Sapiro, G.[Guillermo],
Color Snakes,
CVIU(68), No. 2, November 1997, pp. 247-253.
DOI Link
9712
BibRef
Earlier:
Vector (Self) Snakes:
ICIP96(I: 817-820).
IEEE DOI
9610
BibRef
Caselles, V.[Vicent],
Catté, F.,
Coll, T., and
Dibos, F.,
A Geometric Model for Active Contours in Image Processing,
NumMath(66), 1993, pp. 1-31.
BibRef
9300
Caselles, V.,
Geometric models for active contours,
ICIP95(III: 9-12).
IEEE DOI
9510
BibRef
Caselles, V.[Vicent],
Kimmel, R.[Ron],
Sapiro, G.[Guillermo],
Geodesic Active Contours,
IJCV(22), No. 1, February 1997, pp. 61-79.
DOI Link
BibRef
9702
Earlier:
ICCV95(694-699).
IEEE DOI
Award, ICCV Test of Time. Geodesic -- geometric formulation, not energy approach.
BibRef
Caselles, V.[Vicent],
Facciolo, G.[Gabriele],
Meinhardt, E.[Enric],
Anisotropic Cheeger Sets And Applications,
SIIMS(2), No. 4, 2009, pp. 1211-1254.
DOI Link
1002
Cheeger sets; anisotropic total variation; active contours; edge linking
BibRef
Goldenberg, R.[Roman],
Kimmel, R.[Ron],
Rivlin, E.[Ehud],
Rudzsky, M.[Michael],
Fast geodesic active contours,
IP(10), No. 10, October 2001, pp. 1467-1475.
IEEE DOI
0110
BibRef
Earlier:
ScaleSpace99(34-45).
BibRef
Sapiro, G.[Guillermo],
Vector-Valued Active Contours,
CVPR96(680-685).
IEEE DOI
BibRef
9600
Sapiro, G.[Guillermo],
From Active Contours to Anisotropic Diffusion:
Connections Between Basic PDE's in Image Processing,
ICIP96(I: 477-480).
IEEE DOI
BibRef
9600
Aubert, G.[Gilles],
Blanc-Féraud, L.[Laure],
Some Remarks on the Equivalence between 2D and 3D Classical Snakes and
Geodesic Active Contours,
IJCV(34), No. 1, September-October 1999, pp. 19-28.
DOI Link
BibRef
9909
Paragios, N.[Nikos],
Deriche, R.[Rachid],
Geodesic Active Contours and Level Sets for the Detection and Tracking
of Moving Objects,
PAMI(22), No. 3, March 2000, pp. 266-280.
IEEE DOI
0005
BibRef
And:
Corrections:
PAMI(22), No. 4, April 2000, pp. 415.
IEEE DOI
BibRef
Earlier:
Geodesic Active Regions for Motion Estimation and Tracking,
ICCV99(688-694).
IEEE DOI
PS File.
BibRef
And:
INRIA--RR-3631, 1999.
HTML Version.
See also Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation.
BibRef
Paragios, N.[Nikos],
Deriche, R.[Rachid],
Geodesic active regions and level set methods for motion estimation and
tracking,
CVIU(97), No. 3, March 2005, pp. 259-282.
Elsevier DOI
0412
BibRef
Paragios, N.[Nikos],
Geodesic Active Regions and Level Set Methods:
Contributions and Applications in Artificial Vision,
Ph.D.thesis, January 2000.
School of Computer Engineering of University of Nice / Sophia Antipolis.
PS File.
BibRef
0001
Paragios, N., and
Deriche, R.,
Detecting Multiple Moving Targets Using Deformable Contours,
ICIP97(II: 183-186).
IEEE DOI
PS File.
BibRef
9700
Paragios, N.[Nikos],
Deriche, R.[Rachid],
Unifying Boundary and Region-based Information for Geodesic Active
Tracking,
CVPR99(II: 300-305).
IEEE DOI
PS File.
