8.7.5 Splines, General Methods, General Papers

Chapter Contents (Back)
Splines. See also Spline Based Models, B-Splines.

Cohen, E.[Elaine], Lyche, T.[Tom], Riesenfeld, R.F.[Richard F.],
Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics,
CGIP(14), No. 2, October 1980, pp. 87-111.
WWW Link. 0501
Unify models, interference calculation, contouring, rendering, etc. BibRef

Dierckx, P.,
Algorithms for Smoothing Data with Periodic and Parametric Splines,
CGIP(20), No. 2, October 1982, pp. 171-184.
WWW Link. Fitting splines to data. BibRef 8210

Tiller, W.,
Rational B-Splines for Curve and Surface Representation,
IEEE_CGA(3), No. 6, November 1983, pp. 61-69. BibRef 8311

Frost, C.E., Kinzel, G.L.,
An Automatic Adjustment Procedure for Rational Splines,
Computers&Graphics(6), 1982, pp. 171-176. BibRef 8200

Barsky, B.A., Beatty, J.C.,
Local Control of Bias and Tension in Beta-Splines,
TOG(2), 1983, pp. 109-134. BibRef 8300

Barsky, B.A.[Brian A.],
Exponential and Polynomial Methods for Applying Tension to an Interpolating Spline Curve,
CVGIP(27), No. 1, July 1984, pp. 1-18.
WWW Link. BibRef 8407

Alia, G., Barsi, F., Martinelli, E., and Tani, N.,
Angular Spline: A New Approach to the Interpolation Problem in Computer Graphics,
CVGIP( 39), No. 1, July 1987, pp. 56-72.
WWW Link. BibRef 8707

Pham, B.[Binh],
Conic B-Splines for Curve Fitting: A Unifying Approach,
CVGIP(45), No. 1, January 1989, pp. 117-125.
WWW Link. Representations. BibRef 8901

Cheng, F., Goshtasby, A.,
A Parallel B-Spline Surface Fitting Algorithm,
TOG(8), 1989, pp. 41-50. BibRef 8900

Goshtasby, A.[Ardeshir], Cheng, F.H.[Fu-Hua], Barsky, B.A.[Brian A.],
B-Spline Curves and Surfaces Viewed as Digital Filters,
CVGIP(52), No. 2, November 1990, pp. 264-275.
WWW Link. BibRef 9011

Unser, M., Aldroubi, A., and Eden, M.,
Fast B-Spline Transforms for Continuous Image Representation and Interpolation,
PAMI(13), No. 3, March 1991, pp. 277-285.
IEEE DOI BibRef 9103

Rabut, C.[Christophe],
Even Degree B-Spline Curves and Surfaces,
GMIP(54), No. 4, July 1992, pp. 351-356. A Note on See also B-Spline Curves and Surfaces Viewed as Digital Filters. BibRef 9207

Pavlidis, T.,
Applications of Splines to Shape Description,
VF91(431-441). Splines for representing contours. BibRef 9100

Goldman, R.[Ron], Warren, J.[Joe],
An Extension of Chaiken's Algorithm to B-Spline Curves with Knots in Geometric Progression,
GMIP(55), No. 1, January 1993, pp. 58-yy. BibRef 9301

Howell, G.W.[Gary W.], Fausett, D.W.[Donald W.], Fausett, L.[Laurene],
Quasi-Circular Splines: A Shape-Preserving Approximation,
GMIP(55), No. 2, March 1993, pp. 89-yy. BibRef 9303

Ferrari, L.A., Silbermann, M.J., Sankar, P.V.,
Efficient Algorithms for the Implementation of General B-Splines,
GMIP(56), No. 1, January 1994, pp. 102-yy. BibRef 9401

Sankar, P.V., Ferrari, L.A.,
Simple Algorithms and Architectures for B-Spline Interpolation,
PAMI(10), No. 2, March 1988, pp. 271-276.
IEEE DOI BibRef 8803

