earth Background Based on
Shared Latent Domain,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Tang, H.[Hui],
Wang, Y.W.[Yao-Wei],
Jia, K.[Kui],
Unsupervised domain adaptation via distilled discriminative
clustering,
PR(127), 2022, pp. 108638.
Elsevier DOI
2205
Deep learning, Unsupervised domain adaptation,
Image classification, Knowledge distillation,
Implicit domain alignment
BibRef
Tang, H.[Hui],
Zhu, X.T.[Xia-Tian],
Chen, K.[Ke],
Jia, K.[Kui],
Chen, C.L.P.[C. L. Philip],
Towards Uncovering the Intrinsic Data Structures for Unsupervised
Domain Adaptation Using Structurally Regularized Deep Clustering,
PAMI(44), No. 10, October 2022, pp. 6517-6533.
IEEE DOI
2209
BibRef
Earlier: A1, A3, A4, Only:
Unsupervised Domain Adaptation via Structurally Regularized Deep
Clustering,
CVPR20(8722-8732)
IEEE DOI
2008
Semantics, Image segmentation, Task analysis, Benchmark testing,
Training, Data models, Adaptation models, Domain adaptation,
semantic segmentation.
Benchmark testingn, Fasteners, Clustering methods, Feature extraction
BibRef
Xie, J.W.[Jian-Wen],
Zheng, Z.L.[Zi-Long],
Fang, X.L.[Xiao-Lin],
Zhu, S.C.[Song-Chun],
Wu, Y.N.[Ying Nian],
Cooperative Training of Fast Thinking Initializer and Slow Thinking
Solver for Conditional Learning,
PAMI(44), No. 8, August 2022, pp. 3957-3973.
IEEE DOI
2207
Linear programming, Iterative methods, Generators, Training,
Task analysis, Planning, Deep generative models,
conditional learning
BibRef
Li, S.[Shuang],
Xie, B.H.[Bin-Hui],
Lin, Q.X.[Qiu-Xia],
Liu, C.H.[Chi Harold],
Huang, G.[Gao],
Wang, G.R.[Guo-Ren],
Generalized Domain Conditioned Adaptation Network,
PAMI(44), No. 8, August 2022, pp. 4093-4109.
IEEE DOI
2207
Task analysis, Feature extraction, Adaptation models, Training,
Convolutional codes, Painting, Knowledge engineering,
channel attention
BibRef
Gao, L.L.[Lian-Li],
Huang, Z.J.[Zi-Jie],
Song, J.K.[Jing-Kuan],
Yang, Y.[Yang],
Shen, H.T.[Heng Tao],
Push & Pull: Transferable Adversarial Examples With Attentive
Attack,
MultMed(24), 2022, pp. 2329-2338.
IEEE DOI
2205
Perturbation methods, Feature extraction, Computational modeling,
Task analysis, Predictive models, Neural networks,
targeted attack
BibRef
Ji, S.[Sangwoo],
Park, N.[Namgyu],
Na, D.B.[Dong-Bin],
Zhu, B.[Bin],
Kim, J.[Jong],
Defending against attacks tailored to transfer learning via feature
distancing,
CVIU(223), 2022, pp. 103533.
Elsevier DOI
2210
Robust transfer learning, Adversarial example, Triplet loss,
Mimic attack, Target-agnostic attack
BibRef
Li, J.J.[Jing-Jing],
Du, Z.K.[Zhe-Kai],
Zhu, L.[Lei],
Ding, Z.M.[Zheng-Ming],
Lu, K.[Ke],
Shen, H.T.[Heng Tao],
Divergence-Agnostic Unsupervised Domain Adaptation by Adversarial
Attacks,
PAMI(44), No. 11, November 2022, pp. 8196-8211.
IEEE DOI
2210
Adaptation models, Training, Feature extraction, Measurement,
Data models, Neural networks, Semantics,
model adaptation
BibRef
Du, Z.K.[Zhe-Kai],
Li, X.Y.[Xin-Yao],
Li, F.L.[Feng-Ling],
Lu, K.[Ke],
Zhu, L.[Lei],
Li, J.J.[Jinz-Jing],
Domain-Agnostic Mutual Prompting for Unsupervised Domain Adaptation,
CVPR24(23375-23384)
IEEE DOI
2410
Bridges, Visualization, Adaptation models, Limiting, Semantics,
Benchmark testing
BibRef
Zhu, Y.[Yao],
Chen, Y.F.[Yue-Feng],
Li, X.D.[Xiao-Dan],
Chen, K.J.[Ke-Jiang],
He, Y.[Yuan],
Tian, X.[Xiang],
Zheng, B.[Bolun],
Chen, Y.W.[Yao-Wu],
Huang, Q.M.[Qing-Ming],
Toward Understanding and Boosting Adversarial Transferability from a
Distribution Perspective,
IP(31), 2022, pp. 6487-6501.
IEEE DOI
2211
Data models, Perturbation methods, Iterative methods, Training,
Distributed databases, Predictive models, Neural networks, black-box attack
BibRef
Xu, Y.C.[Yue-Cong],
Yang, J.F.[Jian-Fei],
Cao, H.Z.[Hao-Zhi],
Wu, K.Y.[Ke-Yu],
Wu, M.[Min],
Li, Z.G.[Zheng-Guo],
Chen, Z.H.[Zheng-Hua],
Multi-Source Video Domain Adaptation With Temporal Attentive Moment
Alignment Network,
CirSysVideo(33), No. 8, August 2023, pp. 3860-3871.