BibRef
9900
Paragios, N.[Nikolaos], and
Deriche, R.[Rachid],
A PDE-Based Level-Set Approach for Detection and Tracking
of Moving Objects,
ICCV98(1139-1145).
IEEE DOI
PS File.
BibRef
9800
Paragios, N.[Nikos],
Deriche, R.[Rachid],
Geodesic Active Regions: A New Framework to Deal with Frame Partition
Problems in Computer Vision,
JVCIR(13), No. 1/2, March/June 2002, pp. 249-268.
DOI Link
0204
Active contours and level sets.
BibRef
Deriche, R.,
Bouvin, S.[Stephane],
Faugeras, O.D.,
Front Propagation and Level-Set Approach for Geodesic Active
Stereovision,
ACCV98(xx-yy).
PS File.
BibRef
9800
And:
VS98(Image Processing for Visual Surveillance).
PS File.
BibRef
Paragios, N.[Nikos],
Mellina-Gotardo, O.[Olivier],
Ramesh, V.[Visvanathan],
Gradient Vector Flow Fast Geodesic Active Contours,
PAMI(26), No. 3, March 2004, pp. 402-407.
IEEE Abstract.
0402
BibRef
Earlier:
ICCV01(I: 67-73).
IEEE DOI
0106
BibRef
Paragios, N.[Nikos],
Deriche, R.[Rachid],
Geodesic Active Regions and Level Set Methods for Supervised Texture
Segmentation,
IJCV(46), No. 3, February-March 2002, pp. 223-247.
DOI Link
0202
See also Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. Combine level set method with active contours.
BibRef
Paragios, N.,
Deriche, R.,
Geodesic Active Regions for Supervised Texture Segmentation,
ICCV99(926-932).
IEEE DOI
PS File.
BibRef
9900
And:
Geodesic Active Regions for Texture Segmentation,
INRIA--RR-3440, 1998.
HTML Version.
BibRef
Earlier:
Geodesic Active Contours for Supervised Texture Segmentation,
CVPR99(II: 422-427).
IEEE DOI
PS File.
BibRef
Paragios, N.,
Deriche, R.,
Coupled Geodesic Active Regions for Image Segmentation:
A Level Set Approach,
ECCV00(II: 224-240).
Springer DOI
0003
BibRef
Appleton, B.[Ben],
Talbot, H.[Hugues],
Globally Optimal Geodesic Active Contours,
JMIV(23), No. 1, July 2005, pp. 67-86.
Springer DOI
0505
BibRef
Appleton, B.[Ben],
Talbot, H.[Hugues],
Efficient and Consistent Recursive Filtering of Images with Reflective
Extension,
ScaleSpace03(699-712).
Springer DOI
0310
BibRef
Appleton, B.[Ben],
Talbot, H.[Hugues],
Globally Minimal Surfaces by Continuous Maximal Flows,
PAMI(28), No. 1, January 2006, pp. 106-118.
IEEE DOI
0512
BibRef
Pujol, O.[Oriol],
Gil, D.[Debora],
Radeva, P.I.[Petia I.],
Fundamentals of Stop and Go active models,
IVC(23), No. 8, 1 August 2005, pp. 681-691.
Elsevier DOI
0508
Snake formulation.
decouples regularity and convergence
BibRef
Pujol, O.[Oriol],
Radeva, P.I.[Petia I.],
Texture Segmentation By Statistical Deformable Models,
IJIG(4), No. 3, July 2004, pp. 433-452.
0407
BibRef
Niethammer, M.[Marc],
Vela, P.A.[Patricio A.],
Tannenbaum, A.[Allen],
On the Evolution of Vector Distance Functions of Closed Curves,
IJCV(65), No. 1-2, November 2005, pp. 5-27.
Springer DOI
0604
BibRef
Niethammer, M.[Marc],
Vela, P.A.[Patricio A.],
Tannenbaum, A.[Allen],
Geometric Observers for Dynamically Evolving Curves,
PAMI(30), No. 6, June 2008, pp. 1093-1108.