Flickner, M.D., Hafner, J.L., Rodriguez, E.J., Sanz, J.L.C.,
Periodic Quasi-Orthogonal Spline Bases and Applications to Least-Squares Curve-Fitting of Digital Images,
IP(5), No. 1, January 1996, pp. 71-88.
IEEE DOI BibRef 9601
Earlier:
Fast least-squares curve fitting using quasi-orthogonal splines,
ICIP94(I: 686-690).
IEEE DOI 9411
BibRef

Ishida, J.,
The General B-Spline Interpolation Method and Its Application to the Modification of Curves and Surfaces,
CAD(29), No. 11, November 1997, pp. 779-790. 9712
BibRef

Tuohy, S.T., Maekawa, T., Shen, G., Patrikalakis, N.M.,
Approximation of Measured Data with Interval B-Splines,
CAD(29), No. 11, November 1997, pp. 791-799. 9712
BibRef

Karczewicz, M., Gabbouj, M.,
Robust B-Spline Image Modeling with Application to Image Processing,
IP(7), No. 6, June 1998, pp. 912-917.
IEEE DOI 9806
See also Dedicated Hardware System for a Class of Nonlinear Order Statistics Rational Hybrid Filters with Applications to Image Processing, A. BibRef

Wang, Y.P., Lee, S.L., Toraichi, K.,
Multiscale Curvature-Based Shape Representation Using B-Spline Wavelets,
IP(8), No. 11, November 1999, pp. 1586-1592.
IEEE DOI 9911
BibRef

Panda, R.[Rutuparna], Chatterji, B.N.,
Least squares generalized B-spline signal and image processing,
SP(81), No. 10, October 2001, pp. 2005-2017.
WWW Link. 0110
BibRef

Lehmann, T.M., Gonner, C., Spitzer, K.,
Addendum: B-spline interpolation in medical image processing,
MedImg(20), No. 7, July 2001, pp. 660-665.
IEEE Top Reference. 0110
BibRef

Hu, S.M., Tai, C.L., Zhang, S.,
An extension algorithm for B-splines by curve unclamping,
CAD(34), 2002, pp. 415-419.
Elsevier DOI BibRef 0200

van de Ville, D., Blu, T., Unser, M., Philips, W., Lemahieu, I., van de Walle, R.,
Hex-splines: a novel spline family for hexagonal lattices,
IP(13), No. 6, June 2004, pp. 758-772.
IEEE DOI 0406
BibRef

Condat, L.[Laurent], van de Ville, D.[Dimitri],
Quasi-Interpolating Spline Models for Hexagonally-Sampled Data,
IP(16), No. 5, May 2007, pp. 1195-1206.
IEEE DOI 0704
BibRef

van de Ville, D., Blu, T., Unser, M.,
Isotropic Polyharmonic B-Splines: Scaling Functions and Wavelets,
IP(14), No. 11, November 2005, pp. 1798-1813.
IEEE DOI 0510
BibRef

Beg, M.F.[M. Faisal], Miller, M.I.[Michael I.], Trouvé, A.[Alain], Younes, L.[Laurent],
Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms,
IJCV(61), No. 2, February 2005, pp. 139-157.
DOI Link 0410
BibRef

Beg, M.F.[M. Faisal], Khan, A.,
Symmetric Data Attachment Terms for Large Deformation Image Registration,
MedImg(26), No. 9, September 2007, pp. 1179-1189.
IEEE DOI 0710
BibRef

Miller, M.I.[Michael I.], Trouvé, A.[Alain], Younes, L.[Laurent],
Geodesic Shooting for Computational Anatomy,
JMIV(24), No. 2, March 2006, pp. 209-228.
Springer DOI 0605
BibRef
Earlier:
The Metric Spaces, Euler Equations, and Normal Geodesic Image Motions of Computational Anatomy,
ICIP03(II: 635-638).
IEEE DOI 0312
BibRef