IEEE DOI
2308
Task analysis, Benchmark testing, Feature extraction, Training,
Measurement, Neural networks, Kinetic theory, Multi-source, dataset
BibRef
Xu, Y.C.[Yue-Cong],
Yang, J.F.[Jian-Fei],
Cao, H.Z.[Hao-Zhi],
Chen, Z.H.[Zheng-Hua],
Li, Q.[Qi],
Mao, K.Z.[Ke-Zhi],
Partial Video Domain Adaptation with Partial Adversarial Temporal
Attentive Network,
ICCV21(9312-9321)
IEEE DOI
2203
Codes, Handheld computers, Filtration, Filtering, Benchmark testing,
Videos, Transfer/Low-shot/Semi/Unsupervised Learning,
Video analysis and understanding
BibRef
Wu, K.Y.[Ke-Yu],
Wu, M.[Min],
Chen, Z.H.[Zheng-Hua],
Jin, R.B.[Rui-Bing],
Cui, W.[Wei],
Cao, Z.G.[Zhi-Guang],
Li, X.L.[Xiao-Li],
Reinforced Adaptation Network for Partial Domain Adaptation,
CirSysVideo(33), No. 5, May 2023, pp. 2370-2380.
IEEE DOI
2305
Adaptation models, Reinforcement learning, Knowledge transfer,
Training, Data models, Task analysis, Minimization, transfer learning
BibRef
Zhe, X.[Xiao],
Du, Z.K.[Zhe-Kai],
Lou, C.W.[Chun-Wei],
Li, J.J.[Jing-Jing],
Alleviating the generalization issue in adversarial domain adaptation
networks,
IVC(135), 2023, pp. 104695.
Elsevier DOI
2306
Domain adaptation, Transfer learning, Adversarial learning
BibRef
Liu, D.Z.[Dai-Zong],
Hu, W.[Wei],
Imperceptible Transfer Attack and Defense on 3D Point Cloud
Classification,
PAMI(45), No. 4, April 2023, pp. 4727-4746.
IEEE DOI
2303
Point cloud compression, Solid modeling, Perturbation methods,
Data models, Distortion, Atmospheric modeling,
defense on adversarial attacks
BibRef
Xiang, W.Z.[Wen-Zhao],
Su, H.[Hang],
Liu, C.[Chang],
Guo, Y.D.[Yan-Dong],
Zheng, S.[Shibao],
Improving the robustness of adversarial attacks using an
affine-invariant gradient estimator,
CVIU(229), 2023, pp. 103647.
Elsevier DOI
2303
Adversarial attack, Deep neural networks, Affine invariance, Transferability
BibRef
Li, T.B.[Tian-Bao],
Su, Y.T.[Yu-Ting],
Song, D.[Dan],
Li, W.H.[Wen-Hui],
Wei, Z.Q.[Zhi-Qiang],
Liu, A.A.[An-An],
Progressive Fourier Adversarial Domain Adaptation for Object
Classification and Retrieval,
MultMed(26), 2024, pp. 4540-4553.
IEEE DOI
2403
Solid modeling, Task analysis, Measurement, Training,
Adaptation models, Semantics, Domain adaptation, metric learning,
cross-domain 3D model retrieval
BibRef
Qi, B.Q.[Bi-Qing],
Gao, J.Q.[Jun-Qi],
Liu, J.X.[Jian-Xing],
Wu, L.G.[Li-Gang],
Zhou, B.[Bowen],
Enhancing Adversarial Transferability via Information Bottleneck
Constraints,
SPLetters(31), 2024, pp. 1414-1418.
IEEE DOI
2405
Perturbation methods, Mutual information, Optimization, Training,
Closed box, Signal processing algorithms, Noise,
information bottleneck
BibRef
Fang, Y.C.[Yu-Chun],
Chen, C.[Chen],
Zhang, W.[Wei],
Wu, J.H.[Jia-Hua],
Zhang, Z.X.[Zhao-Xiang],
Xie, S.[Shaorong],
Prototype learning for adversarial domain adaptation,
PR(155), 2024, pp. 110653.
Elsevier DOI
2408
Domain adaptation, Transfer learning, Unsupervised learning, Deep learning
BibRef
Gu, X.[Xiang],
Yu, X.[Xi],
Yang, Y.[Yan],
Sun, J.[Jian],
Xu, Z.B.[Zong-Ben],
Adversarial Reweighting with-Power Maximization for Domain Adaptation,
IJCV(132), No. 10, October 2024, pp. 4768-4791.
Springer DOI
2410
BibRef
Huix, J.P.[Joana Palés],
Ganeshan, A.R.[Adithya Raju],
Haslum, J.F.[Johan Fredin],
Söderberg, M.[Magnus],
Matsoukas, C.[Christos],
Smith, K.[Kevin],
Are Natural Domain Foundation Models Useful for Medical Image
Classification?,
WACV24(7619-7628)
IEEE DOI
2404
Training, Adaptation models, Computational modeling,
Transfer learning, Medical services, Task analysis, Applications
BibRef
Liu, X.N.[Xuan-Nan],
Zhong, Y.Y.[Yao-Yao],
Zhang, Y.H.[Yu-Hang],
Qin, L.X.[Li-Xiong],
Deng, W.H.[Wei-Hong],
Enhancing Generalization of Universal Adversarial Perturbation
through Gradient Aggregation,
ICCV23(4412-4421)
IEEE DOI Code:
WWW Link.
2401
BibRef
Yeo, T.[Teresa],
Kar, O.F.[Oguzhan Fatih],
Sodagar, Z.[Zahra],
Zamir, A.[Amir],
Rapid Network Adaptation: Learning to Adapt Neural Networks Using
Test-Time Feedback,
ICCV23(4651-4664)
IEEE DOI
2401
BibRef
Jeon, S.[Seogkyu],
Liu, B.[Bei],
Lee, P.[Pilhyeon],
Hong, K.[Kibeom],
Fu, J.L.[Jian-Long],
Byun, H.R.[Hye-Ran],
Improving Diversity in Zero-Shot GAN Adaptation with Semantic
Variations,
ICCV23(7224-7233)
IEEE DOI
2401
BibRef
Sushko, V.[Vadim],
Wang, R.[Ruyu],
Gall, J.[Juergen],
Smoothness Similarity Regularization for Few-Shot GAN Adaptation,
ICCV23(7050-7059)
IEEE DOI
2401
BibRef
Zhu, H.[Hegui],
Ren, Y.C.[Yu-Chen],
Sui, X.Y.[Xiao-Yan],
Yang, L.P.[Lian-Ping],
Jiang, W.[Wuming],
Boosting Adversarial Transferability via Gradient Relevance Attack,
ICCV23(4718-4727)
IEEE DOI Code:
WWW Link.