IEEE DOI
0804
Visual tracking based on non-parametric implicit, level-set,
curve descriptions.
Interpolation and filtering with correspondence.
BibRef
Niethammer, M.,
Tannenbaum, A.,
Dynamic geodesic snakes for visual tracking,
CVPR04(I: 660-667).
IEEE DOI
0408
BibRef
Dambreville, S.[Samuel],
Sandhu, R.[Romeil],
Yezzi, A.J.[Anthony J.],
Tannenbaum, A.[Allen],
A Geometric Approach To Joint 2d Region-Based Segmentation and
3D Pose Estimation Using A 3d Shape Prior,
SIIMS(3), No. 1, 2010, pp. 110-132.
region-based segmentation and tracking; three-dimensional pose estimation; three-dimensional shape prior; variational methods; differential geometry
DOI Link
BibRef
1000
Earlier:
Robust 3D Pose Estimation and Efficient 2D Region-Based Segmentation
from a 3D Shape Prior,
ECCV08(II: 169-182).
Springer DOI
0810
Active contour related.
BibRef
Dambreville, S.,
Tannenbaum, A.,
Yezzi, A.J.,
Niethammer, M.,
A variational framework combining level-sets and thresholding.,
BMVC07(xx-yy).
PDF File.
0709
BibRef
Melonakos, J.[John],
Pichon, E.[Eric],
Angenent, S.[Sigurd],
Tannenbaum, A.[Allen],
Finsler Active Contours,
PAMI(30), No. 3, March 2008, pp. 412-423.
IEEE DOI
0801
Augmenting the conformal (or geodesic) active contour framework with
directional information.
Apply to road extraction.
BibRef
Mohan, V.,
Melonakos, J.,
Niethammer, M.,
Kubicki, M.,
Tannenbaum, A.,
Finsler Level Set Segmentation for Imagery in Oriented Domains,
BMVC07(xx-yy).
PDF File.
0709
See also Locally-Constrained Region-Based Methods for DW-MRI Segmentation.
BibRef
Chen, L.[Li],
Zhou, Y.[Yue],
Wang, Y.G.[Yong-Gang],
Yang, J.[Jie],
GACV: Geodesic-Aided C-V method,
PR(39), No. 7, July 2006, pp. 1391-1395.
Elsevier DOI Deformable model; Active contour;
C-V method; Geodesic active contours
0606
BibRef
Earlier: A1, A2, A3, Only:
A Novel Color C-V Method and Its Application,
ICIAR05(40-47).
Springer DOI
0509
Chan and Vese
See also Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model, A.
BibRef
Sagiv, C.,
Sochen, N.A.,
Zeevi, Y.Y.,
Integrated Active Contours for Texture Segmentation,
IP(15), No. 6, June 2006, pp. 1633-1646.
IEEE DOI
0606
BibRef
Earlier:
Geodesic active contours applied to texture feature space,
ScaleSpace01(xx-yy).
0106
BibRef
Papandreou, G.,
Maragos, P.,
Multigrid Geometric Active Contour Models,
IP(16), No. 1, January 2007, pp. 229-240.
IEEE DOI
0701
BibRef
Earlier:
A fast multigrid implicit algorithm for the evolution of geodesic
active contours,
CVPR04(II: 689-694).
IEEE DOI
0408
BibRef
Pi, L.[Ling],
Fan, J.S.[Jin-Song],
Shen, C.M.[Chao-Min],
Color Image Segmentation for Objects of Interest with Modified Geodesic
Active Contour Method,
JMIV(27), No. 1, January 2007, pp. 51-57.
Springer DOI
0702
BibRef
Pi, L.[Ling],
Shen, C.M.[Chao-Min],
Li, F.[Fang],
Fan, J.S.[Jin-Song],
A variational formulation for segmenting desired objects in color
images,
IVC(25), No. 9, 1 September 2007, pp. 1414-1421.
Elsevier DOI
0707
Active contours; Chan-Vese model; Desired objects; Discrimination function
See also Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model, A.
