11.5.2 Generalized Cylinders -- Generation

Chapter Contents (Back)
Symmetry. Generalized Cylinder. Generalized Cylinder Generation. Descriptions, Generalized Cylinders.

Smith, D.R.[David R.], Kanade, T.[Takeo],
Autonomous Scene Description with Range Imagery,
CVGIP(31), No. 3, September 1985, pp. 322-334.
Elsevier DOI BibRef 8509
And: A1 only: Ph.D.Thesis (CS), May 1989. BibRef CMU-CS-TR-89-162. BibRef
And: A1, A2: DARPA84(282-290). Using light-stripe data, generate the generalized cone representations. Light-stripe contours are classified into a few types for processing. BibRef

Lozano-Perez, T., Grimson, W.E.L., and White, S.J.,
Finding Cylinders in Range Data,
CRA87(202-207). BibRef 8700

Grimson, W.E.L.[W. Eric L.], Lozano-Perez, T., Nobel, N., and White, S.J.,
An Automatic Tube Inspection System That Finds Cylinders in Range Data,
CVPR93(446-452).
IEEE DOI Application, Inspection. Using a light stripe, find the cylinder. BibRef 9300

Kuan, D.T.[Darwin T.], and Drazovich, R.J.[Robert J.],
Model Based Interpretation Of 3-D Range Data,
T3DMP86(219-230). BibRef 8600
Earlier:
Model-Based Interpretation of Range Imagery,
AAAI-83(210-215). System: ACRONYM. Generalized cylinder models, laser range input, uses the ACRONYM approach, but applied to range data. BibRef

Kuan, D.T.[Darwin T.],
Three-Dimensional Feature Extraction,
CVPR83(388-389). BibRef 8300

Tanaka, T., Naito, S., Takahishi, T.,
Generalized Symmetry and Its Application to 3D Shape Generation,
VC(5), 1989, pp. 83-94. BibRef 8900

Ponce, J.[Jean], Faugeras, O.D.[Olivier D.],
An Object Centered Hierarchial Representation for 3D Objects: The Prism Tree,
CVGIP(38), No. 1, April 1987, pp. 1-28.
Elsevier DOI BibRef 8704
Earlier: A2, A1:
Prism Trees: A Hierarchical Representation for 3-D Objects,
IJCAI83(982-988). Apply the descriptions of ribbons to 3-D representations. Get several levels - describe as a tree. BibRef

Ponce, J.[Jean],
Prism Trees: An Efficient Representation for Manipulating and Displaying Polyhedra With Many Faces,
MIT AI Memo-838, April 1985. BibRef 8504

Glachet, R., Lapreste, J.T., and Dhome, M.,
Locating and Modelling a Flat Symmetric Object from a Single Perspective Image,
CVGIP(57), No. 2, March 1993, pp. 219-226.
DOI Link Find the axis projection of the object. BibRef 9303

Kanatani, K.[Kenichi],
Statistical Bias of Conic Fitting and Renormalization,
PAMI(16), No. 3, March 1994, pp. 320-326.
IEEE DOI BibRef 9403

Kanatani, K.,
Statistical-Analysis of Geometric Computation,
CVGIP(59), No. 3, May 1994, pp. 286-306.
DOI Link See also Geometric Information Criterion for Model Selection. BibRef 9405

Kanatani, K.,
Statistical Optimization for Geometric Computation: Theory and Practice,
North-HollandAmsterdam, 1996. BibRef 9600

Kanatani, K.[Kenichi],
Statistical Optimization for Geometric Fitting: Theoretical Accuracy Bound and High Order Error Analysis,
IJCV(80), No. 2, November 2008, pp. xx-yy.
Springer DOI 0809
See also High Accuracy Fundamental Matrix Computation and Its Performance Evaluation. BibRef

Kanazawa, Y., and Kanatani, K.,
Reliability of Conic Fitting,
ACCV95(III:397-401). BibRef 9500

Richetin, M., Dhome, M., Lapreste, J.T., and Rives, G.,
Inverse Perspective Transform Using Zero-Curvature Contour Points: Application to the Localization of Some Generalized Cylinders from a Single View,
PAMI(13), No. 2, February 1991, pp. 185-192.
IEEE DOI BibRef 9102
Earlier: A2, A1, A3, A4:
The Inverse Perspective Problem from a Single View for Polyhedra Location,
CVPR88(61-66).
IEEE DOI Pose Estimation. Matching of models to the image. See also Determination of the Attitude of 3-D Objects from a Single Perspective View. BibRef