2401
BibRef
Xu, Z.[Zhuoer],
Gu, Z.X.[Zhang-Xuan],
Zhang, J.P.[Jian-Ping],
Cui, S.[Shiwen],
Meng, C.[Changhua],
Wang, W.Q.[Wei-Qiang],
Backpropagation Path Search On Adversarial Transferability,
ICCV23(4640-4650)
IEEE DOI
2401
BibRef
Wang, X.S.[Xiao-Sen],
Zhang, Z.L.[Ze-Liang],
Zhang, J.P.[Jian-Ping],
Structure Invariant Transformation for better Adversarial
Transferability,
ICCV23(4584-4596)
IEEE DOI Code:
WWW Link.
2401
BibRef
Chen, B.[Bin],
Yin, J.L.[Jia-Li],
Chen, S.[Shukai],
Chen, B.[Bohao],
Liu, X.[Ximeng],
An Adaptive Model Ensemble Adversarial Attack for Boosting
Adversarial Transferability,
ICCV23(4466-4475)
IEEE DOI Code:
WWW Link.
2401
BibRef
Byun, J.[Junyoung],
Kwon, M.J.[Myung-Joon],
Cho, S.[Seungju],
Kim, Y.[Yoonji],
Kim, C.[Changick],
Introducing Competition to Boost the Transferability of Targeted
Adversarial Examples Through Clean Feature Mixup,
CVPR23(24648-24657)
IEEE DOI
2309
BibRef
Liu, Y.[Yiran],
Feng, X.[Xin],
Wang, Y.L.[Yun-Long],
Yang, W.[Wu],
Ming, D.[Di],
TRM-UAP: Enhancing the Transferability of Data-Free Universal
Adversarial Perturbation via Truncated Ratio Maximization,
ICCV23(4739-4748)
IEEE DOI Code:
WWW Link.
2401
BibRef
Pathak, A.[Arkanath],
Dufour, N.[Nicholas],
Sequential Training of GANs Against GAN-Classifiers Reveals
Correlated 'Knowledge Gaps' Present Among Independently Trained GAN
Instances,
CVPR23(24460-24469)
IEEE DOI
2309
BibRef
Wang, Z.B.[Zhi-Bo],
Yang, H.S.[Hong-Shan],
Feng, Y.H.[Yun-He],
Sun, P.[Peng],
Guo, H.C.[Heng-Chang],
Zhang, Z.F.[Zhi-Fei],
Rent, K.[Kui],
Towards Transferable Targeted Adversarial Examples,
CVPR23(20534-20543)
IEEE DOI
2309
BibRef
Liu, Y.[Ye],
Qiao, L.F.[Ling-Feng],
Lu, C.C.[Chang-Chong],
Yin, D.[Di],
Lin, C.[Chen],
Peng, H.Y.[Hao-Yuan],
Ren, B.[Bo],
OSAN: A One-Stage Alignment Network to Unify Multimodal Alignment and
Unsupervised Domain Adaptation,
CVPR23(3551-3560)
IEEE DOI
2309
BibRef
Jin, X.[Xin],
He, T.Y.[Tian-Yu],
Shen, X.[Xu],
Wu, S.H.[Song-Hua],
Liu, T.L.[Tong-Liang],
Ye, J.W.[Jing-Wen],
Wang, X.C.[Xin-Chao],
Huang, J.Q.[Jian-Qiang],
Chen, Z.B.[Zhi-Bo],
Hua, X.S.[Xian-Sheng],
Unleashing the Potential of Adaptation Models via Go-getting Domain
Labels,
OutDistri22(308-325).
Springer DOI
2304
adversarial domain adaptation.
BibRef
Pimpalkhute, V.[Varad],
Kunde, S.[Shruti],
Singhal, R.[Rekha],
GEMS: Generating Efficient Meta-Subnets,
WACV23(5304-5312)
IEEE DOI
2302
Training, Adaptation models, Image segmentation,
Computational modeling, Reinforcement learning, Object detection,
Vision + language and/or other modalities
BibRef
Westfechtel, T.[Thomas],
Yeh, H.W.[Hao-Wei],
Meng, Q.[Qier],
Mukuta, Y.[Yusuke],
Harada, T.[Tatsuya],
Backprop Induced Feature Weighting for Adversarial Domain Adaptation
with Iterative Label Distribution Alignment,
WACV23(392-401)
IEEE DOI
2302
Training, Deep learning, Limiting, Neural networks, Training data,
Benchmark testing, Algorithms: Machine learning architectures,
algorithms (including transfer)
BibRef
Ye, Y.[Yalan],
Wang, C.J.[Chun-Ji],
Dong, H.[Hai],
Lu, L.[Li],
Zhao, Q.[Qiang],
Cross-session Specific Emitter Identification using Adversarial
Domain Adaptation with Wasserstein distance,
ICPR22(3119-3124)
IEEE DOI
2212
Degradation, Adaptation models, Modulation, Receivers, Bandwidth,
Fingerprint recognition, Data models
BibRef
Huang, H.[Hao],
Chen, C.[Cheng],
Fang, Y.[Yi],
Manifold Adversarial Learning for Cross-Domain 3D Shape Representation,
ECCV22(XXVI:272-289).
