Surface Deformation from SAR Applied to Volcanoes

Chapter Contents (Back)
Shape from Radar. Volcano. See also Surface Deformation From SAR, InSAR, IFSAR, Interferometry. See also Atmospheric, Dust, Dust Storms, Volcanic Ash, Remote Sensing.

Lu, Z.[Zhong],
InSAR Imaging of Volcanic Deformation over Cloud-prone Areas - Aleutian Islands,
PhEngRS(73), No. 3, March 2007, pp. 245-158.
WWW Link. 0704
Mapping ground surface deformation of volcanoes over the Aleutian Islands using satellite interferometric synthetic aperture radar (InSAR). BibRef

Hirn, B., di Bartola, C., Ferrucci, F.,
Combined Use of SEVIRI and MODIS for Detecting, Measuring, and Monitoring Active Lava Flows at Erupting Volcanoes,
GeoRS(47), No. 8, August 2009, pp. 2923-2930.

Marchese, F., Ciampa, M., Filizzola, C., Lacava, T., Mazzeo, G., Pergola, N.[Nicola], Tramutoli, V.[Valerio],
On the Exportability of Robust Satellite Techniques (RST) for Active Volcano Monitoring,
RS(2), No. 6, June 2010, pp. 1575-1588.
DOI Link 1203

Carter, A., Ramsey, M.,
Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations,
RS(2), No. 11, November 2010, pp. 2571-2583.
DOI Link 1203

Marzano, F.S., Lamantea, M., Montopoli, M., Oddsson, B., Gudmundsson, M.T.,
Validating Subglacial Volcanic Eruption Using Ground-Based C-Band Radar Imagery,
GeoRS(50), No. 4, April 2012, pp. 1266-1282.

Riddick, S.N., Schmidt, D.A., Deligne, N.I.,
An analysis of terrain properties and the location of surface scatterers from persistent scatterer interferometry,
PandRS(73), No. 1, September 2012, pp. 50-57.
Elsevier DOI 1210
InSAR; Persistent scatterers; StaMPS; Cascades; Three Sisters; LiDAR; SAR; Geology; Land cover; Vegetation; Volcanoes BibRef

Blackett, M.[Matthew],
Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity,
RS(6), No. 3, 2014, pp. 2282-2295.
DOI Link 1404

Marsella, M.[Maria], Nardinocchi, C.[Carla], Proietti, C.[Cristina], Daga, L.[Leonardo], Coltelli, M.[Mauro],
Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool,
RS(6), No. 12, 2014, pp. 12166-12186.
DOI Link 1412

Jung, J., Kim, D., Park, S.E.,
Correction of Atmospheric Phase Screen in Time Series InSAR Using WRF Model for Monitoring Volcanic Activities,
GeoRS(52), No. 5, May 2014, pp. 2678-2689.
Atmospheric phase screen (APS) BibRef

Vajedian, S.[Sanaz], Motagh, M.[Mahdi], Nilfouroushan, F.[Faramarz],
StaMPS Improvement for Deformation Analysis in Mountainous Regions: Implications for the Damavand Volcano and Mosha Fault in Alborz,
RS(7), No. 7, 2015, pp. 8323-8347.
DOI Link 1506
And: Response: RS(7), No. 9, 2015, pp. 11324.
DOI Link 1511
See also On the Use of the ISBAS Acronym in InSAR Applications. BibRef

Meyer, F.J., McAlpin, D.B., Gong, W., Ajadi, O., Arko, S., Webley, P.W., Dehn, J.,
Integrating SAR and derived products into operational volcano monitoring and decision support systems,
PandRS(100), No. 1, 2015, pp. 106-117.
Elsevier DOI 1502
Hazards BibRef

Wauthier, C.[Christelle], Cayol, V.[Valérie], Smets, B.[Benoît], d'Oreye, N.[Nicolas], Kervyn, F.[François],
Magma Pathways and Their Interactions Inferred from InSAR and Stress Modeling at Nyamulagira Volcano, D.R. Congo,
RS(7), No. 11, 2015, pp. 15179.
DOI Link 1512

Jo, M.J.[Min-Jeong], Jung, H.S.[Hyung-Sup], Won, J.S.[Joong-Sun],
Detecting the Source Location of Recent Summit Inflation via Three-Dimensional InSAR Observation of Kilauea Volcano,
RS(7), No. 11, 2015, pp. 14386.
DOI Link 1512