BibRef
Fang, W.[Wen],
Chan, K.L.[Kap Luk],
Incorporating shape prior into geodesic active contours for detecting
partially occluded object,
PR(40), No. 8, August 2007, pp. 2163-2172.
Elsevier DOI
0704
BibRef
Earlier:
Learning a New Statistical Shape Prior Model for Object Detection by
Geodesic Active Contours,
AVSBS06(42-42).
IEEE DOI
0611
BibRef
And:
Using Statistical Shape Priors in Geodesic Active Contours for Robust
Object Detection,
ICPR06(II: 304-307).
IEEE DOI
0609
Geodesic active contours; Shape prior; Object detection
BibRef
Wang, J.Y.[Jun-Yan],
Chan, K.L.[Kap Luk],
Incorporating Patch Subspace Model in Mumford-Shah Type Active
Contours,
IP(22), No. 11, 2013, pp. 4473-4485.
IEEE DOI
1310
convergence
BibRef
Wang, J.Y.[Jun-Yan],
Chan, K.L.[Kap Luk],
Active Contour with a Tangential Component,
JMIV(51), No. 2, February 2015, pp. 229-247.
WWW Link.
1503
BibRef
Wang, J.Y.[Jun-Yan],
Yeung, S.K.[Sai-Kit],
Chan, K.L.[Kap Luk],
Matching-constrained active contours with affine-invariant shape
prior,
CVIU(132), No. 1, 2015, pp. 39-55.
Elsevier DOI
1502
Automatic object segmentation
BibRef
Hua, C.[Cui],
Gao, L.Q.[Li-Qun],
Geodesic active contour, inertia and initial speed,
PRL(29), No. 16, 1 December 2008, pp. 2197-2205.
Elsevier DOI
0811
Image segmentation; Geodesic active contours; Gradient vector flow;
Inertia force field; Initial speed
BibRef
Mio, W.[Washington],
Bowers, J.C.[John C.],
Liu, X.W.[Xiu-Wen],
Shape of Elastic Strings in Euclidean Space,
IJCV(82), No. 1, April 2009, pp. xx-yy.
Springer DOI
0902
BibRef
Zheng, Y.[Ying],
Li, G.Y.[Guang-Yao],
Sun, X.H.[Xie-Hua],
Zhou, X.M.[Xin-Min],
Geometric active contours without re-initialization for image
segmentation,
PR(42), No. 9, September 2009, pp. 1970-1976.
Elsevier DOI
0905
Geometric active contours; GACV model; Cumani operator; Image segmentation
BibRef
Zheng, Y.[Ying],
Li, G.Y.[Guang-Yao],
Sun, X.H.[Xie-Hua],
Zhou, X.M.[Xin-Min],
A geometric active contour model without re-initialization for color
images,
IVC(27), No. 9, 3 August 2009, pp. 1411-1417.
Elsevier DOI
0906
Squared local contrast; Deviation penalization term; The GACV model;
Geometric active contour
BibRef
Bunyak, F.[Filiz],
Palaniappan, K.[Kannappan],
Efficient segmentation using feature-based graph partitioning active
contours,
ICCV09(873-880).
IEEE DOI
0909
BibRef
Nath, S.K.[Sumit K.],
Palaniappan, K.[Kannappan],
Fast Graph Partitioning Active Contours for Image Segmentation Using
Histograms,
JIVP(2009), No. 2009, pp. xx-yy.
DOI Link
1002
BibRef
Earlier:
Adaptive Robust Structure Tensors for Orientation Estimation and Image
Segmentation,
ISVC05(445-453).
Springer DOI
0512
BibRef
Bunyak, F.,
Palaniappan, K.[Kannappan],
Nath, S.K.[Sumit K.],
Seetharaman, G.,
Geodesic Active Contour Based Fusion of Visible and Infrared Video for
Persistent Object Tracking,
WACV07(35-35).
