11.5.2 Generalized Cylinders -- Generation

Chapter Contents (Back)
Symmetry. Generalized Cylinder. Generalized Cylinder Generation. Descriptions, Generalized Cylinders.

Smith, D.R.,
Autonomous Scene Description with Range Imagery,
Ph.D.Thesis (CS), May 1989. BibRef 8905 CMU-CS-TR-89-162. BibRef
And: add A2: Kanade, T., CVGIP(31), No. 3, September 1985, pp. 322-334.
WWW Link. BibRef
And: DARPA84(282-290). Using light-stripe data, generate the generalized cone representations. Light-stripe contours are classified into a few types for processing. BibRef

Lozano-Perez, T., Grimson, W.E.L., and White, S.J.,
Finding Cylinders in Range Data,
CRA87(202-207). BibRef 8700

Grimson, W.E.L., Lozano-Perez, T., Nobel, N., and White, S.J.,
An Automatic Tube Inspection System That Finds Cylinders in Range Data,
CVPR93(446-452).
IEEE DOI Application, Inspection. Using a light stripe, find the cylinder. BibRef 9300

Kuan, D.T.[Darwin T.], and Drazovich, R.J.[Robert J.],
Model Based Interpretation Of 3-D Range Data,
T3DMP86(219-230). BibRef 8600
Earlier:
Model-Based Interpretation of Range Imagery,
AAAI-83(210-215). System: ACRONYM. Generalized cylinder models, laser range input, uses the ACRONYM approach, but applied to range data. BibRef

Kuan, D.T.[Darwin T.],
Three-Dimensional Feature Extraction,
CVPR83(388-389). BibRef 8300

Tanaka, T., Naito, S., Takahishi, T.,
Generalized Symmetry and Its Application to 3D Shape Generation,
VC(5), 1989, pp. 83-94. BibRef 8900

Ponce, J., and Faugeras, O.D.,
An Object Centered Hierarchial Representation for 3D Objects: The Prism Tree,
CVGIP(38), No. 1, April 1987, pp. 1-28.
WWW Link. BibRef 8704
Earlier: A2, A1:
Prism Trees: A Hierarchical Representation for 3-D Objects,
IJCAI83(982-988). Apply the descriptions of ribbons to 3-D representations. Get several levels - describe as a tree. BibRef

Ponce, J.[Jean],
Prism Trees: An Efficient Representation for Manipulating and Displaying Polyhedra With Many Faces,
MIT AI Memo-838, April 1985. BibRef 8504

Glachet, R., La Preste, J.T., and Dhome, M.,
Locating and Modelling a Flat Symmetric Object from a Single Perspective Image,
CVGIP(57), No. 2, March 1993, pp. 219-226.
WWW Link. Find the axis projection of the object. BibRef 9303

Kanatani, K.[Kenichi],
Statistical Bias of Conic Fitting and Renormalization,
PAMI(16), No. 3, March 1994, pp. 320-326.
IEEE DOI BibRef 9403

Kanatani, K.,
Statistical-Analysis of Geometric Computation,
CVGIP(59), No. 3, May 1994, pp. 286-306.
WWW Link. See also Geometric Information Criterion for Model Selection. BibRef 9405

Kanatani, K.,
Statistical Optimization for Geometric Computation: Theory and Practice,
North-HollandAmsterdam, 1996. BibRef 9600

Kanatani, K.[Kenichi],
Statistical Optimization for Geometric Fitting: Theoretical Accuracy Bound and High Order Error Analysis,
IJCV(80), No. 2, November 2008, pp. xx-yy.
Springer DOI 0809
See also High Accuracy Fundamental Matrix Computation and Its Performance Evaluation. BibRef

Kanazawa, Y., and Kanatani, K.,
Reliability of Conic Fitting,
ACCV95(III:397-401). BibRef 9500

