8.7.3 Level Set Segmentation, Level Set Methods

Chapter Contents (Back)
Level Set. See also Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Science. See also Level Sets, Shape Models, Prior Shape Models. See also Level Set Models for Volumes.

Sumengen, B.[Baris],
Matlab toolbox for Level Set Methods,
Online2008.
HTML Version. Code, Segmentation. Code, Segmentation, Matlab. The code follows Osher and Fedkiw book. BibRef 0800

Sussman, M., Smereka, P., and Osher, S.J.,
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow,
CompPhys(114), 1994, pp. 146-159. BibRef 9400

Osher, S.J.[Stanley J.],
A Level Set Formulation for the Solution of the Dirichlet Problem for Hamilton-Jacobi Equations,
NumAnal(24), Vol. 24, No. 5, 1993, pp. 1145-1152
DOI Link BibRef 9300

Samson, C.[Christophe], Blanc-Féraud, L.[Laure], Aubert, G.[Gilles], Zerubia, J.B.[Josiane B.],
A Variational Model for Image Classification and Restoration,
PAMI(22), No. 5, May 2000, pp. 460-472.
IEEE DOI 0008
BibRef

Bect, J.[Julien], Blanc-Féraud, L.[Laure], Aubert, G.[Gilles], Chambolle, A.[Antonin],
A/1-Unified Variational Framework for Image Restoration,
ECCV04(Vol IV: 1-13).
Springer DOI 0405
BibRef

Samson, C.[Christophe], Blanc-Féraud, L.[Laure], Aubert, G.[Gilles], Zerubia, J.B.[Josiane B.],
A Level Set Model for Image Classification,
IJCV(40), No. 3, December 2000, pp. 187-197.
DOI Link 0102
BibRef
Earlier: ScaleSpace99(306-317). BibRef
And:
Two Variational Models for Multispectral Image Classification,
EMMCVPR01(344-356).
Springer DOI 0205
BibRef
And: A1, A2, A4, A3:
Simultaneous Image Classification and Restoration Using a Variational Approach,
CVPR99(II: 618-623).
IEEE DOI variational model, level set model, active regions, image classification, labelling BibRef

Teboul, S., Blanc-Feraud, L.[Laure], Aubert, G., and Barlaud, M.,
Segmentation and Edge-Preserving Restoration,
ICIP97(II: 470-473).
IEEE DOI BibRef 9700
Earlier: A2, A1, A3, A4:
Nonlinear Regularization Using Constrained Edges in Image Reconstruction,
ICIP96(II: 449-452).
IEEE DOI BibRef

Sifakis, E.[Eftichis], Garcia, C.[Christophe], Tziritas, G.[Georgios],
Bayesian Level Sets for Image Segmentation,
JVCIR(13), No. 1/2, March/June 2002, pp. 44-64.
DOI Link 0204
BibRef

Sifakis, E.[Eftychis], Tziritas, G.[Georgios],
Robust object boundary determination using a locally adaptive level set algorithm,
ICIP03(I: 141-144).
IEEE DOI 0312
BibRef

Vese, L.A.[Luminita A.], Chan, T.F.[Tony F.],
A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model,
IJCV(50), No. 3, December 2002, pp. 271-293.
DOI Link 0211
BibRef
Earlier: A2, A1:
A Level Set Algorithm for minimizing the Mumford-Shah functional in Image Processing,
LevelSet01(xx-yy). 0106
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems. See also Active contours without edges. BibRef

Chan, T.F.[Tony F.], Zhu, W.[Wei],
Level Set Based Shape Prior Segmentation,
CVPR05(II: 1164-1170).
IEEE DOI 0507
BibRef

Chung, G.[Ginmo], Vese, L.A.[Luminita A.],
Energy Minimization Based Segmentation and Denoising Using a Multilayer Level Set Approach,
EMMCVPR05(439-455).
Springer DOI 0601
BibRef

Wang, D.J.[De-Jun], Soatto, S.[Stefano], Prados, E.[Emmanuel],
Towards Robust and Physically Plausible Shaded Stereoscopic Segmentation,
3DCINE06(171).
IEEE DOI 0609
BibRef

Hong, B.W.[Byung-Woo], Soatto, S.[Stefano],
Shape Matching Using Multiscale Integral Invariants,
PAMI(37), No. 1, January 2015, pp. 151-160.
IEEE DOI 1412
Indexes BibRef

Hong, B.W.[Byung-Woo], Prados, E.[Emmanuel], Soatto, S.[Stefano], Vese, L.A.[Luminita A.],
Shape Representation based on Integral Kernels: Application to Image Matching and Segmentation,
CVPR06(I: 833-840).
IEEE DOI 0606
BibRef

Kervrann, C.[Charles], Trubuil, A.[Alain],
Optimal Level Curves and Global Minimizers of Cost Functionals in Image Segmentation,
JMIV(17), No. 2, September 2002, pp. 153-174.
DOI Link 0211
BibRef

Kervrann, C.[Charles], Hoebeke, M.[Mark], Trubuil, A.[Alain],
Isophotes Selection and Reaction-Diffusion Model for Object Boundaries Estimation,
IJCV(50), No. 1, October 2002, pp. 63-94.
DOI Link 0210
BibRef
Earlier:
A Level Line Selection Approach for Object Boundary Estimation,
ICCV99(963-968).
IEEE DOI BibRef
Earlier:
Level Lines as Global Minimizers of Energy Functionals in Image Segmentation,
ECCV00(II: 241-256).
Springer DOI 0003
BibRef

Combettes, P.L., Luo, J.[Jian],
An adaptive level set method for nondifferentiable constrained image recovery,
IP(11), No. 11, November 2002, pp. 1295-1304.
IEEE DOI 0301
BibRef

Nilsson, B.[Björn], Heyden, A.[Anders],
A fast algorithm for level set-like active contours,
PRL(24), No. 9-10, June 2003, pp. 1331-1337.
WWW Link. 0304
BibRef
Earlier:
Fast Approximation of Level Set Computations: Application to Image Segmentation,
SCIA01(P-W3A). 0206
BibRef

Han, X.[Xiao], Xu, C.Y.[Chen-Yang], Prince, J.L.,
Topology Preserving Level Set Method for Geometric Deformable Models,
PAMI(25), No. 6, June 2003, pp. 755-768.
IEEE Abstract. 0306
BibRef
Earlier:
A Topology Preserving Deformable Model Using Level Sets,
CVPR01(II:765-770).
IEEE DOI 0110
For cases where topology must be preserved. Uses local computations. Active contour model. See also Reconstruction of the human cerebral cortex from magnetic resonance images. BibRef

Han, X.[Xiao], Xu, C.Y.[Chen-Yang], Prince, J.L.[Jerry L.],
A Moving Grid Framework for Geometric Deformable Models,
IJCV(84), No. 1, August 2009, pp. xx-yy.
Springer DOI 0905
BibRef
Earlier:
A 2D moving grid geometric deformable model,
CVPR03(I: 153-160).
IEEE DOI 0307
See also Digital Topology on Adaptive Octree Grids. BibRef

Martin, P.[Pascal], Refregier, P.[Philippe], Goudail, F.[Francois], Guerault, F.[Federic],
Influence of the Noise Model on Level Set Active Contour Segmentation,
PAMI(26), No. 6, June 2004, pp. 799-803.
IEEE Abstract. 0404
Improve segmentation. Derive the regularization terms using the MDL. BibRef

Martin, P.[Pascal], Refregier, P.[Philippe], Galland, F., Guerault, F.[Federic],
Nonparametric Statistical Snake Based on the Minimum Stochastic Complexity,
IP(15), No. 9, August 2006, pp. 2762-2770.
IEEE DOI 0608
BibRef

Galland, F.[Frederic], Jaegler, A.[Arnaud], Allain, M.[Marc], Savery, D.[David], Refregier, P.[Philippe],
Smooth contour coding with minimal description length active grid segmentation techniques,
PRL(32), No. 5, 1 April 2011, pp. 721-730.
Elsevier DOI 1103
Image segmentation; Statistical image processing; Minimum description length (MDL); Stochastic complexity BibRef

Jeon, M., Alexander, M., Pedrycz, W., Pizzi, N.,
Unsupervised hierarchical image segmentation with level set and additive operator splitting,
PRL(26), No. 10, 15 July 2005, pp. 1461-1469.
WWW Link. 0506
multi-phase images. BibRef

Gao, H.[Hai], Lin, W.S.[Wei-Si], Xue, P.[Ping], Siu, W.C.[Wan-Chi],
Marker-based image segmentation relying on disjoint set union,
SP:IC(21), No. 2, February 2006, pp. 100-112.
WWW Link. 0512
Pixel sorting, set union, pixel resolving. Compare to Meyer ( See also Levelings, Image Simplification Filters for Segmentation. ?) BibRef

Mansouri, A.R.[Abdol-Reza], Mitiche, A.[Amar], Vázquez, C.[Carlos],
Multiregion competition: A level set extension of region competition to multiple region image partitioning,
CVIU(101), No. 3, March 2006, pp. 137-150.
WWW Link. 0601
BibRef
Earlier:
Image partioning by level set multiregion competition,
ICIP04(IV: 2721-2724).
IEEE DOI 0505
BibRef
And: A3, A1, A2:
Approximation of Images by Basis Functions for Multiple Region Segmentation with Level Sets,
ICIP04(I: 549-552).
IEEE DOI 0505
See also Multiple Motion Segmentation with Level Sets. BibRef