Allassonnière, S.[Stéphanie], Trouvé, A.[Alain], Younes, L.[Laurent],
Geodesic Shooting and Diffeomorphic Matching Via Textured Meshes,
EMMCVPR05(365-381).
Springer DOI 0601
BibRef

Dinten, J.M., Trouve, A.,
A deformable model approach for the determination of transition strips on radiographic images,
ICPR92(II:355-358).
IEEE DOI 9208
BibRef

Younes, L.[Laurent],
Combining Geodesic Interpolating Splines and Affine Transformations,
IP(15), No. 5, May 2006, pp. 1111-1119.
IEEE DOI 0605
BibRef

Camion, V.[Vincent], Younes, L.[Laurent],
Geodesic Interpolating Splines,
EMMCVPR01(513-527).
Springer DOI 0205
BibRef

Garcin, L.[Laurent], Younes, L.[Laurent],
Geodesic Matching with Free Extremities,
JMIV(25), No. 3, October 2006, pp. 329-340.
Springer DOI 0611
BibRef
Earlier:
Geodesic Image Matching: A Wavelet Based Energy Minimization Scheme,
EMMCVPR05(349-364).
Springer DOI 0601
BibRef

Felsberg, M.[Michael], Forssen, P.E.[Per-Erik], Scharr, H.[Hanno],
Channel Smoothing: Efficient Robust Smoothing of Low-Level Signal Features,
PAMI(28), No. 2, February 2006, pp. 209-222.
IEEE DOI 0601
Encode into channels, average the channels, decode the channels. BibRef

Felsberg, M.[Michael],
Extending Graph-Cut to Continuous Value Domain Minimization,
CRV07(274-281).
IEEE DOI 0705
BibRef

Felsberg, M.[Michael],
Wiener Channel Smoothing: Robust Wiener Filtering of Images,
DAGM05(468).
Springer DOI 0509
BibRef

Ciulla, C., Deek, F.P.,
Novel Schemes of Trivariate Linear and One-Dimensional Quadratic B-Spline Interpolation Functions Based on the Sub-Pixel Efficacy Region,
GVIP(05), No. V8, 2005, pp. 42-53.
HTML Version. BibRef 0500

Ameur, E.B.[El Bachir], Sbibih, D.[Driss], Almhdie, A.[Ahmad], Leger, C.[Christophe],
New Spline Quasi-Interpolant for Fitting 3-D Data on the Sphere: Applications to Medical Imaging,
SPLetters(14), No. 5, May 2007, pp. 333-336.
IEEE DOI 0704
BibRef

Li, X.[Xin], Deng, J.S.[Jian-Song], Chen, F.L.[Fa-Lai],
Surface modeling with polynomial splines over hierarchical T-meshes,
VC(23), No. 12, December 2007, pp. 1027-1033.
Springer DOI 0712
BibRef

Shen, L.Y.[Li-Yong], Chen, F.L.[Fa-Lai], Jüttler, B.[Bert], Deng, J.S.[Jian-Song],
Approximate mu-Bases of Rational Curves and Surfaces,
GMP06(175-188).
Springer DOI 0607
BibRef

Aigner, M.[Martin], Jüttler, B.[Bert],
Robust fitting of implicitly defined surfaces using Gauss-Newton-type techniques,
VC(25), No. 8, August 2009, pp. xx-yy.
Springer DOI 0907
BibRef

Aigner, M., Sir, Z., Jüttler, B.,
Least-Squares Approximation by Pythagorean Hodograph Spline Curves Via an Evolution Process,
GMP06(45-58).
Springer DOI 0607
BibRef

Biswas, S.[Sambhunath], Lovell, B.C.[Brian C.],
Bézier and Splines in Image Processing and Machine Vision,
Springer2008, ISBN: 978-1-84628-956-9.
WWW Link. Survey, Splines. Survey, Active Contours. BibRef 0800