Qu, F.F.[Fei-Fei], Lu, Z.[Zhong], Poland, M.[Michael], Freymueller, J.[Jeffrey], Zhang, Q.[Qin], Jung, H.S.[Hyung-Sup],
Post-Eruptive Inflation of Okmok Volcano, Alaska, from InSAR, 2008-2014,
RS(7), No. 12, 2015, pp. 15839.
DOI Link 1601

Zakšek, K.[Klemen], Hort, M.[Matthias], Lorenz, E.[Eckehard],
Satellite and Ground Based Thermal Observation of the 2014 Effusive Eruption at Stromboli Volcano,
RS(7), No. 12, 2015, pp. 15876.
DOI Link 1601

Schaefer, L.N.[Lauren N.], Lu, Z.[Zhong], Oommen, T.[Thomas],
Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala,
RS(8), No. 1, 2016, pp. 73.
DOI Link 1602

Bonforte, A.[Alessandro], González, P.J.[Pablo J.], Fernández, J.[José],
Joint Terrestrial and Aerial Measurements to Study Ground Deformation: Application to the Sciara Del Fuoco at the Stromboli Volcano (Sicily),
RS(8), No. 6, 2016, pp. 463.
DOI Link 1608

McAlpin, D.B.[David B.], Meyer, F.J.[Franz J.], Gong, W.Y.[Wen-Yu], Beget, J.E.[James E.], Webley, P.W.[Peter W.],
Pyroclastic Flow Deposits and InSAR: Analysis of Long-Term Subsidence at Augustine Volcano, Alaska,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link 1702

Kim, J.R.[Jung-Rack], Lin, S.Y.[Shih-Yuan], Yun, H.W.[Hye-Won], Tsai, Y.L.[Ya-Lun], Seo, H.J.[Hwa-Jung], Hong, S.[Sungwook], Choi, Y.[Yun_Soo],
Investigation of Potential Volcanic Risk from Mt. Baekdu by DInSAR Time Series Analysis and Atmospheric Correction,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link 1703

Liu, J.H., Hu, J., Li, Z.W., Zhu, J.J., Sun, Q., Gan, J.,
A Method for Measuring 3-D Surface Deformations With InSAR Based on Strain Model and Variance Component Estimation,
GeoRS(56), No. 1, January 2018, pp. 239-250.
geomorphology, radar interferometry, remote sensing by radar, synthetic aperture radar, volcanology, 3-D surface deformations, variance component estimation (VCE) BibRef

Chen, Y.[Yu], Zhang, K.[Kefei], Tan, K.[Kun], Feng, X.J.[Xiao-Jun], Li, H.[Huaizhan],
Long-Term Subsidence in Lava Fields at Piton de la Fournaise Volcano Measured by InSAR: New Insights for Interpretation of the Eastern Flank Motion,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
And: Correction: RS(11), No. 1, 2018, pp. xx-yy.
DOI Link 1901

Pepe, S.[Susi], D'Auria, L.[Luca], Castaldo, R.[Raffaele], Casu, F.[Francesco], De Luca, C.[Claudio], De Novellis, V.[Vincenzo], Sansosti, E.[Eugenio], Solaro, G.[Giuseppe], Tizzani, P.[Pietro],
The Use of Massive Deformation Datasets for the Analysis of Spatial and Temporal Evolution of Mauna Loa Volcano (Hawai'i),
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806

Papageorgiou, E.[Elena], Foumelis, M.[Michael], Trasatti, E.[Elisa], Ventura, G.[Guido], Raucoules, D.[Daniel], Mouratidis, A.[Antonios],
Multi-Sensor SAR Geodetic Imaging and Modelling of Santorini Volcano Post-Unrest Response,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902

Cando-Jácome, M.[Marcelo], Martínez-Graña, A.[Antonio],
Determination of Primary and Secondary Lahar Flow Paths of the Fuego Volcano (Guatemala) Using Morphometric Parameters,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903

Rogic, N.[Nikola], Cappello, A.[Annalisa], Ferrucci, F.[Fabrizio],
Role of Emissivity in Lava Flow 'Distance-to-Run' Estimates from Satellite-Based Volcano Monitoring,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903

Wang, G.[Guoquan], Liu, H.[Hanlin], Mattioli, G.S.[Glen S.], Miller, M.M.[Meghan M.], Feaux, K.[Karl], Braun, J.[John],
CARIB18: A Stable Geodetic Reference Frame for Geological Hazard Monitoring in the Caribbean Region,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903