Springer DOI
2211
BibRef
Webster, R.[Ryan],
Rabin, J.[Julien],
Simon, L.[Loïc],
Jurie, F.[Frédéric],
Width-Wise Parameter Sharing for Multi-Domain GAN Learning,
ICIP22(4163-4167)
IEEE DOI
2211
Training, Image quality, Visualization, Adaptation models,
Image coding, Transfer learning, Generators, Image generation, GANs,
Network compression
BibRef
Laria, H.[Héctor],
Wang, Y.X.[Ya-Xing],
van de Weijer, J.[Joost],
Raducanu, B.[Bogdan],
Transferring Unconditional to Conditional GANs with Hyper-Modulation,
CLVision22(3839-3848)
IEEE DOI
2210
Training, Transfer learning, Modulation,
Process control, Generative adversarial networks, Data models
BibRef
Jang, D.G.[Dong-Gon],
Son, S.[Sanghyeok],
Kim, D.S.[Dae-Shik],
Strengthening the Transferability of Adversarial Examples Using
Advanced Looking Ahead and Self-CutMix,
ArtOfRobust22(147-154)
IEEE DOI
2210
Training, Deep learning, Computational modeling,
Perturbation methods, Neural networks
BibRef
Wang, J.H.[Jing-Hao],
Cui, C.L.[Chen-Ling],
Wen, X.J.[Xue-Jun],
Shi, J.[Jie],
Transpatch: A Transformer-based Generator for Accelerating Transferable
Patch Generation in Adversarial Attacks Against Object Detection Models,
AdvRob22(317-331).
Springer DOI
2304
BibRef
Yang, X.[Xiao],
Dong, Y.P.[Yin-Peng],
Pang, T.Y.[Tian-Yu],
Su, H.[Hang],
Zhu, J.[Jun],
Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks,
ECCV22(IV:725-742).
Springer DOI
2211
BibRef
Cai, Z.[Zikui],
Rane, S.[Shantanu],
Brito, A.E.[Alejandro E.],
Song, C.Y.[Cheng-Yu],
Krishnamurthy, S.V.[Srikanth V.],
Roy-Chowdhury, A.K.[Amit K.],
Asif, M.S.[M. Salman],
Zero-Query Transfer Attacks on Context-Aware Object Detectors,
CVPR22(15004-15014)
IEEE DOI
2210
Deep learning, Technological innovation, Image analysis,
Perturbation methods, Neural networks, Detectors,
Scene analysis and understanding
BibRef
Li, J.T.[Jing-Tao],
Rakin, A.S.[Adnan Siraj],
Chen, X.[Xing],
He, Z.Z.[Zhe-Zhi],
Fan, D.L.[De-Liang],
Chakrabarti, C.[Chaitali],
ResSFL: A Resistance Transfer Framework for Defending Model Inversion
Attack in Split Federated Learning,
CVPR22(10184-10192)
IEEE DOI
2210
Training, Resistance, Federated learning, Computational modeling,
Feature extraction, Servers,
privacy and ethics in vision
BibRef
Benz, P.[Philipp],
Zhang, C.N.[Chao-Ning],
Kweon, I.S.[In So],
Batch Normalization Increases Adversarial Vulnerability and Decreases
Adversarial Transferability: A Non-Robust Feature Perspective,
ICCV21(7798-7807)
IEEE DOI
2203
Radio frequency, Training, Integrated circuits, Deep learning, Costs,
Neural networks, Adversarial learning, Explainable AI
BibRef
Jin, X.[Xin],
Lan, C.L.[Cui-Ling],
Zeng, W.J.[Wen-Jun],
Chen, Z.B.[Zhi-Bo],
Re-energizing Domain Discriminator with Sample Relabeling for
Adversarial Domain Adaptation,
ICCV21(9154-9163)
IEEE DOI
2203
Training, Drives, Benchmark testing, Feature extraction,
Optimization, Transfer/Low-shot/Semi/Unsupervised Learning,
Optimization and learning methods
BibRef
Xia, H.F.[Hai-Feng],
Zhao, H.D.[Han-Dong],
Ding, Z.M.[Zheng-Ming],
Adaptive Adversarial Network for Source-free Domain Adaptation,
ICCV21(8990-8999)
IEEE DOI
2203
Training, Adaptation models, Data privacy, Adaptive systems,
Target recognition, Semantics, Benchmark testing,
BibRef
Gao, Z.Q.[Zhi-Qiang],
Zhang, S.F.[Shu-Fei],
Huang, K.[Kaizhu],
Wang, Q.F.[Qiu-Feng],
Zhong, C.L.[Chao-Liang],
Gradient Distribution Alignment Certificates Better Adversarial
Domain Adaptation,
ICCV21(8917-8926)
IEEE DOI
2203
Adaptation models, Upper bound, Benchmark testing,
Adversarial machine learning, Task analysis,
Recognition and classification
BibRef
Rangwani, H.[Harsh],
Jain, A.[Arihant],
Aithal, S.K.[Sumukh K],
Babu, R.V.[R. Venkatesh],
S3VAADA: Submodular Subset Selection for Virtual Adversarial Active
Domain Adaptation,
ICCV21(7496-7505)
IEEE DOI
2203
Uncertainty, Optimization, Adversarial learning,
Recognition and classification, Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Liu, X.F.[Xiao-Feng],
Guo, Z.H.[Zhen-Hua],
Li, S.[Site],
Xing, F.X.[Fang-Xu],
You, J.[Jane],
Kuo, C.C.J.[C.C. Jay],
El Fakhri, G.[Georges],
Woo, J.H.[Jong-Hye],
Adversarial Unsupervised Domain Adaptation with Conditional and Label
Shift: Infer, Align and Iterate,
ICCV21(10347-10356)
IEEE DOI
2203
Training, Benchmark testing, Feature extraction,
Adversarial machine learning, Task analysis, Optimization,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Mangla, P.[Puneet],
Kumari, N.[Nupur],
Singh, M.[Mayank],
Krishnamurthy, B.[Balaji],
Balasubramanian, V.N.[Vineeth N.],
Data InStance Prior (DISP) in Generative Adversarial Networks,
WACV22(3471-3481)
IEEE DOI
2202
Training, Image quality, Image synthesis,
Transfer learning, Training data,
Semi- and Un- supervised Learning
BibRef
Tian, H.T.[Hai-Tao],
Qu, S.[Shiru],
Payeur, P.[Pierre],
Unsupervised Pixel-Wise Weighted Adversarial Domain Adaptation,
ISVC21(I:586-600).