IEEE DOI
0702
BibRef
Nath, S.K.[Sumit K.],
Palaniappan, K.[Kannappan],
Bunyak, F.[Filiz],
Accurate Spatial Neighborhood Relationships for Arbitrarily-Shaped
Objects Using Hamilton-Jacobi GVD,
SCIA07(421-431).
Springer DOI
0706
BibRef
Shan, H.[Hao],
Ma, J.W.[Jian-Wei],
Curvelet-based geodesic snakes for image segmentation with multiple
objects,
PRL(31), No. 5, 1 April 2010, pp. 355-360.
Elsevier DOI
1002
Curvelets; Geometric snakes; Geodesic active contours; Image
segmentation; Multiscale; Wavelets
BibRef
Zhang, H.Z.[Huai-Zhong],
Morrow, P.J.[Philip J.],
McClean, S.[Sally],
Saetzler, K.[Kurt],
A stability approach to convergence of curve evolution methods,
PRL(31), No. 13, 1 October 2010, pp. 1909-1918.
Elsevier DOI
1003
BibRef
Earlier:
Incorporating Feature Based Priors into the Geodesic Active Contour
Model and its Application in Biomedical Imagery,
IMVIP07(67-74).
IEEE DOI
0709
Active contours; Curve evolution; Termination criterion; Energy functional
Improves Geodesic Active Contour by using user information.
BibRef
Zhang, H.Z.[Huai-Zhong],
Morrow, P.J.[Philip J.],
McClean, S.[Sally],
Saetzler, K.[Kurt],
Coupling edge and region-based information for boundary finding in
biomedical imagery,
PR(45), No. 2, February 2012, pp. 672-684.
Elsevier DOI
1110
Curve evolution; Boundary finding; Prior model; GAC; Multivariate model
BibRef
Gai, J.D.[Jia-Ding],
Stevenson, R.L.[Robert L.],
Robust contour tracking based on a coupling between geodesic active
contours and conditional random fields,
JVCIR(22), No. 1, January 2011, pp. 33-47.
Elsevier DOI
1101
BibRef
Earlier:
Contour tracking based on a synergistic approach of geodesic active
contours and conditional random fields,
ICIP10(2801-2804).
IEEE DOI
1009
Contour tracking; 3D conditional random field; Geodesic active
contours; Level set methods; Variational inference; Belief
propagation; Motion detection; Markov random field
BibRef
Tao, W.B.[Wen-Bing],
Tai, X.C.[Xue-Cheng],
Multiple piecewise constant with geodesic active contours (MPC-GAC)
framework for interactive image segmentation using graph cut
optimization,
IVC(29), No. 8, July 2011, pp. 499-508.
Elsevier DOI
1108
Multiple piecewise constant; Active contour without edges; Geodesic
active contour; Graph cuts; Image segmentation; Level set
BibRef
Shan, H.[Hao],
He, C.T.[Chang-Tao],
Wang, N.[Na],
MCA aided geodesic active contours for image segmentation with
textures,
PRL(45), No. 1, 2014, pp. 235-243.
Elsevier DOI
1407
Morphological component analysis diversity
BibRef
Peyré, G.[Gabriel],
Péchaud, M.[Mickael],
Keriven, R.[Renaud],
Cohen, L.D.[Laurent D.],
Geodesic Methods in Computer Vision and Graphics,
FTCGV(5), Issue 3-4, 2009, pp. 197-397.
DOI Link
1410
Published December 2010.
BibRef
Yang, F.[Fang],
Cohen, L.D.[Laurent D.],
Geodesic Distance and Curves Through Isotropic and Anisotropic Heat
Equations on Images and Surfaces,
JMIV(55), No. 2, June 2016, pp. 210-228.
WWW Link.
1604
BibRef
Chen, D.[Da],
Zhu, J.[Jian],
Zhang, X.X.[Xin-Xin],
Shu, M.L.[Ming-Lei],
Cohen, L.D.[Laurent D.],
Geodesic Paths for Image Segmentation With Implicit Region-Based
Homogeneity Enhancement,
IP(30), 2021, pp. 5138-5153.