Richetin, M., Dhome, M., La Preste, J.T., and Rives, G.,
Inverse Perspective Transform Using Zero-Curvature Contour Points: Application to the Localization of Some Generalized Cylinders from a Single View,
PAMI(13), No. 2, February 1991, pp. 185-192.
IEEE DOI BibRef 9102
Earlier: A2, A1, A3, A4:
The Inverse Perspective Problem from a Single View for Polyhedra Location,
CVPR88(61-66).
IEEE DOI Pose Estimation. Matching of models to the image. See also Determination of the Attitude of 3-D Objects from a Single Perspective View. BibRef

Richetin, M., Dhome, M., La Preste, J.T.,
Inverse Perspective Transform from Zero-Curvature Curve Points Application to the Localization of Some Generalized Cylinders,
CVPR89(517-522).
IEEE DOI BibRef 8900

Glachet, R., Dhome, M., La Preste, J.T.,
Finding the Perspective Projection of an Axis of Revolution,
PRL(12), 1991, pp. 693-700. BibRef 9100
And:
Finding the Pose of an Object of Revolution,
ECCV92(681-686).
Springer DOI BibRef

Lavest, J.M., Glachet, R., Dhome, M., and La Preste, J.T.,
Modelling Solids of Revolution by Monocular Vision,
CVPR91(690-691).
IEEE DOI Uses multiple contours. BibRef 9100

Sayd, P., Dhome, M., Lavest, J.M., and La Preste, J.T.,
Non-Uniform Circular Generalized Cylinders Reconstruction From Multiple Perspective Views,
SCIA97(xx-yy)
HTML Version. 9705
BibRef

Dhome, M., Glachet, R., and La Preste, J.T.,
Recovering the Scaling Function of a SHGC from a Single Perspective View,
CVPR92(36-41).
IEEE DOI BibRef 9200

Rosin, P.L., and West, G.A.W.,
Detection and Verification of Surfaces of Revolution by Perceptual Grouping,
PRL(13), 1992, pp. 453-461. BibRef 9200
Earlier:
Extracting Surfaces of Revolution by Perceptual Grouping of Ellipses,
CVPR91(677-678).
IEEE DOI BibRef
Earlier:
Perceptual Grouping of Circular Arcs under Projection,
BMVC90(379-382).
PDF File. BibRef

Berkemeier, M.D., Fearing, R.S.,
Determining the axis of a surface of revolution using tactile sensing,
PAMI(15), No. 10, October 1993, pp. 1079-1087.
IEEE DOI 0401
BibRef

Kender, J.R., and Kjeldsen, R.,
On Seeing Spaghetti: Self-Adjusting Piecewise Toroidal Recognition Of Flexible Extruded Objects,
PAMI(17), No. 2, February 1995, pp. 136-157.
IEEE DOI BibRef 9502
Earlier:
On Seeing Spaghetti: A Novel Self-Adjusting Seven Parameter Hough Space for Analyzing Flexible Extruded Objects,
DARPA92(585-591). BibRef
And: IJCAI91(1271-1277). BibRef
And: SPIE(1570), 1991, pp. 315-321. Piece-wise toroidal model with Hough space in sequence. BibRef

Lejeune, A., Ferrie, F.P.,
Finding the Parts of Objects in Range Images,
CVIU(64), No. 2, September 1996, pp. 230-247.
DOI Link Relaxation. BibRef 9609
Earlier:
Partitioning Range Images Using Curvature and Scale,
CVPR93(800-801).
IEEE DOI BibRef

Zerroug, M.[Mourad], and Nevatia, R.[Ramakant],
Volumetric Descriptions from a Single Intensity Image,
IJCV(20), No. 1/2, 1996, pp. 11-42. BibRef 9600 USC Computer Vision BibRef
Earlier:
Scene Segmentation and Volumetric Descriptions of SHGCs from a Single Intensity Image,
DARPA93(905-916). Separate the several objects and generate the descriptions. See also Part-Based 3D Descriptions of Complex Objects from a Single Image. BibRef