Khan, M.A.[Murtaza Ali], Ohno, Y.[Yoshio],
Compression of Video Data Using Parametric Line and Natural Cubic Spline Block Level Approximation,
IEICE(E90-D), No. 5, May 2007, pp. 844-850.
DOI Link 0705
Spline approximation first. BibRef

Khan, M.A.[Murtaza Ali],
A new method for video data compression by quadratic Bézier curve fitting,
SIViP(6), No. 1, March 2012, pp. 19-24.
WWW Link. 1203
BibRef

Ii, J.D.[Joel Daniels], Ochotta, T.[Tilo], Ha, L.K.[Linh K.], Silva, C.T.[Cláudio T.],
Spline-based feature curves from point-sampled geometry,
VC(24), No. 6, June 2008, pp. xx-yy.
Springer DOI 0804
BibRef

Bao, F.X.[Fang-Xun], Sun, Q.H.[Qing-Hua], Duan, Q.[Qi],
Point control of the interpolating curve with a rational cubic spline,
JVCIR(20), No. 4, May 2009, pp. 275-280.
Elsevier DOI 0905
Rational spline; Value control; Convexity control; Error estimate; Cubic interpolation; Curve design; Local shape control; Inflection point control BibRef

Gomes, A.J.P., Voiculescu, I., Jorge, J., Wyvill, B., Galbraith, C.,
Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms,
Springer2009, ISBN: 978-1-84882-405-8
WWW Link. Buy this book: Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms 0906
BibRef

Kim, D.H.[Dae Hyun], Kim, M.J.[Myoung-Jun],
A New Cubic B-Splines Design Method for Pen Input Environment,
IEICE(E92-D), No. 1, January 2009, pp. 69-77.
WWW Link. 0907
BibRef

Chaudhury, K.N.[Kunal Narayan], Munoz-Barrutia, A.[Arrate], Unser, M.[Michael],
Fast Space-Variant Elliptical Filtering Using Box Splines,
IP(19), No. 9, September 2010, pp. 2290-2306.
IEEE DOI 1008
BibRef
Earlier:
Fast adaptive elliptical filtering using box splines,
ICIP08(785-788).
IEEE DOI 0810
BibRef

Chaudhury, K.N.[Kunal Narayan], Sanyal, S.,
Improvements on 'Fast Space-Variant Elliptical Filtering Using Box Splines',
IP(21), No. 9, September 2012, pp. 3915-3923.
IEEE DOI 1208
BibRef

Chaudhury, K.N.,
Constant-Time Filtering Using Shiftable Kernels,
SPLetters(18), No. 11, November 2011, pp. 651-654.
IEEE DOI 1112
BibRef

Chaudhury, K.N.[Kunal N.],
Fast and accurate bilateral filtering using Gauss-polynomial decomposition,
ICIP15(2005-2009)
IEEE DOI 1512
Bilateral filter BibRef

Lin, T.C., Truong, T.K., Chen, S.H., Wang, L.J., Cheng, T.C.,
Simplified 2-D Cubic Spline Interpolation Scheme Using Direct Computation Algorithm,
IP(19), No. 11, November 2010, pp. 2913-2923.
IEEE DOI 1011
BibRef

Hu, M.X.[Ming-Xiao], Feng, J.Q.[Jie-Qing], Zheng, J.M.[Jian-Min],
An additional branch free algebraic B-spline curve fitting method,
VC(26), No. 6-8, June 2010, pp. 801-811.
WWW Link. 1101
BibRef

Abbas, A.[Abdulwahed], Nasri, A.[Ahmad], Maekawa, T.[Takashi],
Generating B-spline curves with points, normals and curvature constraints: a constructive approach,
VC(26), No. 6-8, June 2010, pp. 823-829.
WWW Link. 1101
BibRef