IEEE DOI
2106
Image segmentation, Measurement, Computational modeling,
Active contours, Image edge detection, Mathematical model, Shape,
interactive image segmentation
BibRef
Chen, D.[Da],
Mirebeau, J.M.[Jean-Marie],
Shu, H.Z.[Hua-Zhong],
Cohen, L.D.[Laurent D.],
A Region-Based Randers Geodesic Approach for Image Segmentation,
IJCV(132), No. 2, February 2024, pp. 349-391.
Springer DOI
2402
BibRef
Earlier: A1, A2, A4, Only:
A New Finsler Minimal Path Model with Curvature Penalization for
Image Segmentation and Closed Contour Detection,
CVPR16(355-363)
IEEE DOI
1612
BibRef
Earlier:
Global Minimum for Curvature Penalized Minimal Path Method,
BMVC15(xx-yy).
DOI Link
1601
Minimal path or geodesic methods.
BibRef
Mirebeau, J.M.[Jean-Marie],
Efficient fast marching with Finsler metrics,
NumMath(126), No. 3, 2013, pp. 515-557.
Springer DOI
BibRef
1300
Mirebeau, J.M.[Jean-Marie],
Anisotropic fast-marching on cartesian grids using
lattice basis reduction,
NumAnal(52), No. 4, 2014, pp. 1573-1599.
DOI Link
BibRef
1400
Mirebeau, J.M.[Jean-Marie],
Fast-Marching Methods for Curvature Penalized Shortest Paths,
JMIV(60), No. 6, July 2018, pp. 784-815.
WWW Link.
WWW Link.
1806
BibRef
Duits, R.,
Meesters, S.P.L.,
Mirebeau, J.M.[Jean-Marie],
Portegies, J.M.[Jorg M.],
Optimal Paths for Variants of the 2D and 3D Reeds-Shepp Car with
Applications in Image Analysis,
JMIV(60), No. 6, July 2018, pp. 816-848.
Springer DOI
1806
BibRef
Schenk, F.[Fabian],
Aichinger, P.[Philipp],
Roesner, I.[Imme],
Urschler, M.[Martin],
Automatic high-speed video glottis segmentation using salient regions
and 3D geodesic active contours,
BMVA(2015), No. 3, 2015, pp. 1-15.
PDF File.
1509
BibRef
Bekkers, E.J.,
Duits, R.,
Mashtakov, A.,
Sanguinetti, G.R.,
A PDE Approach to Data-Driven Sub-Riemannian Geodesics in SE(2),
SIIMS(8), No. 4, 2015, pp. 2740-2770.
DOI Link
1601
BibRef
Earlier:
Data-Driven Sub-Riemannian Geodesics in SE(2),
SSVM15(613-625).
Springer DOI
1506
BibRef
Singh, N.[Nikhil],
Hinkle, J.[Jacob],
Joshi, S.[Sarang],
Fletcher, P.T.[P. Thomas],
Hierarchical Geodesic Models in Diffeomorphisms,
IJCV(117), No. 1, March 2016, pp. 70-92.
Springer DOI
1604
BibRef
Nardi, G.[Giacomo],
Peyré, G.[Gabriel],
Vialard, F.X.[François-Xavier],
Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics,
SIIMS(9), No. 1, 2016, pp. 238-274.
DOI Link
1604
BibRef
Haltakov, V.[Vladimir],
Unger, C.[Christian],
Ilic, S.[Slobodan],
Geodesic pixel neighborhoods for 2D and 3D scene understanding,
CVIU(148), No. 1, 2016, pp. 164-180.
Elsevier DOI
1606
BibRef
Earlier:
Geodesic pixel neighborhoods for multi-class image segmentation,
BMVC14(xx-yy).
HTML Version.