Richetin, M., Dhome, M., Lapreste, J.T.,
Inverse Perspective Transform from Zero-Curvature Curve Points Application to the Localization of Some Generalized Cylinders,
CVPR89(517-522).
IEEE DOI BibRef 8900

Glachet, R., Dhome, M., Lapreste, J.T.,
Finding the Perspective Projection of an Axis of Revolution,
PRL(12), 1991, pp. 693-700. BibRef 9100
And:
Finding the Pose of an Object of Revolution,
ECCV92(681-686).
Springer DOI BibRef

Lavest, J.M., Glachet, R., Dhome, M., and Lapreste, J.T.,
Modelling Solids of Revolution by Monocular Vision,
CVPR91(690-691).
IEEE DOI Uses multiple contours. BibRef 9100

Sayd, P., Dhome, M., Lavest, J.M., and Lapreste, J.T.,
Non-Uniform Circular Generalized Cylinders Reconstruction From Multiple Perspective Views,
SCIA97(xx-yy)
HTML Version. 9705
BibRef

Dhome, M., Glachet, R., and Lapreste, J.T.,
Recovering the Scaling Function of a SHGC from a Single Perspective View,
CVPR92(36-41).
IEEE DOI BibRef 9200

Rosin, P.L., and West, G.A.W.,
Detection and Verification of Surfaces of Revolution by Perceptual Grouping,
PRL(13), 1992, pp. 453-461. BibRef 9200
Earlier:
Extracting Surfaces of Revolution by Perceptual Grouping of Ellipses,
CVPR91(677-678).
IEEE DOI BibRef
Earlier:
Perceptual Grouping of Circular Arcs under Projection,
BMVC90(379-382).
PDF File. BibRef

Berkemeier, M.D., Fearing, R.S.,
Determining the axis of a surface of revolution using tactile sensing,
PAMI(15), No. 10, October 1993, pp. 1079-1087.
IEEE DOI 0401
BibRef

Kender, J.R., and Kjeldsen, R.,
On Seeing Spaghetti: Self-Adjusting Piecewise Toroidal Recognition Of Flexible Extruded Objects,
PAMI(17), No. 2, February 1995, pp. 136-157.
IEEE DOI BibRef 9502
Earlier:
On Seeing Spaghetti: A Novel Self-Adjusting Seven Parameter Hough Space for Analyzing Flexible Extruded Objects,
DARPA92(585-591). BibRef
And: IJCAI91(1271-1277). BibRef
And: SPIE(1570), 1991, pp. 315-321. Piece-wise toroidal model with Hough space in sequence. BibRef

Lejeune, A., Ferrie, F.P.,
Finding the Parts of Objects in Range Images,
CVIU(64), No. 2, September 1996, pp. 230-247.
DOI Link Relaxation. BibRef 9609
Earlier:
Partitioning Range Images Using Curvature and Scale,
CVPR93(800-801).
IEEE DOI BibRef

Zerroug, M.[Mourad], Nevatia, R.[Ramakant],
Volumetric Descriptions from a Single Intensity Image,
IJCV(20), No. 1/2, 1996, pp. 11-42. BibRef 9600 USC Computer Vision BibRef
Earlier:
Scene Segmentation and Volumetric Descriptions of SHGCs from a Single Intensity Image,
DARPA93(905-916). Separate the several objects and generate the descriptions. See also Part-Based 3D Descriptions of Complex Objects from a Single Image. BibRef

Zerroug, M.[Mourad], Nevatia, R.[Ramakant],
Segmentation and 3-D Recovery of Curved-Axis Generalized Cylinders from an Intensity Image,
ICPR94(A:678-681).
IEEE DOI BibRef 9400 USC Computer Vision
PDF File. BibRef
And:
Segmentation and Recovery of SHGCS from a Real Intensity Image,
ECCV94(A:319-330).
Springer DOI BibRef

Karl, W.C., Verghese, G.C., Willsky, A.S.,
Reconstructing Ellipsoids from Projections,
GMIP(56), No. 2, March 1994, pp. 124-139. BibRef 9403

Sayd, P.[Patrick], Dhome, M.[Michel], Lavest, J.M.[Jean-Marc],
Recovering Generalized Cylinders By Monocular Vision,
ORCV96(25) 9611
BibRef