Vazquez, C., Mitiche, A., Ben Ayed, I.[Ismail],
Image Segmentation as Regularized Clustering: A Fully Global Curve Evolution Method,
ICIP04(V: 3467-3470).
IEEE DOI 0505
BibRef

Mitiche, A.[Amar], Ben Ayed, I.[Ismail],
Variational and Level Set Methods in Image Segmentation,
Springer2011, ISBN: 978-3-642-15351-8
WWW Link. Survey, Level Set Segmentation. Buy this book: Variational and Level Set Methods in Image Segmentation (Springer Topics in Signal Processing) 1011
Code, Level Set Segmentation. Code:
WWW Link. BibRef

Mathlouthi, Y.[Yosra], Mitiche, A.[Amar], Ben Ayed, I.[Ismail],
Boundary Preserving Variational Image Differentiation,
GCPR16(355-364).
Springer DOI 1611
BibRef

Dejnožková, E.[Eva], Dokládal, P.[Petr],
Embedded Real-Time Architecture for Level-Set-Based Active Contours,
JASP(2005), No. 17, 2005, pp. 2788-2803.
WWW Link. 0603
BibRef
Earlier:
Modelling of Overlapping Circular Objects Based on Level Set Approach,
ICIAR04(I: 416-423).
Springer DOI 0409
BibRef

Chabardčs, T.[Théodore], Dokládal, P.[Petr], Faessel, M.[Matthieu], Bilodeau, M.[Michel],
An Affinity Score for Grains Merging and Touching Grains Separation,
ISMM17(423-434).
Springer DOI 1706
overlapping objects. BibRef

Borocco, A.[Albane], Fellah, C.[Clémentine], Braun, J.[James], Berger, M.H.[Marie-Hélčne], Dokládal, P.[Petr],
Morphological Characterization of Graphene Plans Stacking,
ISMM17(435-446).
Springer DOI 1706
BibRef

Lie, J.[Johan], Lysaker, M.[Marius], Tai, X.C.[Xue-Cheng],
A Binary Level Set Model and Some Applications to Mumford-Shah Image Segmentation,
IP(15), No. 5, May 2006, pp. 1171-1181.
IEEE DOI 0605
BibRef
Earlier:
Piecewise Constant Level Set Methods and Image Segmentation,
ScaleSpace05(573-584).
Springer DOI 0505
See also Graph Cuts for Curvature Based Image Denoising. BibRef

Tai, X.C.[Xue-Cheng], Christiansen, O.[Oddvar], Lin, P.[Ping], SkjĆlaaen, I.[Inge],
Image Segmentation Using Some Piecewise Constant Level Set Methods with MBO Type of Projection,
IJCV(73), No. 1, June 2007, pp. 61-76.
Springer DOI 0702
BibRef

Han, S., Tao, W., Wang, D., Tai, X.C., Wu, X.,
Image Segmentation Based on GrabCut Framework Integrating Multiscale Nonlinear Structure Tensor,
IP(18), No. 10, October 2009, pp. 2289-2302.
IEEE DOI 0909
BibRef

Losnegĺrd, A.[Are], Christiansen, O.[Oddvar], Tai, X.C.[Xue-Cheng],
Piecewise Constant Level Set Method for 3D Image Segmentation,
SSVM07(687-696).
Springer DOI 0705
BibRef

de Cezaro, A.[Adriano], Leităo, A.[Antonio], Tai, X.C.[Xue-Cheng],
On Level-Set Type Methods for Recovering Piecewise Constant Solutions of Ill-Posed Problems,
SSVM09(50-62).
Springer DOI 0906
BibRef

Hodneland, E.[Erlend], Tai, X.C.[Xue-Cheng], Gerdes, H.H.[Hans-Hermann],
Four-Color Theorem and Level Set Methods for Watershed Segmentation,
IJCV(82), No. 3, May 2009, pp. xx-yy.
Springer DOI 0903
BibRef

Tai, X.C.[Xue-Cheng], Hodneland, E.[Erlend], Weickert, J.[Joachim], Bukoreshtliev, N.V.[Nickolay V.], Lundervold, A.[Arvid], Gerdes, H.H.[Hans-Hermann],
Level Set Methods for Watershed Image Segmentation,
SSVM07(178-190).
Springer DOI 0705
BibRef

Groisser, D.[David],
Some Differential-Geometric Remarks on a Method for Minimizing Constrained Functionals of Matrix-Valued Functions,
JMIV(24), No. 3, May 2006, pp. 349-358.
Springer DOI 0605
BibRef

Lee, S.H., Seo, J.K.,
Level Set-Based Bimodal Segmentation With Stationary Global Minimum,
IP(15), No. 9, August 2006, pp. 2843-2852.
IEEE DOI 0608
BibRef

Lee, S.H., Woo, H., Gi-Kang, M.G.,
Global Illumination Invariant Object Detection With Level Set Based Bimodal Segmentation,
CirSysVideo(20), No. 4, April 2010, pp. 616-620.
IEEE DOI 1003
BibRef

Brox, T.[Thomas], Weickert, J.[Joachim],
Level Set Segmentation With Multiple Regions,
IP(15), No. 10, October 2006, pp. 3213-3218.
IEEE DOI 0609
BibRef
Earlier:
Level Set Based Image Segmentation with Multiple Regions,
DAGM04(415-423).
Springer DOI 0505
BibRef

Brox, T.[Thomas], Bruhn, A.[Andrés], Weickert, J.[Joachim],
Variational Motion Segmentation with Level Sets,
ECCV06(I: 471-483).
Springer DOI 0608
BibRef

Brox, T.[Thomas], Cremers, D.[Daniel],
On Local Region Models and a Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional,
IJCV(84), No. 2, August 2009, pp. xx-yy.
Springer DOI 0906
BibRef
Earlier:
On the Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional,
SSVM07(203-213).
Springer DOI Or:
PDF File. 0705
BibRef

Strekalovskiy, E.[Evgeny], Cremers, D.[Daniel],
Real-Time Minimization of the Piecewise Smooth Mumford-Shah Functional,
ECCV14(II: 127-141).
Springer DOI 1408
BibRef

Brox, T.[Thomas], Rousson, M.[Mikael], Deriche, R.[Rachid], Weickert, J.[Joachim],
Colour, texture, and motion in level set based segmentation and tracking,
IVC(28), No. 3, March 2010, pp. 376-390.
Elsevier DOI 1001
Image segmentation; Tracking; Level set methods; Nonlinear diffusion; Texture; Motion BibRef

Kim, Y.J., Brox, T.[Thomas], Feiden, W., Weickert, J.[Joachim],
Fully automated segmentation and morphometrical analysis of muscle fibre images,
Cytometry(A, 71), January 2007, pp. 8-15. BibRef 0701
And: TRPreprint No. 177, July 2006. Department of Mathematics, Saarland University, Saarbrücken, Germany. BibRef

Kolev, K.[Kalin], Brox, T.[Thomas], Cremers, D.[Daniel],
Robust Variational Segmentation of 3D Objects from Multiple Views,
DAGM06(688-697).
Springer DOI 0610
BibRef

Hanning, T.[Tobias], Schöne, R.[René], Pisinger, G.[Georg],
Vector Image Segmentation by Piecewise Continuous Approximation,
JMIV(25), No. 1, July 2006, pp. 5-23.
Springer DOI 0610
BibRef

Hanning, T.[Tobias], Farr, H., Kellner, M., Lauren, V.,
Segmentation of Vector Images by N-level-set-fitting,
ICIP01(II: 793-796).
IEEE DOI 0108
BibRef

Aujol, J.F.[Jean-Francois], Chan, T.F.[Tony F.],
Combining geometrical and textured information to perform image classification,
JVCIR(17), No. 5, October 2006, pp. 1004-1023.
WWW Link. 0711
Classification; Texture; Geometrical image; Decomposition; Logic model; Level-set; Active contour; PDE; Wavelets BibRef

Lam, B.S.Y., Yan, H.,
A curve tracing algorithm using level set based affine transform,
PRL(28), No. 2, 15 January 2007, pp. 181-196.
WWW Link. 0611
Fuzzy curve-tracing (FCT) algorithm; Level set method; Affine transform; Pattern thinning; Skeletonization BibRef

Juan, O.[Olivier], Keriven, R.[Renaud], Postelnicu, G.[Gheorghe],
Stochastic Motion and the Level Set Method in Computer Vision: Stochastic Active Contours,
IJCV(69), No. 1, August 2006, pp. 7-25.
Springer DOI 0606
BibRef

Allene, C.[Cedric], Audibert, J.Y.[Jean-Yves], Couprie, M.[Michel], Keriven, R.[Renaud],
Some links between extremum spanning forests, watersheds and min-cuts,
IVC(28), No. 10, October 2010, pp. 1460-1471.
Elsevier DOI 1007
Min-cuts; Extremum spanning forests; Watersheds; Segmentation BibRef