1410
Semantic segmentation
BibRef
Rahmoun, S.[Somia],
Mairesse, F.[Fabrice],
Uji-i, H.[Hiroshi],
Hofkens, J.[Johan],
Sliwa, T.[Tadeusz],
Curve computation by geodesics and graph modelling for polymer analysis,
SIViP(11), No. 8, November 2017, pp. 1469-1476.
Springer DOI
1710
BibRef
Roberts, M.[Michael],
Chen, K.[Ke],
Irion, K.L.[Klaus L.],
A Convex Geodesic Selective Model for Image Segmentation,
JMIV(61), No. 4, May 2019, pp. 482-503.
Springer DOI
1904
BibRef
Yu, S.[Song],
Yiquan, W.[Wu],
A morphological approach to piecewise constant active contour model
incorporated with the geodesic edge term,
MVA(31), No. 4, April 2020, pp. Article28.
Springer DOI
2005
BibRef
Zhao, X.M.[Xue-Mei],
Wang, H.J.[Hai-Jian],
Wu, J.[Jun],
Li, Y.[Yu],
Zhao, S.J.[Shi-Jie],
Remote sensing image segmentation using geodesic-kernel functions and
multi-feature spaces,
PR(104), 2020, pp. 107333.
Elsevier DOI
2005
Remote sensing, Image segmentation, Riemannian manifold,
Manifold projection, Kernel function
BibRef
Ma, J.,
He, J.,
Yang, X.,
Learning Geodesic Active Contours for Embedding Object Global
Information in Segmentation CNNs,
MedImg(40), No. 1, January 2021, pp. 93-104.
IEEE DOI
2012
Active contours, Image segmentation, Level set, Geometry,
Task analysis, Convolutional neural networks,
level set function
BibRef
Santana-Cedrés, D.[Daniel],
Monzón, N.[Nelson],
Álvarez, L.[Luis],
An Algorithm for 3D Curve Smoothing,
IPOL(11), 2021, pp. 37-55.
DOI Link
2103
Code, Curve Smoothing.
BibRef
Ma, J.[Jun],
Wang, D.[Dong],
Wang, X.P.[Xiao-Ping],
Yang, X.P.[Xiao-Ping],
A Characteristic Function-Based Algorithm for Geodesic Active
Contours,
SIIMS(14), No. 3, 2021, pp. 1184-1205.
DOI Link
2108
BibRef
Chen, D.[Da],
Mirebeau, J.M.[Jean-Marie],
Shu, M.[Minglei],
Tai, X.C.[Xue-Cheng],
Cohen, L.D.[Laurent D.],
Geodesic Models With Convexity Shape Prior,
PAMI(45), No. 7, July 2023, pp. 8433-8452.
IEEE DOI
2306
BibRef
Earlier: A1, A5, A2, A4, Only:
An Elastica Geodesic Approach with Convexity Shape Prior,
ICCV21(6880-6889)
IEEE DOI
2203
Shape, Image segmentation, Mathematical models, Numerical models,
Computational modeling, Measurement, Active contours, Geodesic.
Measurement, Shape, Computed tomography, Gaussian noise, Segmentation,
BibRef
Shan, H.[Hao],
CS-GAC: Compressively sensed geodesic active contours,
PR(146), 2024, pp. 110007.
Elsevier DOI
2311
Compressed sensing/compressive sampling,
Geodesic active contours, Edge detection, Wavelet
BibRef
Jin, Z.M.[Zheng-Meng],
Wang, H.[Hao],
Ng, M.K.[Michael K.],
Min, L.H.[Li-Hua],
Regularized CNN with Geodesic Active Contour and Edge Predictor for
Image Segmentation,
SIIMS(17), No. 4, 2024, pp. 2392-2417.