Hsia, C.Y.[Chao-Yih], Huang, C.L.[Chung-Lin],
'Visual Events' Identification of Solids of Revolution from Perspective Views,
PR(26), No. 2, February 1993, pp. 333-349.
Elsevier DOI BibRef 9302

Huang, C.L.[Chung Lin],
Contour generation and shape restoration of the straight homogeneous generalized cylinder,
ICPR90(I: 409-413).
IEEE DOI 9006
BibRef

Chung, J.M.[Jae-Moon], Nagata, T.I.[Ta-I],
Extraction of Parametric Descriptions of Circular GCs from a Pair of Contours for 3-D Shape-Recognition,
PR(29), No. 6, June 1996, pp. 903-917.
Elsevier DOI 9606
BibRef

Zhang, Z.Y.[Zheng-You],
Parameter-Estimation Techniques: A Tutorial with Application to Conic Fitting,
IVC(15), No. 1, January 1997, pp. 59-76.
Elsevier DOI 9702
BibRef

Cumani, A.[Aldo], Guiducci, A.[Antonio],
Recovering the 3D Structure of Tubular Objects from Stereo Silhouettes,
PR(30), No. 7, July 1997, pp. 1051-1059.
Elsevier DOI 9707
BibRef

Puech, W.[William], and Chassery, J.M.[Jean-Marc], Pitas, I.,
Cylindrical Surface Localization in Monocular Vision,
PRL(18), No. 8, August 1997, pp. 711-722. 9801
BibRef
Earlier: A1, A2, Only:
A New Curved Surface Localization Method Using a Single Perspective View,
SCIA97(xx-yy)
HTML Version. 9705
BibRef

Zhu, Q.M.[Qiu-Ming], Peng, L.[Lu],
A new approach to conic section approximation of object boundaries,
IVC(17), No. 9, July 1999, pp. 645-658.
Elsevier DOI BibRef 9907

Caglioti, V.[Vincenzo], Castelli, E.[Eugenio],
Recovering cylindric and conic surfaces from contours and reflections,
PRL(20), No. 4, April 1999, pp. 367-382. BibRef 9904

Caglioti, V.[Vincenzo], Castelli, E.[Eugenio],
Shape and orientation of revolution surfaces from contours and reflections,
PR(35), No. 10, October 2002, pp. 2249-2258.
Elsevier DOI 0206
From a single image. BibRef

Laurentini, A.[Aldo],
Computing the visual hull of solids of revolution,
PR(32), No. 3, March 1999, pp. 377-388.
Elsevier DOI BibRef 9903

Marshall, A.D.[A. David], Lukács, G.[Gabor], Martin, R.R.[Ralph R.],
Robust Segmentation of Primitives from Range Data in the Presence of Geometric Degeneracy,
PAMI(23), No. 3, March 2001, pp. 304-314.
IEEE DOI 0103
Identify and fit known surfaces when these are a good fit. Least squares fitting of spheres, cylinders, cones and Tori. Robust to variations and similarities of surfaces. BibRef

Lukács, G.[Gabor], Marshall, A.D., Martin, R.R.,
Faithful Least-Squares Fitting of Spheres, Cylinders, Cones and Tori for Reliable Segmentation,
ECCV98(I: 671).
Springer DOI BibRef 9800

Pan, C.[Chunhong], Yan, H.[Hongping], Medioni, G., Ma, S.D.[Song-De],
Parametric reconstruction of generalized cylinders from limb edges,
IP(14), No. 8, August 2005, pp. 1202-1214.
IEEE DOI 0508
BibRef

Leymarie, F.F.[Frederic F.], Kimia, B.B.[Benjamin B.],
The Medial Scaffold of 3D Unorganized Point Clouds,
PAMI(29), No. 2, February 2007, pp. 313-330.
IEEE DOI 0701
BibRef
Earlier:
Computation of the shock scaffold for unorganized point clouds in 3D,
CVPR03(I: 821-827).
IEEE DOI 0307
BibRef
Earlier:
The Shock Scaffold for Representing 3D Shape,
VF01(216 ff.).
Springer DOI
WWW Link. 0209
Graph constructed from special medial points. BibRef

Chang, M.C.[Ming-Ching], Leymarie, F.F.[Frederic Fol], Kimia, B.B.[Benjamin B.],
Surface reconstruction from point clouds by transforming the medial scaffold,
CVIU(113), No. 11, November 2009, pp. 1130-1146.
Elsevier DOI 0910
BibRef
Earlier: 3DIM07(13-20).
IEEE DOI 0708
Surface mesh reconstruction; Unorganized points; 3D medial axis; Medial scaffold; Symmetry transforms; Non-manifold; Non-closed; Non-smooth; Non-orientable; Non-uniform samplings BibRef