Zerroug, M., Nevatia, R.,
Segmentation and 3-D Recovery of Curved-Axis Generalized Cylinders from an Intensity Image,
ICPR94(A:678-681).
IEEE DOI BibRef 9400 USC Computer Vision
PDF File. BibRef
And:
Segmentation and Recovery of SHGCS from a Real Intensity Image,
ECCV94(A:319-330).
Springer DOI BibRef

Karl, W.C., Verghese, G.C., Willsky, A.S.,
Reconstructing Ellipsoids from Projections,
GMIP(56), No. 2, March 1994, pp. 124-139. BibRef 9403

Sayd, P.[Patrick], Dhome, M.[Michel], Lavest, J.M.[Jean-Marc],
Recovering Generalized Cylinders By Monocular Vision,
ORCV96(25) 9611
BibRef

Hsia, C.Y., Huang, C.L.,
'Visual Events' Identification of Solids of Revolution from Perspective Views,
PR(26), No. 2, February 1993, pp. 333-349.
WWW Link. BibRef 9302

Huang, C.L.[Chung Lin],
Contour generation and shape restoration of the straight homogeneous generalized cylinder,
ICPR90(I: 409-413).
IEEE DOI 9006
BibRef

Chung, J.M., Nagata, T.,
Extraction of Parametric Descriptions of Circular GCs from a Pair of Contours for 3-D Shape-Recognition,
PR(29), No. 6, June 1996, pp. 903-917.
WWW Link. 9606
BibRef

Zhang, Z.Y.,
Parameter-Estimation Techniques: A Tutorial with Application to Conic Fitting,
IVC(15), No. 1, January 1997, pp. 59-76.
WWW Link. 9702
BibRef

Cumani, A., Guiducci, A.,
Recovering the 3D Structure of Tubular Objects from Stereo Silhouettes,
PR(30), No. 7, July 1997, pp. 1051-1059.
WWW Link. 9707
BibRef

Puech, W.[William], and Chassery, J.M.[Jean-Marc], Pitas, I.,
Cylindrical Surface Localization in Monocular Vision,
PRL(18), No. 8, August 1997, pp. 711-722. 9801
BibRef
Earlier: A1, A2, Only:
A New Curved Surface Localization Method Using a Single Perspective View,
SCIA97(xx-yy)
HTML Version. 9705
BibRef

Zhu, Q.M.[Qiu-Ming], Peng, L.[Lu],
A new approach to conic section approximation of object boundaries,
IVC(17), No. 9, July 1999, pp. 645-658.
WWW Link. BibRef 9907

Caglioti, V.[Vincenzo], Castelli, E.[Eugenio],
Recovering cylindric and conic surfaces from contours and reflections,
PRL(20), No. 4, April 1999, pp. 367-382. BibRef 9904

Caglioti, V.[Vincenzo], Castelli, E.[Eugenio],
Shape and orientation of revolution surfaces from contours and reflections,
PR(35), No. 10, October 2002, pp. 2249-2258.
WWW Link. 0206
BibRef

Laurentini, A.[Aldo],
Computing the visual hull of solids of revolution,
PR(32), No. 3, March 1999, pp. 377-388.
WWW Link. BibRef 9903

Marshall, A.D.[A. David], Lukács, G.[Gabor], Martin, R.R.[Ralph R.],
Robust Segmentation of Primitives from Range Data in the Presence of Geometric Degeneracy,
PAMI(23), No. 3, March 2001, pp. 304-314.
IEEE DOI 0103
Identify and fit known surfaces when these are a good fit. Least squares fitting of spheres, cylinders, cones and Tori. Robust to variations and similarities of surfaces. BibRef

Lukács, G.[Gabor], Marshall, A.D., Martin, R.R.,
Faithful Least-Squares Fitting of Spheres, Cylinders, Cones and Tori for Reliable Segmentation,
ECCV98(I: 671).
Springer DOI BibRef 9800