Sun, Q.H.[Qing-Hua], Bao, F.X.[Fang-Xun], Zhang, Y.F.[Yun-Feng], Duan, Q.[Qi],
A bivariate rational interpolation based on scattered data on parallel lines,
JVCIR(24), No. 1, January 2013, pp. 75-80.
Elsevier DOI 1301
Rational spline; Scattered data; Triangulation; Bivariate interpolation; Computer-aided geometric design; Shape control BibRef

Dube, M.[Mridula], Sharma, R.[Reenu],
Piecewise Quartic Trigonometric Polynomial B-Spline Curves with Two Shape Parameters,
IJIG(12), No. 4, October 2012, pp. 1250028.
DOI Link 1305
BibRef

Averbuch, A.Z.[Amir Z.], Neittaanmäki, P.[Pekka], Zheludev, V.A.[Valery A.],
Spline and Spline Wavelet Methods with Applications to Signal and Image Processing,

Springer2014. ISBN 978-94-017-8925-7
WWW Link. 1404
BibRef

Parvez, M.T.,
Optimised cubic spline approximations of image contours using points suppression,
IET-IPR(9), No. 12, 2015, pp. 1092-1100.
DOI Link 1512
image processing BibRef

Zhang, L.[Li], Ge, X.Y.[Xian-Yu], Tan, J.Q.[Jie-Qing],
Least square geometric iterative fitting method for generalized B-spline curves with two different kinds of weights,
VC(32), No. 9, September 2016, pp. 1109-1120.
WWW Link. 1609
BibRef

Cai, Z., Lan, T., Zheng, C.,
Hierarchical MK Splines: Algorithm and Applications to Data Fitting,
MultMed(19), No. 5, May 2017, pp. 921-934.
IEEE DOI 1704
Approximation algorithms BibRef

Zheng, S.H.[Shen-Hai], Fang, B.[Bin], Li, L.Q.[La-Quan], Gao, M.Q.[Ming-Qi], Chen, R.[Rui], Peng, K.Y.[Kai-Yi],
B-Spline based globally optimal segmentation combining low-level and high-level information,
PR(73), No. 1, 2018, pp. 144-157.
Elsevier DOI 1709
Multi-scale, image, segmentation BibRef

Conti, C.[Costanza], Romani, L.[Lucia], Schenone, D.[Daniela],
Semi-automatic spline fitting of planar curvilinear profiles in digital images using the Hough transform,
PR(74), No. 1, 2018, pp. 64-76.
Elsevier DOI 1711
Hough, transform BibRef


Dokken, T., Skytt, V., Barrowclough, O.,
Locally Refined Splines Representation for Geospatial Big Data,
GeoBigData15(565-570).
DOI Link 1602
BibRef

Tan, J.S.[Joi San], Venkat, I.[Ibrahim], Belaton, B.[Bahari],
An Analytical Curvature B-Spline Algorithm for Effective Curve Modeling,
IVIC15(283-295).
Springer DOI 1511
BibRef

Morwald, T.[Thomas], Balzer, J.[Jonathan], Vincze, M.[Markus],
Direct Optimization of T-Splines Based on Multiview Stereo,
3DV14(20-27)
IEEE DOI 1503
Cameras BibRef

Karantza, A., Alarcon, S.L., Cahill, N.D.,
A comparison of sequential and GPU-accelerated implementations of B-spline signal processing operations for 2-D and 3-D images,
IPTA12(74-79)
IEEE DOI 1503
C++ language BibRef

Chen, F.M.[Feng-Min], Wong, P.J.Y.[Patricia J.Y.],
Solving second order boundary value problems by discrete cubic splines,
ICARCV12(1800-1805).
IEEE DOI 1304
BibRef

Chen, F.M.[Feng-Min], Wong, P.J.Y.[Patricia J.Y.],
Discrete biquintic spline method for Fredholm integral equations of the second kind,
ICARCV12(1806-1811).
IEEE DOI 1304
BibRef