Leymarie, F.F., Kimia, B.B., Giblin, P.J.,
Towards surface regularization via medial axis transitions,
ICPR04(III: 123-126).
IEEE DOI 0409
BibRef

Kimia, B.B., Leymarie, F.F.,
Symmetry-based Representations of 3D Data,
ICIP01(II: 581-584).
IEEE DOI 0108
BibRef

Leymarie, F.F., Kimia, B.B.,
On the computation of 3D symmetries and shocks,
BrownLEMS-173, Providence, RI, July 1998. BibRef 9807

Leymarie, F.F., and Kimia, B.B.,
Discrete 3D Wave Propagation for Computing Morphological Operations from Surface Patches and Unorganized Points,
ISMM00(351-360).
WWW Link. BibRef 0001

Leymarie, F.F.[Frederic Fol],
3D Shape Representation via Shock Flows,
Ph.D.Thesis. Brown University, 2003.
WWW Link. Representing 3-D shapes with partial and unorganized data, e.g. cloud of 3-D points. Start from Medial Axis representation. BibRef 0300

Leymarie, F.F.[Frederic F.], Kimia, B.B.[Benjamin B.],
Method and apparatus for multi-dimensional shape representation via shock flows,
US_Patentfiled October 18, 2002. BibRef 0210

Fabbri, R.[Ricardo], Kimia, B.B.[Benjamin B.],
3D curve sketch: Flexible curve-based stereo reconstruction and calibration,
CVPR10(1538-1545).
IEEE DOI 1006
BibRef

Chen, P.[Pei], Suter, D.[David],
A Bilinear Approach to the Parameter Estimation of a General Heteroscedastic Linear System, with Application to Conic Fitting,
JMIV(28), No. 3, July 2007, pp. 191-208.
Springer DOI 0709
BibRef

Mulat, C.[Christianne], Donias, M.[Marc], Baylou, P.[Pierre], Vignoles, G.[Gérard], Germain, C.[Christian],
Optimal orientation estimators for detection of cylindrical objects,
SIViP(2), No. 1, January 2008, pp. 51-58.
Springer DOI 0712
BibRef

Mille, J.[Julien],
Narrow band region-based active contours and surfaces for 2D and 3D segmentation,
CVIU(113), No. 9, September 2009, pp. 946-965.
Elsevier DOI 0907
Segmentation; Narrow band region energy; Deformable model; Active contour; Active surface; Level sets See also Geodesically Linked Active Contours: Evolution Strategy Based on Minimal Paths. BibRef

Mille, J.[Julien], Bone, R.[Romuald], Makris, P.[Pascal], Cardot, H.[Hubert],
Corrigendum to 'Narrow band region-based active contours and surfaces for 2D and 3D segmentation',
CVIU(115), No. 2, February 2011, pp. 286.
Elsevier DOI 1102
BibRef

Mille, J.[Julien], Boné, R.[Romuald], Cohen, L.D.[Laurent D.],
Region-Based 2D Deformable Generalized Cylinder for Narrow Structures Segmentation,
ECCV08(II: 392-404).
Springer DOI 0810
BibRef

Mille, J.[Julien], Cohen, L.D.[Laurent D.],
A Local Normal-Based Region Term for Active Contours,
EMMCVPR09(168-181).
Springer DOI 0908
BibRef

Mille, J.[Julien], Bone, R.[Romuald], Makris, P.[Pascal], Cardot, H.[Hubert],
2D and 3D Deformable Models with Narrowband Region Energy,
ICIP07(II: 57-60).
IEEE DOI 0709
BibRef

Mohan, V., Sundaramoorthi, G., Tannenbaum, A.,
Tubular Surface Segmentation for Extracting Anatomical Structures From Medical Imagery,
MedImg(29), No. 12, December 2010, pp. 1945-1958.
IEEE DOI 1101
BibRef

Bas, E., Erdogmus, D., Draft, R.W., Lichtman, J.W.,
Local tracing of curvilinear structures in volumetric color images: Application to the Brainbow analysis,
JVCIR(23), No. 8, November 2012, pp. 1260-1271.
Elsevier DOI 1211
Volumetric color images; Piecewise linear cylinder model; Principal curve; Brainbow; Axon tracing; Connectivity analysis; Topological skeleton; Ridge analysis BibRef