Pan, C.[Chunhong], Yan, H.[Hongping], Medioni, G., Ma, S.D.[Song-De],
Parametric reconstruction of generalized cylinders from limb edges,
IP(14), No. 8, August 2005, pp. 1202-1214.
IEEE DOI 0508
BibRef

Leymarie, F.F.[Frederic F.], Kimia, B.B.[Benjamin B.],
The Medial Scaffold of 3D Unorganized Point Clouds,
PAMI(29), No. 2, February 2007, pp. 313-330.
IEEE DOI 0701
BibRef
Earlier:
Computation of the shock scaffold for unorganized point clouds in 3D,
CVPR03(I: 821-827).
IEEE DOI 0307
BibRef
Earlier:
The Shock Scaffold for Representing 3D Shape,
VF01(216 ff.).
Springer DOI
WWW Link. 0209
Graph constructed from special medial points. BibRef

Chang, M.C.[Ming-Ching], Leymarie, F.F.[Frederic Fol], Kimia, B.B.[Benjamin B.],
Surface reconstruction from point clouds by transforming the medial scaffold,
CVIU(113), No. 11, November 2009, pp. 1130-1146.
Elsevier DOI 0910
BibRef
Earlier: 3DIM07(13-20).
IEEE DOI 0708
Surface mesh reconstruction; Unorganized points; 3D medial axis; Medial scaffold; Symmetry transforms; Non-manifold; Non-closed; Non-smooth; Non-orientable; Non-uniform samplings BibRef

Leymarie, F.F., Kimia, B.B., Giblin, P.J.,
Towards surface regularization via medial axis transitions,
ICPR04(III: 123-126).
IEEE DOI 0409
BibRef

Kimia, B.B., Leymarie, F.F.,
Symmetry-based Representations of 3D Data,
ICIP01(II: 581-584).
IEEE DOI 0108
BibRef

Leymarie, F.F., Kimia, B.B.,
On the computation of 3D symmetries and shocks,
BrownLEMS-173, Providence, RI, July 1998. BibRef 9807

Leymarie, F.F., and Kimia, B.B.,
Discrete 3D Wave Propagation for Computing Morphological Operations from Surface Patches and Unorganized Points,
ISMM00(351-360).
WWW Link. BibRef 0001

Leymarie, F.F.[Frederic Fol],
3D Shape Representation via Shock Flows,
Ph.D.Thesis. Brown University, 2003.
WWW Link. Representing 3-D shapes with partial and unorganized data, e.g. cloud of 3-D points. Start from Medial Axis representation. BibRef 0300

Leymarie, F.F.[Frederic F.], Kimia, B.B.[Benjamin B.],
Method and apparatus for multi-dimensional shape representation via shock flows,
US_Patentfiled October 18, 2002. BibRef 0210

Fabbri, R.[Ricardo], Kimia, B.B.[Benjamin B.],
3D curve sketch: Flexible curve-based stereo reconstruction and calibration,
CVPR10(1538-1545).
IEEE DOI 1006
BibRef

Chen, P.[Pei], Suter, D.[David],
A Bilinear Approach to the Parameter Estimation of a General Heteroscedastic Linear System, with Application to Conic Fitting,
JMIV(28), No. 3, July 2007, pp. 191-208.
Springer DOI 0709
BibRef

Mulat, C.[Christianne], Donias, M.[Marc], Baylou, P.[Pierre], Vignoles, G.[Gérard], Germain, C.[Christian],
Optimal orientation estimators for detection of cylindrical objects,
SIViP(2), No. 1, January 2008, pp. 51-58.
Springer DOI 0712
BibRef

Mille, J.[Julien],
Narrow band region-based active contours and surfaces for 2D and 3D segmentation,
CVIU(113), No. 9, September 2009, pp. 946-965.
Elsevier DOI 0907
Segmentation; Narrow band region energy; Deformable model; Active contour; Active surface; Level sets See also Geodesically Linked Active Contours: Evolution Strategy Based on Minimal Paths. BibRef