Springer DOI
2112
BibRef
Inkawhich, N.[Nathan],
Liang, K.J.[Kevin J.],
Zhang, J.Y.[Jing-Yang],
Yang, H.R.[Huan-Rui],
Li, H.[Hai],
Chen, Y.[Yiran],
Can Targeted Adversarial Examples Transfer When the Source and Target
Models Have No Label Space Overlap?,
AROW21(41-50)
IEEE DOI
2112
Training, Sensitivity, Computational modeling, Predictive models, Boosting
BibRef
Shahbazi, M.[Mohamad],
Huang, Z.W.[Zhi-Wu],
Paudel, D.P.[Danda Pani],
Chhatkuli, A.[Ajad],
Van Gool, L.J.[Luc J.],
Efficient Conditional GAN Transfer with Knowledge Propagation across
Classes,
CVPR21(12162-12171)
IEEE DOI
2111
Training, Codes, Image synthesis,
Generative adversarial networks, Task analysis
BibRef
Elliott, A.[Andrew],
Law, S.[Stephen],
Russell, C.[Chris],
Explaining Classifiers using Adversarial Perturbations on the
Perceptual Ball,
CVPR21(10688-10697)
IEEE DOI
2111
Location awareness, Bridges, Perturbation methods,
Neural networks, Games, Benchmark testing
BibRef
Phan, B.[Buu],
Mannan, F.[Fahim],
Heide, F.[Felix],
Adversarial Imaging Pipelines,
CVPR21(16046-16056)
IEEE DOI
2111
Stimulated emission, Image processing, Pipelines, Physical optics,
Transforms, Cameras, Hardware
BibRef
Chin, T.W.[Ting-Wu],
Zhang, C.[Cha],
Marculescu, D.[Diana],
Renofeation: A Simple Transfer Learning Method for Improved
Adversarial Robustness,
TCV21(3237-3246)
IEEE DOI
2109
Computational modeling,
Transfer learning, Robustness, Noise measurement
BibRef
Zunino, A.[Andrea],
Bargal, S.A.[Sarah Adel],
Volpi, R.[Riccardo],
Sameki, M.[Mehrnoosh],
Zhang, J.M.[Jian-Ming],
Sclaroff, S.[Stan],
Murino, V.[Vittorio],
Saenko, K.[Kate],
Explainable Deep Classification Models for Domain Generalization,
TCV21(3227-3236)
IEEE DOI
2109
Training, Degradation, Measurement, Visualization,
Computational modeling
BibRef
Ustun, B.[Berkcan],
Kaya, A.K.[Ahmet Kagan],
Ayerden, E.C.[Ezgi Cakir],
Altinel, F.[Fazil],
Spectral Transfer Guided Active Domain Adaptation For Thermal Imagery,
PBVS23(449-458)
IEEE DOI
2309
BibRef
Akkaya, I.B.[Ibrahim Batuhan],
Altinel, F.[Fazil],
Halici, U.[Ugur],
Self-training Guided Adversarial Domain Adaptation For Thermal
Imagery,
PBVS21(4317-4326)
IEEE DOI
2109
Adaptation models, Lighting, Cameras
BibRef
Guo, H.[Hao],
Dolhansky, B.[Brian],
Hsin, E.[Eric],
Dinh, P.[Phong],
Ferrer, C.C.[Cristian Canton],
Wang, S.[Song],
Deep Poisoning: Towards Robust Image Data Sharing against Visual
Disclosure,
WACV21(686-696)
IEEE DOI
2106
Training, Visualization, Toxicology,
Training data, Image representation
BibRef
Wang, T.X.[Tong-Xin],
Ding, Z.M.[Zheng-Ming],
Shao, W.[Wei],
Tang, H.X.[Hai-Xu],
Huang, K.[Kun],
Towards Fair Cross-Domain Adaptation via Generative Learning,
WACV21(454-463)
IEEE DOI
2106
Training, Visualization, Annotations, Training data, Data collection
BibRef
Chavhan, R.[Ruchika],
Jha, A.[Ankit],
Banerjee, B.[Biplab],
Chaudhuri, S.[Subhasis],
ADA-AT/DT: An Adversarial Approach for Cross-Domain and Cross-Task
Knowledge Transfer,
WACV21(3501-3510)
IEEE DOI
2106
Training, Visualization, Correlation, Computational modeling,
Semantics, Estimation, Robustness
BibRef
Hu, J.[Jian],
Tuo, H.Y.[Hong-Ya],
Wang, C.[Chao],
Qiao, L.F.[Ling-Feng],
Zhong, H.W.[Hao-Wen],
Yan, J.C.[Jun-Chi],
Jing, Z.L.[Zhong-Liang],
Leung, H.[Henry],
Discriminative Partial Domain Adversarial Network,
ECCV20(XXVII:632-648).
Springer DOI
2011
BibRef
Xia, H.,
Ding, Z.,
Structure Preserving Generative Cross-Domain Learning,
CVPR20(4363-4372)
IEEE DOI
2008
Feature extraction, Training, Measurement, Robustness,
Adaptation models, Neural networks, Task analysis
BibRef
Chen, E.C.[Erh-Chung],
Lee, C.R.[Che-Rung],
Towards Fast and Robust Adversarial Training for Image Classification,
ACCV20(III:576-591).