Cai, X.H.[Xiao-Hao], Chan, R.H.[Raymond H.], Morigi, S.[Serena], Sgallari, F.[Fiorella],
Vessel Segmentation in Medical Imaging Using a Tight-Frame-Based Algorithm,
SIIMS(6), No. 1, 2013, pp. 464-486.
DOI Link 1304
BibRef
Earlier:
Framelet-Based Algorithm for Segmentation of Tubular Structures,
SSVM11(411-422).
Springer DOI 1201
BibRef

Wu, Y.H.[Yi-Hong], Wang, H.[Haoren], Tang, F.[Fulin], Wang, Z.H.[Zhi-Heng],
Efficient conic fitting with an analytical Polar-N-Direction geometric distance,
PR(90), 2019, pp. 415-423.
Elsevier DOI 1903
Conic fitting, Geometric distance, Sampson distance BibRef

Liu, X.L.[Xiang-Lei], Huang, M.[Ming], Li, S.L.[Shan-Lei], Ma, C.S.[Chao-Shuai],
Surfaces of Revolution (SORs) Reconstruction Using a Self-Adaptive Generatrix Line Extraction Method from Point Clouds,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Liu, L.[Li], Chen, D.[Da], Cohen, L.D.[Laurent D.], Wu, J.S.[Jia-Song], Paques, M.[Michel], Shu, H.Z.[Hua-Zhong],
Anisotropic tubular minimal path model with fast marching front freezing scheme,
PR(104), 2020, pp. 107349.
Elsevier DOI 2005
Minimal path model, Anisotropy enhancement, Riemannian metric, Path feature, Tubular structures BibRef

Araújo, A.M.C.[Abner M.C.], Oliveira, M.M.[Manuel M.],
Connectivity-based cylinder detection in unorganized point clouds,
PR(100), 2020, pp. 107161.
Elsevier DOI 2005
Cylinder detection, Unorganized point clouds, Reverse engineering, Industrial sites BibRef

Bergamasco, F.[Filippo], Pistellato, M.[Mara], Albarelli, A.[Andrea], Torsello, A.[Andrea],
Cylinders extraction in non-oriented point clouds as a clustering problem,
PR(107), 2020, pp. 107443.
Elsevier DOI 2008
Cylinder extraction, Dual quaternions, Point clouds, Industrial inspection, Game theory BibRef


Wang, Y., Wei, X., Liu, F., Chen, J., Zhou, Y., Shen, W., Fishman, E.K., Yuille, A.L.,
Deep Distance Transform for Tubular Structure Segmentation in CT Scans,
CVPR20(3832-3841)
IEEE DOI 2008
Skeleton, Transforms, Image segmentation, Shape, Computed tomography, Ducts BibRef

Chen, D., Cohen, L.D.,
A New Dynamic Minimal Path Model for Tubular Structure Centerline Delineation,
ICPR18(3001-3006)
IEEE DOI 1812
Measurement, Coherence, Tensile stress, Anisotropic magnetoresistance, Feature extraction, Kernel BibRef

Kim, J.[Jaewon], Reshetouski, I.[Ilya], Ghosh, A.[Abhijeet],
Acquiring Axially-Symmetric Transparent Objects Using Single-View Transmission Imaging,
CVPR17(1484-1492)
IEEE DOI 1711
Cameras, Estimation, Geometry, Image reconstruction, Liquid crystal displays, Shape, Glasses, etc. BibRef

Yang, L., Uchiyama, H., Normand, J.M., Moreau, G., Nagahara, H., Taniguchi, R.I.,
Real-Time Surface of Revolution Reconstruction on Dense SLAM,
3DV16(28-36)
IEEE DOI 1701
Estimation BibRef

Speciale, P.[Pablo], Oswald, M.R.[Martin R.], Cohen, A.[Andrea], Pollefeys, M.[Marc],
A Symmetry Prior for Convex Variational 3D Reconstruction,
ECCV16(VIII: 313-328).
Springer DOI 1611
BibRef

Olszewska, J.I.[Joanna Isabelle],
Where is My Cup? - Fully Automatic Detection and Recognition of Textureless Objects in Real-World Images,
CAIP15(I:501-512).
Springer DOI 1511
BibRef

Qiu, R.Q.[Rong-Qi], Neumann, U.[Ulrich],
Exemplar-Based 3D Shape Segmentation in Point Clouds,
3DV16(203-211)
IEEE DOI 1701
Iterative closest point algorithm BibRef