Mille, J.[Julien], Bone, R.[Romuald], Makris, P.[Pascal], Cardot, H.[Hubert],
Corrigendum to 'Narrow band region-based active contours and surfaces for 2D and 3D segmentation',
CVIU(115), No. 2, February 2011, pp. 286.
Elsevier DOI 1102
BibRef

Mille, J.[Julien], Boné, R.[Romuald], Cohen, L.D.[Laurent D.],
Region-Based 2D Deformable Generalized Cylinder for Narrow Structures Segmentation,
ECCV08(II: 392-404).
Springer DOI 0810
BibRef

Mille, J.[Julien], Cohen, L.D.[Laurent D.],
A Local Normal-Based Region Term for Active Contours,
EMMCVPR09(168-181).
Springer DOI 0908
BibRef

Mille, J.[Julien], Bone, R.[Romuald], Makris, P.[Pascal], Cardot, H.[Hubert],
2D and 3D Deformable Models with Narrowband Region Energy,
ICIP07(II: 57-60).
IEEE DOI 0709
BibRef

Mohan, V., Sundaramoorthi, G., Tannenbaum, A.,
Tubular Surface Segmentation for Extracting Anatomical Structures From Medical Imagery,
MedImg(29), No. 12, December 2010, pp. 1945-1958.
IEEE DOI 1101
BibRef

Bas, E., Erdogmus, D., Draft, R.W., Lichtman, J.W.,
Local tracing of curvilinear structures in volumetric color images: Application to the Brainbow analysis,
JVCIR(23), No. 8, November 2012, pp. 1260-1271.
Elsevier DOI 1211
Volumetric color images; Piecewise linear cylinder model; Principal curve; Brainbow; Axon tracing; Connectivity analysis; Topological skeleton; Ridge analysis BibRef

Cai, X.H.[Xiao-Hao], Chan, R.H.[Raymond H.], Morigi, S.[Serena], Sgallari, F.[Fiorella],
Vessel Segmentation in Medical Imaging Using a Tight-Frame-Based Algorithm,
SIIMS(6), No. 1, 2013, pp. 464-486.
DOI Link 1304
BibRef
Earlier:
Framelet-Based Algorithm for Segmentation of Tubular Structures,
SSVM11(411-422).
Springer DOI 1201
BibRef


Yang, L., Uchiyama, H., Normand, J.M., Moreau, G., Nagahara, H., Taniguchi, R.I.,
Real-Time Surface of Revolution Reconstruction on Dense SLAM,
3DV16(28-36)
IEEE DOI 1701
Estimation BibRef

Speciale, P.[Pablo], Oswald, M.R.[Martin R.], Cohen, A.[Andrea], Pollefeys, M.[Marc],
A Symmetry Prior for Convex Variational 3D Reconstruction,
ECCV16(VIII: 313-328).
Springer DOI 1611
BibRef

Olszewska, J.I.[Joanna Isabelle],
Where is My Cup? - Fully Automatic Detection and Recognition of Textureless Objects in Real-World Images,
CAIP15(I:501-512).
Springer DOI 1511
BibRef

Qiu, R.Q.[Rong-Qi], Neumann, U.[Ulrich],
Exemplar-Based 3D Shape Segmentation in Point Clouds,
3DV16(203-211)
IEEE DOI 1701
Iterative closest point algorithm BibRef

Qiu, R.Q.[Rong-Qi], Zhou, Q.Y.[Qian-Yi], Neumann, U.[Ulrich],
Pipe-Run Extraction and Reconstruction from Point Clouds,
ECCV14(III: 17-30).
Springer DOI 1408
BibRef

Zhu, Q.X.[Qing-Xiang], Zheng, D.[Dayu], Xiong, H.K.[Hong-Kai],
3D tubular structure extraction using kernel-based superellipsoid model with Gaussian process regression,
VCIP12(1-6).
IEEE DOI 1302
BibRef