Duchenne, O.[Olivier], Audibert, J.Y.[Jean-Yves], Keriven, R.[Renaud], Ponce, J.[Jean], Segonne, F.[Florent],
Segmentation by transduction,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Maurel, P.[Pierre], Keriven, R.[Renaud], Faugeras, O.D.[Olivier D.],
Reconciling Landmarks and Level Sets,
ICPR06(IV: 69-72).
IEEE DOI 0609
BibRef

Pons, J.P.[Jean-Philippe], Hermosillo, G.[Gerardo], Keriven, R.[Renaud], Faugeras, O.D.[Olivier D.],
How to deal with point correspondences and tangential velocities in the level set framework,
ICCV03(894-899).
IEEE DOI 0311
BibRef
Earlier: INRIARR-4857, 2003.
HTML Version. BibRef

Ballester, C.[Coloma], Caselles, V.[Vicent], Igual, L.[Laura], Garrido, L.[Luis],
Level Lines Selection with Variational Models for Segmentation and Encoding,
JMIV(27), No. 1, January 2007, pp. 5-27.
Springer DOI 0702
BibRef

Cremers, D.[Daniel], Rousson, M.[Mikael], Deriche, R.[Rachid],
A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape,
IJCV(72), No. 2, April 2007, pp. 195-215.
Springer DOI Or:
PDF File. 0702
BibRef

Chaudhury, K.N.[Kunal N.], Ramakrishnan, K.R.,
Stability and convergence of the level set method in computer vision,
PRL(28), No. 7, May 2007, pp. 884-893.
WWW Link. 0703
Level-set method; Tracking; Curve evolution; Difference equation; Numerical stability; Courant-Friedrichs-Levy condition BibRef

Gelas, A., Bernard, O., Friboulet, D., Prost, R.,
Compactly Supported Radial Basis Functions Based Collocation Method for Level-Set Evolution in Image Segmentation,
IP(16), No. 7, July 2007, pp. 1873-1887.
IEEE DOI 0707
See also Variational B-Spline Level-Set: A Linear Filtering Approach for Fast Deformable Model Evolution. BibRef

Fredj, S.B.[Sarra Ben], Glatard, T.[Tristan], Casta, C.[Christopher], Clarysse, P.[Patrick],
An exploration framework for segmentation parameter spaces,
ICIP11(2257-2260).
IEEE DOI 1201
BibRef

Gelas, A., Schaerer, J., Bernard, O., Friboulet, D., Clarysse, P., Magnin, I.E., Prost, R.,
Radial Basis Functions Collocation Methods for Model Based Level-Set Segmentation,
ICIP07(II: 237-240).
IEEE DOI 0709
BibRef

de Santis, A.[Alberto], Iacoviello, D.[Daniela],
A discrete level set approach to image segmentation,
SIViP(1), No. 4, October 2007, pp. 303-320.
Springer DOI 0711
BibRef

de Santis, A.[Alberto], Iacoviello, D.[Daniela],
Discrete image modelling for piecewise constant segmentation by artificial neural networks,
IET-IPR(2), No. 1, February 2008, pp. 37-47.
DOI Link 0905
BibRef

Fan, D.,
Level-set image segmenation software,
Online2002.
WWW Link. Code, Segmentation. BibRef 0200

Chen, Q.A.[Qi-Ang], Luo, J.[Jian], Heng, P.A.[Pheng Ann], Xia, D.S.[De-Shen],
Fast and active texture segmentation based on orientation and local variance,
JVCIR(18), No. 2, April 2007, pp. 119-129.
WWW Link. 0711
Texture segmentation; Orientation and local variance; Separability; Nonlinear diffusion; Level set; Active image segmentation See also Two-Stage Object Tracking Method Based on Kernel and Active Contour. BibRef

Cao, G.[Guo], Mao, Z.H.[Zhi-Hong], Yang, X.[Xin], Xia, D.S.[De-Shen],
Optical aerial image partitioning using level sets based on modified Chan-Vese model,
PRL(29), No. 4, 1 March 2008, pp. 457-464.
WWW Link. 0711
Optical aerial image; Image partitioning; Level sets; Chan-Vese model See also Active contours without edges. BibRef

Hsu, C.Y.[Chih-Yu], Yang, C.H.[Chih-Hung], Wang, H.C.[Hui-Ching],
Topological control of level set method depending on topology constraints,
PRL(29), No. 4, 1 March 2008, pp. 537-546.
WWW Link. 0711
Image processing; Segmentation; Geometric active contour; Level set method BibRef

Shi, Y.G.[Yong-Gang], Karl, W.C.[W. Clem],
A Real-Time Algorithm for the Approximation of Level-Set-Based Curve Evolution,
IP(17), No. 5, May 2008, pp. 645-656.
IEEE DOI 0804
BibRef
Earlier:
Real-Time Tracking Using Level Sets,
CVPR05(II: 34-41).
IEEE DOI 0507
BibRef

Ségonne, F.[Florent],
Active Contours Under Topology Control: Genus Preserving Level Sets,
IJCV(79), No. 2, August 2008, pp. xx-yy.
Springer DOI 0711
BibRef

Ségonne, F.[Florent], Pons, J.P.[Jean-Philippe], Grimson, W.E.L.[W. Eric L.], Fischl, B.[Bruce],
Active Contours Under Topology Control Genus Preserving Level Sets,
CVBIA05(135-145).
Springer DOI 0601
BibRef
And: A1, A2, A4, A3:
A Novel Active Contour Framework. Multi-component Level Set Evolution under Topology Control,
CSAIL-2005-038, June 2005.
WWW Link. BibRef

Fablet, R., Pujolle, S., Chessel, A., Benzinou, A., Cao, F.,
2D Image-based reconstruction of shape deformation of biological structures using a level-set representation,
CVIU(111), No. 3, September 2008, pp. 295-306.
WWW Link. 0809
BibRef
Earlier:
Variational Level-Set Reconstruction of Accretionary Morphogenesis from Images,
ICIP06(221-224).
IEEE DOI 0610
Shape matching; Accretionary morphogenesis; Level-set representation; Inverse problem BibRef

Yip, A.M., Ding, C., Chan, T.F.,
Dynamic Cluster Formation Using Level Set Methods,
PAMI(28), No. 6, June 2006, pp. 877-889.
IEEE DOI 0605
Density based clustering. BibRef

Law, Y.N., Lee, H.K., Yip, A.M.,
A Multiresolution Stochastic Level Set Method for Mumford-Shah Image Segmentation,
IP(17), No. 12, December 2008, pp. 2289-2300.
IEEE DOI 0811
BibRef

Law, Y.N.[Yan Nei], Lee, H.K.[Hwee Kuan], Yip, A.M.[Andy M.],
Learning Dynamical Shape Prior for Level Set based Cell Tracking,
BMVA(2013), No. 1, 2013, pp. 6, 1-14.
PDF File. 1304
BibRef

Law, Y.N., Lee, H.K., Liu, C., Yip, A.M.,
A Variational Model for Segmentation of Overlapping Objects With Additive Intensity Value,
IP(20), No. 6, June 2011, pp. 1495-1503.
IEEE DOI 1106
BibRef

Law, Y.N., Lee, H.K., Ng, M.K., Yip, A.M.,
A Semisupervised Segmentation Model for Collections of Images,
IP(21), No. 6, June 2012, pp. 2955-2968.
IEEE DOI 1202
BibRef

Lau, T.S.[Tze Siong], Yip, A.M.[Andy M.],
A Fast Method for Segmenting Images with Additive Intensity Value,
SIIMS(5), No. 3 2012, pp. 993-1021.
DOI Link 1209
BibRef

Ni, K.Y.[Kang-Yu], Hong, B.W.[Byung-Woo], Soatto, S.[Stefano], Chan, T.F.[Tony F.],
Unsupervised multiphase segmentation: A recursive approach,
CVIU(113), No. 4, April 2009, pp. 502-510.
Elsevier DOI 0903
Segmentation; Scale-Space; Multiphase; Active contour; Mumford-Shah; Chan-Vese See also Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model, A. BibRef

Badshah, N., Chen, K.[Ke],
On Two Multigrid Algorithms for Modeling Variational Multiphase Image Segmentation,
IP(18), No. 5, May 2009, pp. 1097-1106.
IEEE DOI 0904
Repeated use of Vese-Chan ( See also Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model, A. ) And a variation on multigrid. BibRef

Ali, H.[Haider], Badshah, N.[Noor], Chen, K.[Ke], Khan, G.A.[Gulzar Ali],
A variational model with hybrid images data fitting energies for segmentation of images with intensity inhomogeneity,
PR(51), No. 1, 2016, pp. 27-42.
Elsevier DOI 1601
Image segmentation BibRef

Mabood, L.[Lutful], Ali, H.[Haider], Badshah, N.[Noor], Chen, K.[Ke], Khan, G.A.[Gulzar Ali],
Active contours textural and inhomogeneous object extraction,
PR(55), No. 1, 2016, pp. 87-99.
Elsevier DOI 1604
Image selective segmentation BibRef

Çapar, A.[Abdulkerim], Kurt, B.[Binnur], Gökmen, M.[Muhittin],
Gradient-based shape descriptors,
MVA(20), No. 6, October 2009, pp. xx-yy.
Springer DOI 0910
BibRef
Earlier: A1, A3, Only:
Concurrent Segmentation and Recognition with Shape-Driven Fast Marching Methods,
ICPR06(I: 155-158).
IEEE DOI 0609
Statistical boundary shape into level set framework. BibRef