Springer DOI
2103
BibRef
Raab, C.[Christoph],
Väth, P.[Philipp],
Meier, P.[Peter],
Schleif, F.M.[Frank-Michael],
Bridging Adversarial and Statistical Domain Transfer via Spectral
Adaptation Networks,
ACCV20(III:457-473).
Springer DOI
2103
BibRef
Yang, J.F.[Jian-Fei],
Zou, H.[Han],
Zhou, Y.X.[Yu-Xun],
Zeng, Z.Y.[Zhao-Yang],
Xie, L.H.[Li-Hua],
Mind the Discriminability: Asymmetric Adversarial Domain Adaptation,
ECCV20(XXIV:589-606).
Springer DOI
2012
BibRef
Xia, H.F.[Hai-Feng],
Ding, Z.M.[Zheng-Ming],
HGNet: Hybrid Generative Network for Zero-shot Domain Adaptation,
ECCV20(XXVII:55-70).
Springer DOI
2011
BibRef
Siry, R.,
Simon, L.,
Jurie, F.,
A Study Of Alignment Mechanisms In Adversarial Domain Adaptation,
ICIP20(1816-1820)
IEEE DOI
2011
Feature extraction, Training, Task analysis, Adaptation models,
Algebra, Standards, Upper bound, Domain adaptation, Transfer learning
BibRef
Xie, X.P.[Xin-Peng],
Chen, J.W.[Jia-Wei],
Li, Y.X.[Yue-Xiang],
Shen, L.L.[Lin-Lin],
Ma, K.[Kai],
Zheng, Y.F.[Ye-Feng],
Self-Supervised CycleGAN for Object-preserving Image-to-Image Domain
Adaptation,
ECCV20(XX:498-513).
Springer DOI
2011
BibRef
Zhou, K.Y.[Kai-Yang],
Yang, Y.X.[Yong-Xin],
Hospedales, T.M.[Timothy M.],
Xiang, T.[Tao],
Learning to Generate Novel Domains for Domain Generalization,
ECCV20(XVI: 561-578).
Springer DOI
2010
BibRef
Wu, Y.[Yuan],
Inkpen, D.[Diana],
El-Roby, A.[Ahmed],
Dual Mixup Regularized Learning for Adversarial Domain Adaptation,
ECCV20(XXIX: 540-555).
Springer DOI
2010
BibRef
Yin, H.,
Molchanov, P.,
Alvarez, J.M.,
Li, Z.,
Mallya, A.,
Hoiem, D.,
Jha, N.K.,
Kautz, J.,
Dreaming to Distill: Data-Free Knowledge Transfer via DeepInversion,
CVPR20(8712-8721)
IEEE DOI
2008
Training, Adaptation models, Knowledge transfer, Neural networks,
Task analysis, Training data, Image generation
BibRef
Wang, S.N.[Si-Nan],
Chen, X.Y.[Xin-Yang],
Wang, Y.B.[Yun-Bo],
Long, M.S.[Ming-Sheng],
Wang, J.M.[Jian-Min],
Progressive Adversarial Networks for Fine-Grained Domain Adaptation,
CVPR20(9210-9219)
IEEE DOI
2008
Feature extraction, Adaptation models, Visualization,
Task analysis, Birds, Training, Benchmark testing
BibRef
Wang, Y.,
Gonzalez-Garcia, A.,
Berga, D.,
Herranz, L.,
Khan, F.S.,
van de Weijer, J.,
MineGAN: Effective Knowledge Transfer From GANs to Target Domains
With Few Images,
CVPR20(9329-9338)
IEEE DOI
2008
Generators, Generative adversarial networks,
Training, Data mining, Knowledge transfer, Computational modeling
BibRef
Li, R.,
Jiao, Q.,
Cao, W.,
Wong, H.,
Wu, S.,
Model Adaptation: Unsupervised Domain Adaptation Without Source Data,
CVPR20(9638-9647)
IEEE DOI
2008
Adaptation models, Data models, Predictive models, Training,
Generative adversarial networks, Generators
BibRef
Wu, W.,
Su, Y.,
Chen, X.,
Zhao, S.,
King, I.,
Lyu, M.R.,
Tai, Y.,
Boosting the Transferability of Adversarial Samples via Attention,
CVPR20(1158-1167)
IEEE DOI
2008
Feature extraction, Training, Cats, Perturbation methods,
Optimization, Predictive models, Computational modeling
BibRef
Lu, Y.,
Jia, Y.,
Wang, J.,
Li, B.,
Chai, W.,
Carin, L.,
Velipasalar, S.,
Enhancing Cross-Task Black-Box Transferability of Adversarial
Examples With Dispersion Reduction,
CVPR20(937-946)
IEEE DOI
2008
Task analysis, Dispersion, Feature extraction,
Computational modeling, Machine learning, Image segmentation
BibRef
Vivek, B.S.,
Babu, R.V.[R. Venkatesh],
Single-Step Adversarial Training With Dropout Scheduling,
CVPR20(947-956)
IEEE DOI
2008
Training, Robustness, Computational modeling, Perturbation methods,
Machine learning, Iterative methods
BibRef
Cui, S.,
Wang, S.,
Zhuo, J.,
Su, C.,
Huang, Q.,
Tian, Q.,
Gradually Vanishing Bridge for Adversarial Domain Adaptation,
CVPR20(12452-12461)
IEEE DOI
2008
Bridges, Generators, Training, Image reconstruction,
Adaptation models, Games
BibRef
Khare, V.,
Mahajan, D.,
Bharadhwaj, H.,
Verma, V.K.,
Rai, P.,
A Generative Framework for Zero-Shot Learning with Adversarial Domain
Adaptation,
WACV20(3090-3099)
IEEE DOI
2006
Adaptation models, Training, Data models, Neural networks,
Estimation, Covariance matrices, Training data
BibRef
Morerio, P.,
Volpi, R.,
Ragonesi, R.,
Murino, V.,
Generative Pseudo-label Refinement for Unsupervised Domain Adaptation,
WACV20(3119-3128)
IEEE DOI
2006
Training, Robustness, Noise measurement,