Nguonphan, P., Winckler, M.J., Kromker, S.,
Modular modeling of temple columns of the Angkor period,
3DARCH09(xx-yy).
PDF File. 0902
BibRef

Axelsson, M.[Maria],
An Evaluation of Scale and Noise Sensitivity of Fibre Orientation Estimation in Volume Images,
CIAP09(975-984).
Springer DOI 0909
BibRef
Earlier:
3D Tracking of Cellulose Fibres in Volume Images,
ICIP07(IV: 309-312).
IEEE DOI 0709
BibRef

Caglioti, V.[Vincenzo], Giusti, A.[Alessandro],
Reconstruction of Canal Surfaces from Single Images Under Exact Perspective,
ECCV06(I: 289-300).
Springer DOI 0608
A canal surface is obtained as the envelope of a family of spheres of constant radius, whose center is swept along a space curve. BibRef

Reinbacher, C.[Christian], Pock, T.[Thomas], Bauer, C.[Christian], Bischof, H.[Horst],
Variational segmentation of elongated volumetric structures,
CVPR10(3177-3184).
IEEE DOI 1006
BibRef

Pock, T.[Thomas], Beichel, R.[Reinhard], Bischof, H.[Horst],
A Novel Robust Tube Detection Filter for 3D Centerline Extraction,
SCIA05(481-490).
Springer DOI 0506
BibRef

Yan, Y., Zhang, J.,
Rotation-invariant 3D reconstruction,
ICIP98(I: 156-160).
IEEE DOI 9810
BibRef

Williams, J.P., Johnstone, J.K., Wolff, L.B.,
Rational Discrete Generalized Cylinders And Their Application To Shape Recovery In Medical Images,
CVPR97(387-392).
IEEE DOI 9704
Rational B-spline GC with curved axis. BibRef

Koller, T.[Thomas], Gerig, G., Szekely, G.[Gabor], Dettwiler, D.[Daniel],
Multiscale Detection of Curvilinear Structures in 2D and 3D Image Data,
ICCV95(864-869).
IEEE DOI Find thin tubes or ribbons. Multi-scale ridge detection. BibRef 9500

West, G.A.W.[Geoffrey A.W.], Rosin, P.L.[Paul L.],
Using Symmetry, Ellipses, and Perceptual Groups for Detecting Generic Surfaces of Revolution in 2D Images,
SPIE(1964), 1993, pp. 369-379. BibRef 9300

Dion, Jr., D., Laurendeau, D., Bergevin, R.,
Generalized Cylinder Extraction in Range Images,
3DIM97(6 - Geometric Processing) 9702
BibRef

Hoad, P., Illingworth, J.,
Recognition of 3D Cylinders in 2D Images by Top-Down Model Imposition,
SCIA93(1137-1144). BibRef 9300

Walker, E.L., and Kanade, T.,
Shape Recovery of a Solid of Revolution from Apparent Distortions of Patterns,
CMU-CS-TR-84-157. 1984. Shape (generalized cylinder type shape) from patterns on the object. BibRef 8400

Wink, O., Smeulders, A.W.M., Koelma, D.C.,
Location Estimation of Cylinders from a 2-D Image,
ICPR94(A:682-684).
IEEE DOI BibRef 9400

Xu, G., Tanaka, H.T., and Tsuji, S.,
Right Straight Homogeneous Generalized Cylinders with Symmetric Cross-Sections: Recovery of Pose and Shape from Image Contours,
CVPR92(692-694).
IEEE DOI RSH GC. BibRef 9200

Kundu, A., Bahl, P.,
Recognizing conic shape: a nonlinear iterative approach,
ICPR88(II: 795-797).
IEEE DOI 8811
BibRef

Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Generation from Sparse Data .


Last update:Aug 9, 2017 at 18:37:22