Capar, A.[Abdulkerim], Gokmen, M.[Muhittin],
Shape Recognition by Voting on Fast Marching Iterations,
ACIVS09(379-388).
Springer DOI 0909
BibRef

Li, F.[Fang], Shen, C.M.[Chao-Min], Li, C.M.[Chun-Ming],
Multiphase Soft Segmentation with Total Variation and H1 Regularization,
JMIV(37), No. 2, June 2010, pp. xx-yy.
Springer DOI 1003
inspired by the level set formulation of multiphase Chan-Vese model BibRef

Bertelli, L.[Luca], Chandrasekaran, S.[Shivkumar], Gibou, F.[Frédéric], Manjunath, B.S.,
On the Length and Area Regularization for Multiphase Level Set Segmentation,
IJCV(90), No. 3, December 2010, pp. 267-282.
WWW Link. 1011
BibRef

Xie, X.H.[Xiang-Hua], Mirmehdi, M.[Majid],
Radial basis function based level set interpolation and evolution for deformable modelling,
IVC(29), No. 2-3, February 2011, pp. 167-177.
Elsevier DOI 1101
BibRef
Earlier:
Implicit Active Model using Radial Basis Function Interpolated Level Sets,
BMVC07(xx-yy).
PDF File. 0709
Deformable model; Level set; Radial basis function; Re-initialisation free BibRef

Gao, X.[Xinbo], Wang, B.[Bin], Tao, D.C.[Da-Cheng], Li, X.L.[Xue-Long],
A Relay Level Set Method for Automatic Image Segmentation,
SMC-B(41), No. 2, April 2011, pp. 518-525.
IEEE DOI 1103
See also Zernike-Moment-Based Image Super Resolution. See also Mammographic mass segmentation: Embedding multiple features in vector-valued level set in ambiguous regions. BibRef

Yang, X.[Xi], Gao, X.[Xinbo], Tao, D.C.[Da-Cheng], Li, X.L.[Xue-Long], Li, J.[Jie],
An Efficient MRF Embedded Level Set Method for Image Segmentation,
IP(24), No. 1, January 2015, pp. 9-21.
IEEE DOI 1502
Markov processes BibRef

Wang, B.[Bin], Gao, X.[Xinbo], Tao, D.C.[Da-Cheng], Li, X.L.[Xue-Long],
A Nonlinear Adaptive Level Set for Image Segmentation,
Cyber(44), No. 3, March 2014, pp. 418-428.
IEEE DOI 1404
Bayes methods BibRef

Wang, Y.[Ying], Gao, X.[Xinbo], Li, X.L.[Xue-Long], Tao, D.C.[Da-Cheng], Wang, B.[Bin],
Embedded Geometric Active Contour with Shape Constraint for Mass Segmentation,
CAIP09(995-1002).
Springer DOI 0909
BibRef

Balla-Arabe, S., Gao, X.[Xinbo], Wang, B.[Bin],
A Fast and Robust Level Set Method for Image Segmentation Using Fuzzy Clustering and Lattice Boltzmann Method,
Cyber(43), No. 3, 2013, pp. 910-920.
IEEE DOI 1307
fuzzy clustering method; Image edge detection BibRef

Yang, X., Gao, X., Tao, D., Li, X.,
Improving Level Set Method for Fast Auroral Oval Segmentation,
IP(23), No. 7, July 2014, pp. 2854-2865.
IEEE DOI 1407
Accuracy BibRef

Wang, B.[Bin], Gao, X.[Xinbo], Tao, D.C.[Da-Cheng], Li, X.L.[Xue-Long], Li, J.[Jie],
The Gabor-Based Tensor Level Set Method for Multiregional Image Segmentation,
CAIP09(987-994).
Springer DOI 0909
BibRef

Peng, J.T.[Jian-Teng], Shen, J.B.[Jian-Bing], Jia, Y.D.[Yun-De], Li, X.L.[Xue-Long],
Saliency Cut in Stereo Images,
CDC4CV13(22-28)
IEEE DOI 1403
image segmentation BibRef

Balla-Arabe, S., Gao, X.[Xinbo], Wang, B.[Bin],
GPU Accelerated Edge-Region Based Level Set Evolution Constrained by 2D Gray-Scale Histogram,
IP(22), No. 7, 2013, pp. 2688-2698.
IEEE DOI 1307
edge detection; graphics processing units; 2D gray-scale histogram information BibRef

Gao, W.H.[Wen-Hua], Bertozzi, A.[Andrea],
Level Set Based Multispectral Segmentation with Corners,
SIIMS(4), No. 2, 2011, pp. 597-617.
WWW Link. 1110
BibRef

Aghasi, A.[Alireza], Kilmer, M.[Misha], Learned-Miller, E.G.[Erik G.],
Parametric Level Set Methods for Inverse Problems,
SIIMS(4), No. 2, 2011, pp. 618-650.
WWW Link. 1110
BibRef

Song, Y.,
A Topdown Algorithm for Computation of Level Line Trees,
IP(16), No. 8, August 2007, pp. 2107-2116.
IEEE DOI 0709
BibRef

Song, Y.Q.[Yu-Qing], Chen, X.L.[Xi-Lin], Ma, Z.G.[Zhi-Guo],
Computation of Level-Set Components From Level Lines,
IP(20), No. 10, October 2011, pp. 2722-2729.
IEEE DOI 1110
BibRef

Liu, C.X.[Chun-Xiao], Dong, F.F.[Fang-Fang], Zhu, S.F.[Sheng-Feng], Kong, D.X.[De-Xing], Liu, K.[Kefeng],
New Variational Formulations for Level Set Evolution Without Reinitialization with Applications to Image Segmentation,
JMIV(41), No. 3, November 2011, pp. 194-209.
WWW Link. 1110
BibRef

Lou, Q.[Qiong], Peng, J.L.[Jia-Lin], Wu, F.[Fa], Kong, D.X.[De-Xing],
Variational Model for Image Segmentation,
ISVC13(II:653-662).
Springer DOI 1311
BibRef

Luo, Z.H.[Zhong-Hua], Wu, J.[Jitao],
The integration of directional information and local region information for accurate image segmentation,
PRL(32), No. 15, 1 November 2011, pp. 1990-1997.
Elsevier DOI 1112
Image segmentation; Variational level set formulation; Local intensity fitting energy; Global intensity fitting energy BibRef

Mukherjee, D.P.[Dipti Prasad], Ray, N.[Nilanjan],
Contour Interpolation Using Level-set Analysis,
IJIG(12), No. 1, January 2012, pp. 1250004.
DOI Link 1203
BibRef

Gu, Y., Wang, L.L., Tai, X.C.,
A Direct Approach Toward Global Minimization for Multiphase Labeling and Segmentation Problems,
IP(21), No. 5, May 2012, pp. 2399-2411.
IEEE DOI 1204
BibRef

Wang, L.L.[Li-Lian], Shi, Y.Y.[Yu-Ying], Tai, X.C.[Xue-Cheng],
Robust Edge Detection Using Mumford-Shah Model and Binary Level Set Method,
SSVM11(291-301).
Springer DOI 1201
BibRef

Carreira, J.[Joao], Sminchisescu, C.[Cristian],
CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts,
PAMI(34), No. 7, July 2012, pp. 1312-1328.
IEEE DOI 1205
BibRef
Earlier:
Constrained parametric min-cuts for automatic object segmentation,
CVPR10(3241-3248).
IEEE DOI 1006
Generate and rank plausible hypotheses for the spatial extent of objects in images. Figure-Ground segmentation. BibRef

Carreira, J.[Joăo], Caseiro, R.[Rui], Batista, J.P.[Jorge P.], Sminchisescu, C.[Cristian],
Free-Form Region Description with Second-Order Pooling,
PAMI(37), No. 6, June 2015, pp. 1177-1189.
IEEE DOI 1506
BibRef
Earlier:
Semantic Segmentation with Second-Order Pooling,
ECCV12(VII: 430-443).
Springer DOI 1210
Encoding BibRef

Ion, A.[Adrian], Carreira, J.[Joăo], Sminchisescu, C.[Cristian],
Probabilistic Joint Image Segmentation and Labeling by Figure-Ground Composition,
IJCV(107), No. 1, March 2014, pp. 40-57.
Springer DOI 1403
BibRef
Earlier:
Image segmentation by figure-ground composition into maximal cliques,
ICCV11(2110-2117).
IEEE DOI 1201
compose multiple hypotheses into complete segmentation BibRef

Yuan, J., Li, P., Wen, Y., Xu, Y.,
Level set segmentation of intensity inhomogeneous images based on local linear approximation of difference image,
IET-IPR(6), No. 5, 2012, pp. 473-482.
DOI Link 1210
BibRef

Zosso, D.[Dominique], Bresson, X.[Xavier], Thiran, J.P.[Jean-Philippe],
Geodesic Active Fields: A Geometric Framework for Image Registration,
IP(20), No. 5, May 2011, pp. 1300-1312.
IEEE DOI 1104
BibRef
Earlier: A1, A3, Only:
Geodesic Active Fields on the Sphere,
ICPR10(4484-4487).
IEEE DOI 1008
register images defined on spherical meshes. (Cortical feature maps) See also Variational Model for Object Segmentation Using Boundary Information and Shape Prior Driven by the Mumford-Shah Functional, A. BibRef