Qiu, R.Q.[Rong-Qi], Zhou, Q.Y.[Qian-Yi], Neumann, U.[Ulrich],
Pipe-Run Extraction and Reconstruction from Point Clouds,
ECCV14(III: 17-30).
Springer DOI 1408
BibRef

Zhu, Q.X.[Qing-Xiang], Zheng, D.[Dayu], Xiong, H.K.[Hong-Kai],
3D tubular structure extraction using kernel-based superellipsoid model with Gaussian process regression,
VCIP12(1-6).
IEEE DOI 1302
BibRef

Nguonphan, P., Winckler, M.J., Kromker, S.,
Modular modeling of temple columns of the Angkor period,
3DARCH09(xx-yy).
PDF File. 0902
BibRef

Axelsson, M.[Maria],
An Evaluation of Scale and Noise Sensitivity of Fibre Orientation Estimation in Volume Images,
CIAP09(975-984).
Springer DOI 0909
BibRef
Earlier:
3D Tracking of Cellulose Fibres in Volume Images,
ICIP07(IV: 309-312).
IEEE DOI 0709
BibRef

Caglioti, V.[Vincenzo], Giusti, A.[Alessandro],
Reconstruction of Canal Surfaces from Single Images Under Exact Perspective,
ECCV06(I: 289-300).
Springer DOI 0608
A canal surface is obtained as the envelope of a family of spheres of constant radius, whose center is swept along a space curve. BibRef

Reinbacher, C.[Christian], Pock, T.[Thomas], Bauer, C.[Christian], Bischof, H.[Horst],
Variational segmentation of elongated volumetric structures,
CVPR10(3177-3184).
IEEE DOI 1006
BibRef

Pock, T.[Thomas], Beichel, R.[Reinhard], Bischof, H.[Horst],
A Novel Robust Tube Detection Filter for 3D Centerline Extraction,
SCIA05(481-490).
Springer DOI 0506
BibRef

Yan, Y., Zhang, J.,
Rotation-invariant 3D reconstruction,
ICIP98(I: 156-160).
IEEE DOI 9810
BibRef

Williams, J.P., Johnstone, J.K., Wolff, L.B.,
Rational Discrete Generalized Cylinders And Their Application To Shape Recovery In Medical Images,
CVPR97(387-392).
IEEE DOI 9704
Rational B-spline GC with curved axis. BibRef

Koller, T.[Thomas], Gerig, G., Szekely, G.[Gabor], Dettwiler, D.[Daniel],
Multiscale Detection of Curvilinear Structures in 2D and 3D Image Data,
ICCV95(864-869).
IEEE DOI Find thin tubes or ribbons. Multi-scale ridge detection. BibRef 9500

West, G.A.W.[Geoffrey A.W.], Rosin, P.L.[Paul L.],
Using Symmetry, Ellipses, and Perceptual Groups for Detecting Generic Surfaces of Revolution in 2D Images,
SPIE(1964), 1993, pp. 369-379. BibRef 9300

Dion, Jr., D., Laurendeau, D., Bergevin, R.,
Generalized Cylinder Extraction in Range Images,
3DIM97(6 - Geometric Processing) 9702
BibRef

Hoad, P., Illingworth, J.,
Recognition of 3D Cylinders in 2D Images by Top-Down Model Imposition,
SCIA93(1137-1144). BibRef 9300

Walker, E.L., and Kanade, T.,
Shape Recovery of a Solid of Revolution from Apparent Distortions of Patterns,
CMU-CS-TR-84-157. 1984. Shape (generalized cylinder type shape) from patterns on the object. BibRef 8400

Wink, O., Smeulders, A.W.M., Koelma, D.C.,
Location Estimation of Cylinders from a 2-D Image,
ICPR94(A:682-684).
IEEE DOI BibRef 9400

Xu, G., Tanaka, H.T., and Tsuji, S.,
Right Straight Homogeneous Generalized Cylinders with Symmetric Cross-Sections: Recovery of Pose and Shape from Image Contours,
CVPR92(692-694).
IEEE DOI RSH GC. BibRef 9200

Kundu, A., Bahl, P.,
Recognizing conic shape: a nonlinear iterative approach,
ICPR88(II: 795-797).
IEEE DOI 8811
BibRef

Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Generation from Sparse Data .


Last update:Sep 28, 2020 at 12:04:43