Generative adversarial networks, Adaptation models,
Benchmark testing
BibRef
Wang, Y.M.[Yi-Mu],
Song, R.J.[Ren-Jie],
Wei, X.S.[Xiu-Shen],
Zhang, L.J.[Li-Jun],
An Adversarial Domain Adaptation Network For Cross-Domain
Fine-Grained Recognition,
WACV20(1217-1225)
IEEE DOI
2006
Feature extraction, Task analysis, Image recognition,
Adaptation models, Training, Measurement, Target recognition
BibRef
Zheng, H.,
Zhang, Z.,
Gu, J.,
Lee, H.,
Prakash, A.,
Efficient Adversarial Training With Transferable Adversarial Examples,
CVPR20(1178-1187)
IEEE DOI
2008
Training, Perturbation methods, Robustness, Computational modeling,
Measurement, Iterative methods, Silicon
BibRef
Chen, P.P.[Pei-Peng],
Gao, Y.[Yuan],
Ma, A.J.[Andy J.],
Multi-level Attentive Adversarial Learning with Temporal Dilation for
Unsupervised Video Domain Adaptation,
WACV22(776-785)
IEEE DOI
2202
Benchmark testing, Adversarial machine learning,
Computational efficiency, Semi- and Un- supervised Learning
BibRef
Pan, Y.S.[Young-Sun],
Ma, A.J.[Andy J.],
Gao, Y.[Yuan],
Wang, J.P.[Jin-Peng],
Lin, Y.Q.[Yi-Qi],
Multi-Scale Adversarial Cross-Domain Detection with Robust
Discriminative Learning,
WACV20(1313-1321)
IEEE DOI
2006
Feature extraction, Object detection, Adaptation models,
Robustness, Task analysis, Convolution, Training
BibRef
Su, J.,
Tsai, Y.,
Sohn, K.,
Liu, B.,
Maji, S.,
Chandraker, M.,
Active Adversarial Domain Adaptation,
WACV20(728-737)
IEEE DOI
2006
Adaptation models, Uncertainty, Task analysis, Training, Data models,
Object detection, Entropy
BibRef
Rakin, A.S.,
He, Z.,
Fan, D.,
TBT: Targeted Neural Network Attack With Bit Trojan,
CVPR20(13195-13204)
IEEE DOI
2008
BibRef
Earlier:
Bit-Flip Attack: Crushing Neural Network With Progressive Bit Search,
ICCV19(1211-1220)
IEEE DOI
2004
Code, Neural Networks.
WWW Link. Trojan horses, Training, Computational modeling, Neurons,
Training data, Quantization (signal), Neural networks.
gradient methods, neural nets, security of data, Bit-flip attack,
Deep Neural Network, DNN weight attack methodology,
Degradation
BibRef
Luo, Y.W.[Ya-Wei],
Zheng, L.[Liang],
Guan, T.[Tao],
Yu, J.Q.[Jun-Qing],
Yang, Y.[Yi],
Taking a Closer Look at Domain Shift: Category-Level Adversaries for
Semantics Consistent Domain Adaptation,
CVPR19(2502-2511).
IEEE DOI
2002
BibRef
Kornblith, S.[Simon],
Shlens, J.[Jonathon],
Le, Q.V.[Quoc V.],
Do Better ImageNet Models Transfer Better?,
CVPR19(2656-2666).
IEEE DOI
2002
BibRef
Xie, C.[Cihang],
Zhang, Z.S.[Zhi-Shuai],
Zhou, Y.Y.[Yu-Yin],
Bai, S.[Song],
Wang, J.Y.[Jian-Yu],
Ren, Z.[Zhou],
Yuille, A.L.[Alan L.],
Improving Transferability of Adversarial Examples With Input Diversity,
CVPR19(2725-2734).
IEEE DOI
2002
BibRef
Chen, Z.L.[Zi-Liang],
Zhuang, J.Y.[Jing-Yu],
Liang, X.D.[Xiao-Dan],
Lin, L.[Liang],
Blending-Target Domain Adaptation by Adversarial Meta-Adaptation
Networks,
CVPR19(2243-2252).
IEEE DOI
2002
BibRef
Agresti, G.[Gianluca],
Schaefer, H.[Henrik],
Sartor, P.[Piergiorgio],
Zanuttigh, P.[Pietro],
Unsupervised Domain Adaptation for ToF Data Denoising With Adversarial
Learning,
CVPR19(5579-5586).
IEEE DOI
2002
BibRef
Zhang, Y.B.[Ya-Bin],
Tang, H.[Hui],
Jia, K.[Kui],
Tan, M.K.[Ming-Kui],
Domain-Symmetric Networks for Adversarial Domain Adaptation,
CVPR19(5026-5035).
IEEE DOI
2002
BibRef
Zhong, H.,
Tuo, H.,
Wang, C.,
Ren, X.,
Hu, J.,
Qiao, L.,
Source-Constraint Adversarial Domain Adaptation,
ICIP19(2486-2490)
IEEE DOI
1910
transfer learning, domain adaptation, adversarial network, metric learning
BibRef
Kim, D.,
Lee, S.,
Kim, N.,
Jeong, S.,
Delegated Adversarial Training for Unsupervised Domain Adaptation,
ICIP19(2521-2525)
IEEE DOI
1910
Unsupervised domain adaptation, adversarial training, transfer learning
BibRef
Romijnders, R.[Rob],
Meletis, P.,
Dubbelman, G.,
A Domain Agnostic Normalization Layer for Unsupervised Adversarial
Domain Adaptation,
WACV19(1866-1875)
IEEE DOI
1904
image segmentation, semantic networks, unsupervised learning,
unsupervised adversarial domain adaptation,
Biological neural networks
BibRef
Fu, H.[Huan],
Gong, M.M.[Ming-Ming],
Wang, C.H.[Chao-Hui],
Batmanghelich, K.[Kayhan],
Zhang, K.[Kun],
Tao, D.C.[Da-Cheng],
Geometry-Consistent Generative Adversarial Networks for One-Sided
Unsupervised Domain Mapping,
CVPR19(2422-2431).