Estellers, V.[Virginia], Zosso, D.[Dominique], Bresson, X.[Xavier], Thiran, J.P.[Jean-Philippe],
Harmonic Active Contours,
IP(23), No. 1, January 2014, pp. 69-82.
IEEE DOI 1402
BibRef
Earlier:
Harmonic active contours for multichannel image segmentation,
ICIP11(3141-3144).
IEEE DOI 1201
BibRef
Earlier: A3, A4, Only:
Image Segmentation Model using Active Contour and Image Decomposition,
ICIP06(1657-1660).
IEEE DOI 0610
differential geometry BibRef

Zosso, D.[Dominique], Bresson, X.[Xavier], Thiran, J.P.[Jean-Philippe],
Fast Geodesic Active Fields for Image Registration Based on Splitting and Augmented Lagrangian Approaches,
IP(23), No. 2, February 2014, pp. 673-683.
IEEE DOI 1402
Gaussian processes BibRef

Estellers, V.[Virginia], Zosso, D.[Dominique], Lai, R.J.[Rong-Jie], Osher, S., Thiran, J.P.[Jean-Philippe], Bresson, X.[Xavier],
Efficient Algorithm for Level Set Method Preserving Distance Function,
IP(21), No. 12, December 2012, pp. 4722-4734.
IEEE DOI 1212
BibRef

Estellers, V., Thiran, J.P., Bresson, X.,
Enhanced Compressed Sensing Recovery With Level Set Normals,
IP(22), No. 7, 2013, pp. 2611-2626.
IEEE DOI 1307
textured images; Image edge detection BibRef

Estellers, V., Soatto, S., Bresson, X.,
Adaptive Regularization With the Structure Tensor,
IP(24), No. 6, June 2015, pp. 1777-1790.
IEEE DOI 1504
Adaptation models BibRef

Estellers, V.[Virginia], Soatto, S.[Stefano],
Adaptive Discretizations for Non-smooth Variational Vision,
SSVM17(629-642).
Springer DOI 1706
BibRef

Gorthi, S., Cuadra, M.B.[M. Bach], Tercier, P.A., Allal, A.S., Thiran, J.P.[Jean-Philippe],
Weighted Shape-Based Averaging With Neighborhood Prior Model for Multiple Atlas Fusion-Based Medical Image Segmentation,
SPLetters(20), No. 11, 2013, pp. 1034-1037.
IEEE DOI 1310
Markov processes BibRef

Zhang, K., Zhang, L., Song, H., Zhang, D.,
Reinitialization-Free Level Set Evolution via Reaction Diffusion,
IP(22), No. 1, January 2013, pp. 258-271.
IEEE DOI 1301
BibRef

Xiao, C.X.[Chun-Xia], Gan, J.J.[Jia-Jia], Hu, X.Y.[Xiang-Yun],
Fast level set image and video segmentation using new evolution indicator operators,
VC(29), No. 1, January 2013, pp. 27-39.
WWW Link. 1301
BibRef

Wang, Y.[Ying], Xiang, S.M.[Shi-Ming], Pan, C.H.[Chun-Hong], Wang, L.F.[Ling-Feng], Meng, G.F.[Gao-Feng],
Level set evolution with locally linear classification for image segmentation,
PR(46), No. 6, June 2013, pp. 1734-1746.
Elsevier DOI 1302
BibRef
Earlier: A1, A4, A2, A3, Only: ICIP11(3361-3364).
IEEE DOI 1201
Locally linear classification; Active contour model; Level set methods; Image segmentation BibRef

Gong, Y.C.[Yong-Chao], Xiang, S.M.[Shi-Ming], Pan, C.H.[Chun-Hong],
Fine-structured object segmentation via neighborhood propagation,
PR(60), No. 1, 2016, pp. 130-144.
Elsevier DOI 1609
Fine-structured object segmentation BibRef

Gong, Y.C.[Yong-Chao], Xiang, S.M.[Shi-Ming], Wang, L.F.[Ling-Feng], Pan, C.H.[Chun-Hong],
Fine-structured object segmentation via local and nonlocal neighborhood propagation,
ICIP15(4619-4623)
IEEE DOI 1512
Fine-structured (FS) object segmentation BibRef

Xin, X.M.[Xiao-Meng], Wang, L.F.[Ling-Feng], Pan, C.H.[Chun-Hong],
Active contours driven by time-varying fitting energy,
ICIP16(4304-4308)
IEEE DOI 1610
Active contours BibRef

Xin, X.M.[Xiao-Meng], Wang, L.F.[Ling-Feng], Pan, C.H.[Chun-Hong], Liu, S.G.[Shi-Gang],
Adaptive regularization level set evolution for medical image segmentation and bias field correction,
ICIP15(1006-1010)
IEEE DOI 1512
Level set; adaptive regularization; bias field; image segmentation BibRef

Andersson, T.[Thord], Läthén, G.[Gunnar], Lenz, R.[Reiner], Borga, M.[Magnus],
Modified Gradient Search for Level Set Based Image Segmentation,
IP(22), No. 2, February 2013, pp. 621-630.
IEEE DOI 1302
BibRef
Earlier:
A Fast Optimization Method for Level Set Segmentation,
SCIA09(400-409).
Springer DOI 0906
BibRef
Earlier: A2, A1, A3, A4:
Momentum Based Optimization Methods for Level Set Segmentation,
SSVM09(124-136).
Springer DOI 0906
BibRef

Wu, H.[Hao], Appia, V.[Vikram], Yezzi, A.J.[Anthony J.],
Numerical Conditioning Problems and Solutions for Nonparametric I.I.D. Statistical Active Contours,
PAMI(35), No. 6, June 2013, pp. 1298-1311.
IEEE DOI 1305
segment an image without any a priori information on object or background. BibRef

Appia, V.[Vikram], Yezzi, A.J.[Anthony J.],
Symmetric Fast Marching Schemes for Better Numerical Isotropy,
PAMI(35), No. 9, 2013, pp. 2298-2304.
IEEE DOI 1307
BibRef
Earlier:
Active geodesics: Region-based active contour segmentation with a global edge-based constraint,
ICCV11(1975-1980).
IEEE DOI 1201
BibRef
Earlier:
Fully Isotropic Fast Marching Methods on Cartesian Grids,
ECCV10(I: 73-85).
Springer DOI 1009
BibRef
Earlier: ECCV10(VI: 71-83).
Springer DOI 1009
Accuracy. So that the order is not as important. See also Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Science. BibRef

Appia, V.[Vikram], Ganapathy, B.[Balaji], Yezzi, A.J.[Anthony J.], Faber, T.[Tracy],
Localized principal component analysis based curve evolution: A divide and conquer approach,
ICCV11(1981-1986).
IEEE DOI 1201
Evolve curve semi-locally, then combines locally accurate curves to get global segmentation. BibRef

Li, C., Wang, X., Eberl, S., Fulham, M., Feng, D.D.,
Robust Model for Segmenting Images With/Without Intensity Inhomogeneities,
IP(22), No. 8, 2013, pp. 3296-3309.
IEEE DOI Image segmentation; gaussian distribution; gibbs distribution; level set 1307
BibRef

Li, C., Wang, X., Eberl, S., Fulham, M., Feng, D.,
A New Energy Framework With Distribution Descriptors for Image Segmentation,
IP(22), No. 9, 2013, pp. 3578-3590.
IEEE DOI 1309
Level set; distribution; segmentation BibRef

Kasaiezadeh, A.[Alireza], Khajepour, A.[Amir],
Multi-agent stochastic level set method in image segmentation,
CVIU(117), No. 9, 2013, pp. 1147-1162.
Elsevier DOI 1307
Image segmentation BibRef

Zhang, H., Ye, X., Chen, Y.,
An Efficient Algorithm for Multiphase Image Segmentation With Intensity Bias Correction,
IP(22), No. 10, 2013, pp. 3842-3851.
IEEE DOI 1309
Image segmentation BibRef

Dong, F.F.[Fang-Fang], Chen, Z.S.[Zeng-Si], Wang, J.W.[Jin-Wei],
A new level set method for inhomogeneous image segmentation,
IVC(31), No. 10, 2013, pp. 809-822.
Elsevier DOI 1310
Level set method BibRef

Yang, H.Z.[Hong-Zhe], Zhao, L.H.[Li-Hui], Tang, S.Y.[Song-Yuan], Wang, Y.T.[Yong-Tian],
A variational level set segmentation formulation based on signal model for images in the presence of intensity inhomogeneity,
IJIST(24), No. 1, 2014, pp. 45-51.
DOI Link 1403
image segmentation BibRef

Tepper, M.[Mariano], Muse, P.[Pablo], Almansa, A.[Andres],
On the Role of Contrast and Regularity in Perceptual Boundary Saliency,
JMIV(48), No. 3, March 2014, pp. 396-412.
Springer DOI 1403
Morphology. BibRef

Alipour, S.[Siavash], Shanbehzadeh, J.[Jamshid],
Fast automatic medical image segmentation based on spatial kernel fuzzy c-means on level set method,
MVA(25), No. 6, 2014, pp. 1469-1488.
WWW Link. 1408
BibRef