Jalel, S.[Sawssen], Marthon, P.[Philippe], Hamouda, A.[Atef],
Optimized NURBS Curves Modelling Using Genetic Algorithm for Mobile Robot Navigation,
CAIP15(I:534-545).
Springer DOI 1511
BibRef
And:
NURBS Based Multi-objective Path Planning,
MCPR15(190-199).
Springer DOI 1506
BibRef

Jalel, S.[Sawssen], Naouai, M.[Mohamed], Hamouda, A.[Atef], Jebabli, M.[Malek],
NURBS Parameterization: A New Method of Parameterization Using the Correlation Relationship between Nodes,
MCPR12(216-225).
Springer DOI 1208
Non-uniform rational B-splines BibRef

Naouai, M.[Mohamed], Hammouda, A.[Atef], Jalel, S.[Sawssen], Weber, C.[Christiane],
NURBS Skeleton: A New Shape Representation Scheme Using Skeletonization and NURBS Curves Modeling,
CIARP11(197-205).
Springer DOI 1111
BibRef

Zhou, Y.F.[Yuan-Feng], Zhang, C.M.[Cai-Ming], Gao, S.S.[Shan-Shan],
Extension of B-Spline Curves with G 2 Continuity,
ISVC08(II: 1096-1105).
Springer DOI 0812
BibRef

Behar-Jequín, S., Estrada-Sarlabous, J., Hernández-Mederos, V.,
Constrained Interpolation with Implicit Plane Cubic A-Splines,
CIARP08(724-732).
Springer DOI 0809
BibRef

Zang, Y.[Yu], Liu, Y.J.[Yong-Jin], Lai, Y.K.[Yu-Kun],
Note on Industrial Applications of Hu's Surface Extension Algorithm,
GMP08(xx-yy).
Springer DOI 0804
See also extension algorithm for B-splines by curve unclamping, An. BibRef

Salvi, P., Suzuki, H., Várady, T.,
Fast and Local Fairing of B-Spline Curves and Surfaces,
GMP08(xx-yy).
Springer DOI 0804
BibRef

Stefanus, L.Y.[L. Yohanes],
Shape Representations with Blossoms and Buds,
GMP06(397-408).
Springer DOI 0607
Polynomial representations. BibRef

He, Y.[Ying], Wang, K.X.[Ke-Xiang], Wang, H.Y.[Hong-Yu], Gu, X.F.[Xian-Feng], Qin, H.[Hong],
Manifold T-Spline,
GMP06(409-422).
Springer DOI 0607
BibRef

Glas, S.[Sonja], Recatalá, G.[Gabriel], Sorg, M.[Michael],
Automatic Reconstruction of Silhouettes Using B-Splines,
SCIA03(239-246).
Springer DOI 0310
BibRef

Bondarenko, A.V., Svinyin, S.F., Skourikhin, A.V.,
Multidimensional b-spline forms and their fourier transforms,
ICIP03(II: 907-909).
IEEE DOI 0312
BibRef

Mamic, G., Bennamoun, M.,
Automatic Bayesian Knot Placement for Spline Fitting,
ICIP01(I: 169-172).
IEEE DOI 0108
BibRef

Haruki, R., Horiuchi, T.,
Data Fitting by Spline Functions Using the Biorthonormal Basis of the B-spline Basis,
ICPR00(Vol III: 270-273).
IEEE DOI
IEEE DOI 0009
BibRef

Brigger, P., Engel, R., Unser, M.,
B-spline snakes and a JAVA interface: an intuitive tool for general contour outlining,
ICIP98(II: 277-281).
IEEE DOI 9810
BibRef

Guleer, S., Derin, H.[Haluk],
Adaptive feature selection and constrained weak-membrane optimization for boundary detection,
ICIP94(II: 222-226).
IEEE DOI 9411
BibRef

Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Texture Based Segmentation Techniques .


Last update:Dec 7, 2017 at 17:23:10