Lombardo, V.[Valerio], Corradini, S.[Stefano], Musacchio, M.[Massimo], Silvestri, M.[Malvina], Taddeucci, J.[Jacopo],
Eruptive Styles Recognition Using High Temporal Resolution Geostationary Infrared Satellite Data,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903

Dávila, N.[Norma], Capra, L.[Lucia], Ferrés, D.[Dolors], Gavilanes-Ruiz, J.C.[Juan Carlos], Flores, P.[Pablo],
Chronology of the 2014-2016 Eruptive Phase of Volcán de Colima and Volume Estimation of Associated Lava Flows and Pyroclastic Flows Based on Optical Multi-Sensors,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link 1906

Mania, R.[René], Walter, T.R.[Thomas R.], Belousova, M.[Marina], Belousov, A.[Alexander], Senyukov, S.L.[Sergey L.],
Deformations and Morphology Changes Associated with the 2016-2017 Eruption Sequence at Bezymianny Volcano, Kamchatka,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906

Valade, S.[Sébastien], Ley, A.[Andreas], Massimetti, F.[Francesco], D'Hondt, O.[Olivier], Laiolo, M.[Marco], Coppola, D.[Diego], Loibl, D.[David], Hellwich, O.[Olaf], Walter, T.R.[Thomas R.],
Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence: The MOUNTS Monitoring System,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907

Giudicepietro, F.[Flora], Calvari, S.[Sonia], Alparone, S.[Salvatore], Bianco, F.[Francesca], Bonaccorso, A.[Alessandro], Bruno, V.[Valentina], Caputo, T.[Teresa], Cristaldi, A.[Antonio], D'Auria, L.[Luca], De Cesare, W.[Walter], Di Lieto, B.[Bellina], Esposito, A.M.[Antonietta M.], Gambino, S.[Salvatore], Inguaggiato, S.[Salvatore], Macedonio, G.[Giovanni], Martini, M.[Marcello], Mattia, M.[Mario], Orazi, M.[Massimo], Paonita, A.[Antonio], Peluso, R.[Rosario], Privitera, E.[Eugenio], Romano, P.[Pierdomenico], Scarpato, G.[Giovanni], Tramelli, A.[Anna], Vita, F.[Fabio],
Integration of Ground-Based Remote-Sensing and In Situ Multidisciplinary Monitoring Data to Analyze the Eruptive Activity of Stromboli Volcano in 2017-2018,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908

Corradino, C.[Claudia], Ganci, G.[Gaetana], Cappello, A.[Annalisa], Bilotta, G.[Giuseppe], Hérault, A.[Alexis], Del Negro, C.[Ciro],
Mapping Recent Lava Flows at Mount Etna Using Multispectral Sentinel-2 Images and Machine Learning Techniques,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link 1909

Astort, A.[Ana], Walter, T.R.[Thomas R.], Ruiz, F.[Francisco], Sagripanti, L.[Lucía], Nacif, A.[Andrés], Acosta, G.[Gemma], Folguera, A.[Andrés],
Unrest at Domuyo Volcano, Argentina, Detected by Geophysical and Geodetic Data and Morphometric Analysis,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909

Aldeghi, A.[Anna], Carn, S.[Simon], Escobar-Wolf, R.[Rudiger], Groppelli, G.[Gianluca],
Volcano Monitoring from Space Using High-Cadence Planet CubeSat Images Applied to Fuego Volcano, Guatemala,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909

Guo, Q.[Qian], Xu, C.J.[Cai-Jun], Wen, Y.M.[Yang-Mao], Liu, Y.[Yang], Xu, G.[Guangyu],
The 2017 Noneruptive Unrest at the Caldera of Cerro Azul Volcano (Galápagos Islands) Revealed by InSAR Observations and Geodetic Modelling,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link 1909

Bignami, C., Amici, S., Chini, M.,
Lava emplacement mapping with SAR and optical satellite data,
optical sensors, remote sensing, synthetic aperture radar, volcanology, AD 2014 11 23 to 2017 01, Cape Verde, optical sensor change detection BibRef

Meyer, F.J., McAlpin, D.B., Gong, W., Arko, S., Webley, P.W., Dehn, J.,
Data Processing Concepts for the Integration of SAR into Operational Volcano Monitoring Systems,
DOI Link 1308

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Surface Deformation From SAR Applied to Earthquakes, Fault Monitoring .

Last update:Oct 1, 2019 at 15:23:24