Liu, J.[Jun], Tai, X.C.[Xue-Cheng], Leung, S.Y.[Shing-Yu], Huang, H.Y.[Hai-Yang],
A new continuous max-flow algorithm for multiphase image segmentation using super-level set functions,
JVCIR(25), No. 6, 2014, pp. 1472-1488.
Elsevier DOI 1407
Image segmentation BibRef

Liu, S.W.[Si-Wei], Galland, F.[Frederic], Bertaux, N.[Nicolas],
Fast nonparametric active contour adapted to quadratic inhomogeneous intensity fluctuations,
PR(47), No. 11, 2014, pp. 3681-3692.
Elsevier DOI 1407
Segmentation BibRef

Allain, M.[Marc], Bertaux, N.[Nicolas], Galland, F.[Frederic],
Nonparametric Level-Set Segmentation Based on the Minimization of the Stochastic Complexity,
ACIVS08(xx-yy).
Springer DOI 0810
BibRef

Raviv, T.R.[Tammy Riklin], Gao, Y.[Yi], Levitt, J.J.[James J.], Bouix, S.[Sylvain],
Statistical Shape Analysis of Neuroanatomical Structures via Level-Set-based Shape Morphing,
SIIMS(7), No. 3, 2014, pp. 1645-1668.
DOI Link 1410
BibRef
Earlier:
Statistical Shape Analysis for Population Studies via Level-Set Based Shape Morphing,
NORDIA12(I: 42-51).
Springer DOI 1210
BibRef

Wang, X.F.[Xiao-Feng], Min, H.[Hai], Zou, L.[Le], Zhang, Y.G.[Yi-Gang],
A novel level set method for image segmentation by incorporating local statistical analysis and global similarity measurement,
PR(48), No. 1, 2015, pp. 189-204.
Elsevier DOI 1410
Image segmentation BibRef

Min, H.[Hai], Jia, W.[Wei], Wang, X.F.[Xiao-Feng], Zhao, Y.[Yang], Hu, R.X.[Rong-Xiang], Luo, Y.T.[Yue-Tong], Xue, F.[Feng], Lu, J.T.[Jing-Ting],
An Intensity-Texture model based level set method for image segmentation,
PR(48), No. 4, 2015, pp. 1547-1562.
Elsevier DOI 1502
Image segmentation BibRef

Xu, Z.[Zhi], Huang, T.Z.[Ting-Zhu], Wang, H.[Hui], Wang, C.L.[Chuan-Long],
Variant of the region-scalable fitting energy for image segmentation,
JOSA-A(32), No. 3, March 2015, pp. 463-470.
DOI Link 1503
Digital image processing; Image detection systems Variant of Level Set. BibRef

Wang, Y.G.[Yu-Gang], Huang, T.Z.[Ting-Zhu], Wang, H.[Hui],
Region-based active contours with cosine fitting energy for image segmentation,
JOSA-A(32), No. 11, November 2015, pp. 2237-2246.
DOI Link 1512
Digital image processing; Image detection systems BibRef

Korfiatis, V.C.[Vasileios Ch.], Asvestas, P.A.[Pantelis A.], Matsopoulos, G.K.[George K.],
Automatic local parameterization of the Chan Vese active contour model's force coefficients using edge information,
JVCIR(29), No. 1, 2015, pp. 71-78.
Elsevier DOI 1504
Geometric active contours See also Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model, A. BibRef

Dubrovina-Karni, A.[Anastasia], Rosman, G.[Guy], Kimmel, R.[Ron],
Multi-Region Active Contours with a Single Level Set Function,
PAMI(37), No. 8, August 2015, pp. 1585-1601.
IEEE DOI 1507
BibRef
Earlier:
Active Contours for Multi-region Image Segmentation with a Single Level Set Function,
SSVM13(416-427).
Springer DOI 1305
Active contours BibRef

Zhang, K., Zhang, L., Lam, K., Zhang, D.,
A Level Set Approach to Image Segmentation With Intensity Inhomogeneity,
Cyber(46), No. 2, February 2016, pp. 546-557.
IEEE DOI 1601
Gaussian distribution BibRef

Cheng, X.[Xuan], Zeng, M.[Ming], Liu, X.G.[Xin-Guo],
Spatially constrained level-set tracking and segmentation of non-rigid objects,
JVCIR(38), No. 1, 2016, pp. 745-752.
Elsevier DOI 1605
Segmentation-based tracking BibRef

Lamas-Rodríguez, J.[Julián], Heras, D.B.[Dora B.], Argüello, F.[Francisco], Kainmueller, D.[Dagmar], Zachow, S.[Stefan], Bóo, M.[Montserrat],
GPU-accelerated level-set segmentation,
RealTimeIP(12), No. 1, June 2016, pp. 15-29.
Springer DOI 1606
BibRef

Zhou, X.[Xue], Li, X.[Xi], Hu, W.,
Learning A Superpixel-Driven Speed Function for Level Set Tracking,
Cyber(46), No. 7, July 2016, pp. 1498-1510.
IEEE DOI 1606
Adaptation models BibRef

Zhou, X.[Xue], Li, X.[Xi], Chin, T.J.[Tat-Jun], Suter, D.[David],
Superpixel-driven level set tracking,
ICIP12(409-412).
IEEE DOI 1302
BibRef

Shahvaran, Z.[Zahra], Kazemi, K.[Kamran], Helfroush, M.S.[Mohamad Sadegh],
Simultaneous vector-valued image segmentation and intensity nonuniformity correction using variational level set combined with Markov random field modeling,
SIViP(10), No. 5, May 2016, pp. 887-893.
Springer DOI 1608
BibRef

Alarcon-Ramirez, A., Rwebangira, M.R., Chouikha, M.F., Manian, V.,
A New Methodology Based on Level Sets for Target Detection in Hyperspectral Images,
GeoRS(54), No. 9, September 2016, pp. 5385-5396.
IEEE DOI 1609
geophysical image processing BibRef

He, K.[Kun], Wang, D.[Dan], Zhang, X.[Xu],
Image segmentation using the level set and improved-variation smoothing,
CVIU(152), No. 1, 2016, pp. 29-40.
Elsevier DOI 1609
Image segmentation BibRef

Balla-Arabé, S.[Souleymane], Gao, X.B.[Xin-Bo], Ginhac, D.[Dominique], Brost, V.[Vincent], Yang, F.[Fan],
Architecture-Driven Level Set Optimization: From Clustering to Subpixel Image Segmentation,
Cyber(46), No. 12, December 2016, pp. 3181-3194.
IEEE DOI 1612
Active contours BibRef

Abdelsamea, M.M.[Mohammed M.],
A semi-automated system based on level sets and invariant spatial interrelation shape features for Caenorhabditis elegans phenotypes,
JVCIR(41), No. 1, 2016, pp. 314-323.
Elsevier DOI 1612
Level sets BibRef

Vakili, N.[Nima], Rezghi, M.[Mansoor], Hosseini, S.M.[S. Mohammad],
Improving image segmentation by using energy function based on mixture of Gaussian pre-processing,
JVCIR(41), No. 1, 2016, pp. 239-246.
Elsevier DOI 1612
Active contour BibRef

Khadidos, A., Sanchez, V., Li, C.T.,
Weighted Level Set Evolution Based on Local Edge Features for Medical Image Segmentation,
IP(26), No. 4, April 2017, pp. 1979-1991.
IEEE DOI 1704
Active contours BibRef

Bungert, L.[Leon], Aizinger, V.[Vadym], Fried, M.[Michael],
A Discontinuous Galerkin Method for the Subjective Surfaces Problem,
JMIV(58), No. 1, May 2017, pp. 147-161.
Springer DOI 1704
BibRef

Mesadi, F., Cetin, M., Tasdizen, T.,
Disjunctive Normal Parametric Level Set With Application to Image Segmentation,
IP(26), No. 6, June 2017, pp. 2618-2631.
IEEE DOI 1705
BibRef
Earlier:
Disjunctive normal level set: An efficient parametric implicit method,
ICIP16(4299-4303)
IEEE DOI 1610
image representation, image segmentation, set theory, shape recognition, Bayesian framework, DNLS, appearance model, convenient shape representation, disjunctive normal parametric level set method, energy minimization, image segmentation, irregularity formation, local region-based image segmentation, multiphase image segmentation, numerical computation, polytope union, signed distance function, topological changes, two-phase image segmentation, variational approach, Bayes methods, Computational efficiency, Computational modeling, Image segmentation, Level set, Mathematical model, Shape, Bayesian methods, Level set, disjunctive normal forms, multiphase level set, parametric level set, segmentation, variational BibRef

Baxter, J.S.H.[John S. H.], Rajchl, M.[Martin], McLeod, A.J.[A. Jonathan], Yuan, J.[Jing], Peters, T.M.[Terry M.],
Directed Acyclic Graph Continuous Max-Flow Image Segmentation for Unconstrained Label Orderings,
IJCV(123), No. 3, July 2017, pp. 415-434.
Springer DOI 1706
BibRef