IEEE DOI
2002
BibRef
Ge, H.W.[Hong-Wei],
Yao, Y.[Yao],
Chen, Z.[Zheng],
Sun, L.[Liang],
Unsupervised Transformation Network Based on GANs for Target-Domain
Oriented Multi-Domain Image Translation,
ACCV18(II:398-413).
Springer DOI
1906
BibRef
Anoosheh, A.,
Agustsson, E.,
Timofte, R.,
Van Gool, L.J.,
ComboGAN: Unrestrained Scalability for Image Domain Translation,
Restoration18(896-8967)
IEEE DOI
1812
Training, Generators, Decoding,
Task analysis, Data models
BibRef
Zhang, J.,
Ding, Z.,
Li, W.,
Ogunbona, P.,
Importance Weighted Adversarial Nets for Partial Domain Adaptation,
CVPR18(8156-8164)
IEEE DOI
1812
Feature extraction, Task analysis, Training, Games, Neural networks
BibRef
Li, H.,
Pan, S.J.,
Wang, S.,
Kot, A.C.,
Domain Generalization with Adversarial Feature Learning,
CVPR18(5400-5409)
IEEE DOI
1812
Data models, Training, Training data, Adaptation models,
Decoding, Predictive models
BibRef
Li, R.,
Cao, W.,
Qian, S.,
Wong, H.,
Wu, S.,
Cross-domain Semantic Feature Learning via Adversarial Adaptation
Networks,
ICPR18(37-42)
IEEE DOI
1812
Feature extraction, Semantics, Task analysis, Adaptation models,
Data mining, Computational modeling, Generators,
adversarial learning
BibRef
Hong, W.X.[Wei-Xiang],
Wang, Z.Z.[Zhen-Zhen],
Yang, M.[Ming],
Yuan, J.S.[Jun-Song],
Conditional Generative Adversarial Network for Structured Domain
Adaptation,
CVPR18(1335-1344)
IEEE DOI
1812
Semantics, Image segmentation, Generators, Training,
Adaptation models, Neural networks,
BibRef
Chen, Q.C.[Qing-Chao],
Liu, Y.[Yang],
Wang, Z.W.[Zhao-Wen],
Wassell, I.[Ian],
Chetty, K.[Kevin],
Re-Weighted Adversarial Adaptation Network for Unsupervised Domain
Adaptation,
CVPR18(7976-7985)
IEEE DOI
1812
Feature extraction, Training, Task analysis, Adaptation models,
Neural networks, Loss measurement
BibRef
Sankaranarayanan, S.,
Balaji, Y.,
Castillo, C.D.,
Chellappa, R.,
Generate to Adapt: Aligning Domains Using Generative Adversarial
Networks,
CVPR18(8503-8512)
IEEE DOI
1812
Generators, Training, Adaptation models,
Image generation, Data models, Task analysis
BibRef
Fang, Y.,
Yuan, Q.,
Zhang, W.,
Zhang, Z.,
Diversified Dual Domain-Adversarial Neural Networks,
ICPR18(615-620)
IEEE DOI
1812
Feature extraction, Adaptation models, Training,
Task analysis, Neural networks, Data models
BibRef
Kang, G.L.[Guo-Liang],
Zheng, L.[Liang],
Yan, Y.[Yan],
Yang, Y.[Yi],
Deep Adversarial Attention Alignment for Unsupervised Domain
Adaptation: The Benefit of Target Expectation Maximization,
ECCV18(XI: 420-436).
Springer DOI
1810
BibRef
Li, Y.[Ya],
Tian, X.[Xinmei],
Gong, M.M.[Ming-Ming],
Liu, Y.J.[Ya-Jing],
Liu, T.L.[Tong-Liang],
Zhang, K.[Kun],
Tao, D.C.[Da-Cheng],
Deep Domain Generalization via Conditional Invariant Adversarial
Networks,
ECCV18(XV: 647-663).
Springer DOI
1810
BibRef
Cao, Z.J.[Zhang-Jie],
Ma, L.J.[Li-Jia],
Long, M.S.[Ming-Sheng],
Wang, J.M.[Jian-Min],
Partial Adversarial Domain Adaptation,
ECCV18(VIII: 139-155).
Springer DOI
1810
BibRef
Yan, L.,
Fan, B.,
Xiang, S.,
Pan, C.,
Adversarial Domain Adaptation with a Domain Similarity Discriminator
for Semantic Segmentation of Urban Areas,
ICIP18(1583-1587)
IEEE DOI
1809
Urban areas, Semantics, Feature extraction, Image segmentation,
Task analysis, Training, Labeling, domain adaptation, domain shift,
urban areas
BibRef
Liu, Y.,
Wang, Z.,
Jin, H.,
Wassell, I.,
Multi-task Adversarial Network for Disentangled Feature Learning,
CVPR18(3743-3751)
IEEE DOI
1812
Training, Generators, Task analysis,
Feature extraction, Image generation, Optimization
BibRef
Bousmalis, K.,
Silberman, N.,
Dohan, D.,
Erhan, D.,
Krishnan, D.,
Unsupervised Pixel-Level Domain Adaptation with Generative
Adversarial Networks,
CVPR17(95-104)
IEEE DOI
1711
Adaptation models, Feature extraction, Generators, Training
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Few Shot Learning .