DOI Link
2501
BibRef
Hansen, J.D.K.,
Lauze, F.,
Multiphase Local Mean Geodesic Active Regions,
ICPR18(3031-3036)
IEEE DOI
1812
Hidden Markov models, Image segmentation, Image edge detection,
Labeling, Optimization, Standards, Computational modeling
BibRef
Chen, D.[Da],
Mirebeau, J.M.[Jean-Marie],
Cohen, L.[Laurent],
Finsler Geodesics Evolution Model for Region based Active Contours,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Chihaoui, M.,
Elkefi, A.,
Bellil, W.,
Amar, C.B.,
Detection and Tracking of the Moving Objects in a Video Sequence by
Geodesic Active Contour,
CGiV16(212-215)
IEEE DOI
1608
computer vision
BibRef
Rahmoun, S.[Somia],
Mairesse, F.[Fabrice],
Uji-i, H.[Hiroshi],
Hofkens, J.[Johan],
Sliwa, T.[Tadeusz],
Curve Extraction by Geodesics Fusion:
Application to Polymer Reptation Analysis,
ICISP16(79-88).
WWW Link.
1606
BibRef
Feragen, A.[Aasa],
Lauze, F.[Francois],
Hauberg, S.[Soren],
Geodesic exponential kernels: When curvature and linearity conflict,
CVPR15(3032-3042)
IEEE DOI
1510
BibRef
Willot, F.[François],
The Power Laws of Geodesics in Some Random Sets with Dilute
Concentration of Inclusions,
ISMM15(535-546).
Springer DOI
1506
BibRef
Gallego, G.,
Ronda, J.I.,
Valdes, A.,
Directional geodesic active contours,
ICIP12(2561-2564).
IEEE DOI
1302
BibRef
Wang, J.Q.[Jun-Qiu],
Yagi, Y.S.[Yasu-Shi],
Shape Prior Embedded Geodesic Distance Transform for Image Segmentation,
CVMAR10(72-81).
Springer DOI
1109
BibRef
Al Sharif, S.M.S.[Sharif M. S.],
Deriche, M.[Mohamed],
Maalej, N.[Nabil],
A fast Geodesic Active Contour model for medical images segmentation
using prior analysis,
IPTA10(300-305).
IEEE DOI
1007
BibRef
Mille, J.[Julien],
Cohen, L.D.[Laurent D.],
Geodesically Linked Active Contours:
Evolution Strategy Based on Minimal Paths,
SSVM09(163-174).
Springer DOI
0906
See also Narrow band region-based active contours and surfaces for 2D and 3D segmentation.
BibRef
Criminisi, A.[Antonio],
Sharp, T.[Toby],
Blake, A.[Andrew],
GeoS: Geodesic Image Segmentation,
ECCV08(I: 99-112).
Springer DOI
0810
BibRef
Ben-Ari, R.[Rami],
Aiger, D.[Dror],
Geodesic Active Contours with Combined Shape and Appearance Priors,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Bunyak, F.[Filiz],
Palaniappan, K.[Kannappan],
Level Set-Based Fast Multi-phase Graph Partitioning Active Contours
Using Constant Memory,
ACIVS09(145-155).
Springer DOI
0909
BibRef
Hafiane, A.[Adel],
Bunyak, F.[Filiz],
Palaniappan, K.[Kannappan],
Fuzzy Clustering and Active Contours for Histopathology Image
Segmentation and Nuclei Detection,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
McHenry, K.[Kenton],
Ponce, J.[Jean],
Normale, E.[Ecole],
A Geodesic Active Contour Framework for Finding Glass,
CVPR06(I: 1038-1044).
IEEE DOI
0606
BibRef
Wang, X.[Xun],
He, L.[Lei],
Wee, W.G.,
Constrained optimization: a geodesic snake approach,
ICIP02(II: 77-80).
IEEE DOI
0210
BibRef
Handzel, A.,
Flash, T.,
Affine Invariant Edge Completion with Affine Geodesics,
LevelSet01(xx-yy).
0106
BibRef
Leventon, M.E.[Michael E.],
Grimson, W.E.L.[W. Eric L.],
Faugeras, O.D.[Olivier D.],
Statistical Shape Influence in Geodesic Active Contours,
CVPR00(I: 316-323).
IEEE DOI
0005
Award, CVPR, Student.
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Snakes, Applications .