Rajchl, M.[Martin], Baxter, J.S.H.[John S. H.], Bae, E.[Egil], Tai, X.C.[Xue-Cheng], Fenster, A.[Aaron], Peters, T.M.[Terry M.], Yuan, J.[Jing],
Variational Time-Implicit Multiphase Level-Sets,
EMMCVPR15(278-291).
Springer DOI 1504
BibRef


Wang, X.[Xili], Li, H.[Hu], Wang, X.Y.[Xi-Yuan],
A bias correction variational level set image segmentation model combining structure extraction,
ICIVC17(327-331)
IEEE DOI 1708
Computational modeling, Data models, Image segmentation, Kernel, Level set, Standards, bias correction, image segmentation, structure extraction, variational, level, set BibRef

Raviv, T.R.[Tammy Riklin],
Multinomial Level-Set Framework for Multi-region Image Segmentation,
SSVM17(386-395).
Springer DOI 1706
BibRef

Tabia, K.[Kaouther], Desquesnes, X.[Xavier], Lucas, Y.[Yves], Treuillet, S.[Sylvie],
A Multiphase Level Set Method on Graphs for Hyperspectral Image Segmentation,
ACIVS16(559-569).
Springer DOI 1611
BibRef

Zheng, S., Fang, B., Wang, P.S.P., Li, L., Gao, M.,
Multi-scale B-spline level set segmentation based on Gaussian kernel equalization,
ICIP16(4319-4323)
IEEE DOI 1610
Image edge detection BibRef

Luo, J.F.[Jun-Feng], Ma, J.W.[Jin-Wen],
Image segmentation with the competitive learning based MS model,
ICIP15(182-186)
IEEE DOI 1512
BSDS500; Competitive Learning; Image Segmentation; Level Set; MS Model See also Berkeley Segmentation Dataset and Benchmark, The. BibRef

Cinque, L.[Luigi], Cossu, R.[Rossella],
Speed Parameters in the Level-Set Segmentation,
CAIP15(II:541-553).
Springer DOI 1511
BibRef

Ngo, T.A.[Tuan Anh], Carneiro, G.[Gustavo],
Fully Automated Non-rigid Segmentation with Distance Regularized Level Set Evolution Initialized and Constrained by Deep-Structured Inference,
CVPR14(3118-3125)
IEEE DOI 1409
Deep inference; Deep learning; Level sets method; Non-rigid segmentation BibRef

Sun, S.L.[Si-Liang], Zhang, J.P.[Jun-Ping], Zou, B.[Bin], Wu, X.Q.[Xiang-Qian],
A level set method for very high resolution airborne sar image segmentation,
ICIP13(4039-4043)
IEEE DOI 1402
Image Segmentation; Level Set; SAR Images; Very High Resolution BibRef

Soni, A.[Akshay], Haupt, J.[Jarvis],
Level set estimation from compressive measurements using box constrained total variation regularization,
ICIP12(2573-2576).
IEEE DOI 1302
BibRef

Yang, Z.[Zhi], Kong, Y.[Yu], Fu, Y.[Yun],
Contour-HOG: A Stub Feature based Level Set Method for Learning Object Contour,
BMVC12(15).
DOI Link 1301
BibRef

Wirthgen, T.[Tom], Lempe, G.[Georg], Zipser, S.[Stephan], Grünhaupt, U.[Ulrich],
Level-Set Based Infrared Image Segmentation for Automatic Veterinary Health Monitoring,
ICCVG12(685-693).
Springer DOI 1210
BibRef

Al-Qunaieer, F.S.[Fares S.], Tizhoosh, H.R.[Hamid R.], Rahnamayan, S.[Shahryar],
Multi-resolution level set image segmentation using wavelets,
ICIP11(269-272).
IEEE DOI 1201
BibRef

Desquesnes, X.[Xavier], El Moataz, A.[Abderrahim], Lezoray, O.[Olivier],
PDEs level sets on weighted graphs,
ICIP11(3377-3380).
IEEE DOI 1201
BibRef

Gérard, Y.[Yan],
Recognition of Digital Polyhedra with a Fixed Number of Faces,
DGCI16(415-426).
WWW Link. 1606
BibRef

Provot, L.[Laurent], Gerard, Y.[Yan],
Recognition of Digital Hyperplanes and Level Layers with Forbidden Points,
IWCIA11(144-156).
Springer DOI 1105
BibRef

Zhang, K.[Kaihua], Zhang, L.[Lei], Zhang, S.[Su],
A variational multiphase level set approach to simultaneous segmentation and bias correction,
ICIP10(4105-4108).
IEEE DOI 1009
BibRef

Kim, D.Y.[Du Yong], Yang, E.[Ehwa], Jeon, M.[Moongu], Shin, V.[Vladimir],
Real-time level set based tracking with appearance model using Rao-Blackwellized particle filter,
ICIP10(4125-4128).
IEEE DOI 1009
BibRef

Li, W.[Wei], Zhang, X.Q.[Xiao-Qin], Xie, N.H.[Nian-Hua], Hu, W.M.[Wei-Ming], Luo, W.[Wenhan], Ling, H.B.[Hai-Bin],
Probabilistic Index Histogram for Robust Object Tracking,
VS10(184-194).
Springer DOI 1109
BibRef

Li, W.[Wei], Zhang, X.Q.[Xiao-Qin], Gao, J.[Jun], Hu, W.M.[Wei-Ming], Ling, H.B.[Hai-Bin], Zhou, X.[Xue],
Discriminative Level Set for Contour Tracking,
ICPR10(1735-1738).
IEEE DOI 1008
BibRef

Oliver, A.[Arnau], Torrent, A.[Albert], Llado, X.[Xavier], Marti, J.[Joan],
Automatic Diagnosis of Masses by Using Level set Segmentation and Shape Description,
ICPR10(2528-2531).
IEEE DOI 1008
BibRef

Horbert, E.[Esther], Mitzel, D.[Dennis], Leibe, B.[Bastian],
Geometrically Constrained Level Set Tracking for Automotive Applications,
DAGM10(472-482).
Springer DOI 1009
BibRef

Chen, S.[Siqi], Charpiat, G.[Guillaume], Radke, R.J.[Richard J.],
Converting Level Set Gradients to Shape Gradients,
ECCV10(V: 715-728).
Springer DOI 1009
BibRef

Wang, L.[Li], Macione, J.[Jim], Sun, Q.S.[Quan-Sen], Xia, D.S.[De-Shen], Li, C.M.[Chun-Ming],
Level Set Segmentation Based on Local Gaussian Distribution Fitting,
ACCV09(I: 293-302).
Springer DOI 0909
BibRef

Yang, M.Y.[Michael Ying],
Multiregion level-set segmentation of synthetic aperture radar images,
ICIP09(1717-1720).
IEEE DOI 0911
BibRef

Kybic, J.[Jan], Kratky, J.[Jakub],
Discrete curvature calculation for fast level set segmentation,
ICIP09(3017-3020).
IEEE DOI 0911
BibRef

Jahangiri, M.[Mohammad], Heesch, D.[Daniel],
Modified grabcut for unsupervised object segmentation,
ICIP09(2389-2392).
IEEE DOI 0911
BibRef

Cai, X.C.[Xiong-Cai], Sowmya, A.,
Learning to tune level set methods,
IVCNZ09(310-315).
IEEE DOI 0911
BibRef

Chen, D., Chen, B., Mamic, G., Fookes, C., Sridharan, S.,
Improved GrabCut Segmentation via GMM Optimisation,
DICTA08(39-45).
IEEE DOI 0812
BibRef

Buemi, M.E.[Maria Elena], Goussies, N.[Norberto], Jacobo, J.[Julio], Mejail, M.[Marta],
SAR Image Segmentation Using Level Sets and Region Competition under the GHGH Model,
CIARP09(153-160).
Springer DOI 0911
BibRef

Scheuermann, B.[Björn], Rosenhahn, B.[Bodo],
Interactive Image Segmentation Using Level Sets and Dempster-Shafer Theory of Evidence,
SCIA11(656-665).
Springer DOI 1105
BibRef
Earlier:
Feature Quarrels: The Dempster-Shafer Evidence Theory for Image Segmentation Using a Variational Framework,
ACCV10(II: 426-439).
Springer DOI 1011
BibRef
Earlier:
Analysis of Numerical Methods for Level Set Based Image Segmentation,
ISVC09(II: 196-207).
Springer DOI 0911
See also SlimCuts: GraphCuts for High Resolution Images Using Graph Reduction. BibRef

Xie, Q.J.[Qiang-Jun],
A Fast Object Extraction Based on Semi-Implicit Scheme and Level Set,
CISP09(1-4).
IEEE DOI 0910
BibRef

Xie, Q.J.[Qiang-Jun], Zhang, H.R.[Hua-Rong],
Fast Image Segmentation Based on Single-Parametric Level-Set Approach,
CISP09(1-4).
IEEE DOI 0910
BibRef

Liu, T.[Tao], Zhou, Q.W.[Qin-Wu], Bian, Z.Z.[Zheng-Zhong], Cao, T.S.[Tie-Sheng],
A Novel Level Set Initialization Method,
CISP09(1-5).
IEEE DOI 0910
BibRef

Fei, X.F.[Xian-Feng], Igarashi, Y.[Yasunobu], Hashimoto, K.[Koichi],
Parallel Region-Based Level Set Method with Displacement Correction for Tracking a Single Moving Object,
ACIVS09(462-473).
Springer DOI 0909
BibRef

Vazquez-Reina, A.[Amelio], Gelbart, M.[Michael], Huang, D.[Daniel], Lichtman, J.[Jeff], Learned-Miller, E.G.[Erik G.], Pfister, H.[Hanspeter],
Segmentation fusion for connectomics,
ICCV11(177-184).
IEEE DOI 1201
BibRef

Vazquez-Reina, A.[Amelio], Avidan, S.[Shai], Pfister, H.[Hanspeter], Learned-Miller, E.G.[Erik G.],
Multiple Hypothesis Video Segmentation from Superpixel Flows,
ECCV10(V: 268-281).
Springer DOI 1009
BibRef

Vazquez-Reina, A.[Amelio], Learned-Miller, E.G.[Erik G.], Pfister, H.[Hanspeter],
Multiphase geometric couplings for the segmentation of neural processes,
CVPR09(2020-2027).
IEEE DOI 0906
geometrically constraining multiphase level sets for image segmentation BibRef

Cobzas, D.[Dana], Schmidt, M.[Mark],
Increased discrimination in level set methods with embedded conditional random fields,
CVPR09(328-335).
IEEE DOI 0906
Improve level set segmentation by embedding trained conditional random field into energy function. BibRef

Li, X.L.[Xiao-Lin], Guan, M.Y.[Ming-You], Wang, X.L.[Xiu-Li],
Fast level set method with dichromatic reflection model,
IASP09(154-156).
IEEE DOI 0904
BibRef

Yu, W.M.[Wei-Miao], Lee, H.K.[Hwee Kuan], Hariharan, S.[Srivats], Bu, W.Y.[Wen-Yu], Ahmed, S.[Sohail],
Level Set Segmentation of Cellular Images Based on Topological Dependence,
ISVC08(I: 540-551).
Springer DOI 0812
BibRef

Wang, Q.[Qi], Wei, W.[Weibo], Pan, Z.K.[Zhen-Kuan],
Variational image segmentation on implicit surface using Split-Bregman method,
IASP10(340-345).
IEEE DOI 1004
BibRef

Pan, Z.K.[Zhen-Kuan], Li, H.[Hua], Wei, W.[Weibo], Xu, S.H.[Shu-Hua],
A Variational Level Set Method for Multiple Object Detection,
ISVC08(II: 733-742).
Springer DOI 0812
BibRef

Marot, J., Caulier, Y., Kuleschov, A., Spinnler, K., Bourennane, S.,
Contour Detection for Industrial Image Processing by Means of Level Set Methods,
ACIVS08(xx-yy).
Springer DOI 0810
BibRef

Flenner, A.[Arjuna],
Finding Edge Features Using the Fast Level Set Transform and the Helmholtz Principle,
Southwest08(9-12).
IEEE DOI 0803
BibRef

Papadopoulo, T.[Theodore], Vallaghe, S.[Sylvain],
Implicit Meshing for Finite Element Methods using Levelsets,
MMBIA07(1-8).
IEEE DOI 0710
BibRef

Folkesson, J.[Jenny], Westin, C.F.[Carl-Fredrik],
Spatially Varying Classification with Localization Certainty in Level Set Segmentation,
MMBIA07(1-7).
IEEE DOI 0710
BibRef

Jiang, T.T.[Ting-Ting], Tomasi, C.[Carlo],
Finite-Element Level-Set Curve Particles,
NRTL07(1-7).
IEEE DOI 0710
BibRef

Hurtut, T.[Thomas], Cheriet, F.[Farida],
Automatic Closed Edge Detection Using Level Lines Selection,
ICIAR07(187-197).
Springer DOI 0708
BibRef

Wang, J., Chan, K.L., Wang, Y.,
On the Stationary Solution of PDE based Curve Evolution,
BMVC08(xx-yy).
PDF File. 0809
BibRef

Thida, M.[Myo], Chan, K.L.[Kap Luk], Eng, H.L.[How-Lung],
An Improved Real-Time Contour Tracking Algorithm Using Fast Level Set Method,
PSIVT06(702-711).
Springer DOI 0612
BibRef

Rink, K.[Karsten], Tönnies, K.D.[Klaus D.],
Locally Adaptive Speed Functions for Level Sets in Image Segmentation,
CAIP09(963-970).
Springer DOI 0909
BibRef
Earlier:
Distance-based Speed Functions for Level Set Methods in Image Segmentation,
BMVC08(xx-yy).
PDF File. 0809
BibRef
Earlier:
A Modification of the Level Set Speed Function to Bridge Gaps in Data,
DAGM06(152-161).
Springer DOI 0610
BibRef

Li, M.[Min], Kambhamettu, C.[Chandra], Stone, M.[Maureen],
A Level Set Approach for Shape Recovery of Open Contours,
ACCV06(I:601-611).
Springer DOI 0601
BibRef

Liu, H.F.[Hua-Feng], Chen, Y.M.[Yun-Mei], Chen, W.F.[Wu-Fan],
Neighborhood Aided Implicit Active Contours,
CVPR06(I: 841-848).
IEEE DOI 0606
BibRef

Ho, H.P.[Hon Pong], Chen, Y.M.[Yun-Mei], Liu, H.F.[Hua-Feng], Shi, P.C.[Peng-Cheng],
Level Set Active Contours on Unstructured Point Cloud,
CVPR05(II: 690-697).
IEEE DOI 0507
BibRef

Cao, G.[Guo], Yang, X.[Xin], Mao, Z.H.[Zhi-Hong],
A Two-Stage Level Set Evolution Scheme for Man-Made Objects Detection in Aerial Images,
CVPR05(I: 474-479).
IEEE DOI 0507
BibRef

Wang, D.J.[De-Jun], Zhao, J.[Jiali], Kee, S.C.[Seok-Cheol], Tang, Z.S.[Ze-Sheng],
Level set methods, distance function and image segmentation,
ICPR04(II: 110-115).
IEEE DOI 0409
BibRef

He, L.[Lin], Osher, S.J.[Stanley J.],
Solving the Chan-Vese Model by a Multiphase Level Set Algorithm Based on the Topological Derivative,
SSVM07(777-788).
Springer DOI 0705
See also Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model, A. BibRef

Tsai, Y.H.[Yen-Hsi], Osher, S.J.,
Level set methods in image science,
ICIP03(II: 631-634).
IEEE DOI 0312
BibRef

Cao, G.[Guo], Yang, X.[Xin], Chen, S.S.[Shou-Shui],
Robust Matching Area Selection for Terrain Matching Using Level Set Method,
ICIAR05(423-430).
Springer DOI 0509
BibRef

Xie, X.H.[Xiang-Hua],
Level Set Based Segmentation Using Local Feature Distribution,
ICPR10(2780-2783).
IEEE DOI 1008
BibRef

Xie, X.H.[Xiang-Hua], Minnehdi, M.,
Level-set based geometric colour snake with region support,
ICIP03(II: 153-156).
IEEE DOI 0312
BibRef

Khames, M., Miled, B.H., Miller, E.,
On the extension of level-set curve evolution methods for low-sensitivity imaging problems,
ICIP02(II: 625-628).
IEEE DOI 0210
BibRef

Ranchin, F., Dibos, F.,
Variational Level Set Methods: From Continuous to Discrete Setting, Applications in Video Segmentation and Tracking,
ICIP05(I: 273-276).
IEEE DOI 0512
BibRef

Dibos, F., Koepfler, G.,
Total Variation Minimization by the Fast Level Sets Transform,
LevelSet01(xx-yy). 0106
BibRef
Earlier:
Image denoising through a level set approach,
ICIP98(III: 264-268).
IEEE DOI 9810
BibRef

Catte, F., Dibos, F., Koepfler, G.,
A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets,
ICIP94(I: 26-30).
IEEE DOI 9411
BibRef
And: ICPR94(C:156-158).
IEEE DOI 9410
BibRef

Rumpf, M., Strzodka, R.,
Level Set Segmentation in Graphics Hardware,
ICIP01(III: 1103-1106).
IEEE DOI 0108
BibRef

de Rivaz, P., Kingsbury, N.,
Fast Segmentation Using Level Set Curves of Complex Wavelet Surfaces,
ICIP00(Vol III: 592-595).
IEEE DOI 0008
BibRef

Harper, P., Reilly, R.,
Color Based Video Segmentation Using Level Sets,
ICIP00(Vol III: 480-483).
IEEE DOI 0008
BibRef

Migeon, B.[Bruno], Boissé, F.[Fabien], Deforge, P.[Philippe], Marché, P.[Pierre],
Geodesic Path Based Interpolation Using Level Sets Propagation,
CAIP99(285-292).
Springer DOI 9909
BibRef

Yahia, H.M., Mazars, G., Berroir, J.P.[Jean-Paul],
Segmentation of deformable templates with level sets characterized by particle systems,
ICPR98(Vol II: 1421-1423).
IEEE DOI 9808
BibRef

Tanaka, H.T., Kling, O., Lee, D.T.L.,
On surface curvature computation from level set contours,
ICPR90(I: 155-160).
IEEE DOI 9006
BibRef

Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Level Sets, Shape Models, Prior Shape Models .


Last update:Sep 18, 2017 at 11:34:11