22.1.4.35 Atmospheric, Dust, Dust Storms, Volcanic Ash, Remote Sensing

Chapter Contents (Back)
Aerosols. Dust Storms. Volcanoes themselves: See also Surface Deformation from SAR Applied to Volcanoes.

Xu, H.[Hui], Cheng, T.H.[Tian-Hai], Gu, X.F.[Xing-Fa], Yu, T.[Tao], Wu, Y.[Yu], Chen, H.[Hao],
New Asia Dust Storm Detection Method Based on the Thermal Infrared Spectral Signature,
RS(7), No. 1, 2014, pp. 51-71.
DOI Link 1502
BibRef

Marcos, C.R., Pedros, R., Gomez-Amo, J.L., Utrillas, M.P., Martinez-Lozano, J.A.,
Analysis of Desert Dust Outbreaks Over Southern Europe Using CALIOP Data and Ground-Based Measurements,
GeoRS(54), No. 2, February 2016, pp. 744-756.
IEEE DOI 1601
Aerosols BibRef

Corradini, S.[Stefano], Montopoli, M.[Mario], Guerrieri, L.[Lorenzo], Ricci, M.[Matteo], Scollo, S.[Simona], Merucci, L.[Luca], Marzano, F.S.[Frank S.], Pugnaghi, S.[Sergio], Prestifilippo, M.[Michele], Ventress, L.J.[Lucy J.], Grainger, R.G.[Roy G.], Carboni, E.[Elisa], Vulpiani, G.[Gianfranco], Coltelli, M.[Mauro],
A Multi-Sensor Approach for Volcanic Ash Cloud Retrieval and Eruption Characterization: The 23 November 2013 Etna Lava Fountain,
RS(8), No. 1, 2016, pp. 58.
DOI Link 1602
BibRef

Sugimoto, N.[Nobuo], Nishizawa, T.[Tomoaki], Shimizu, A.[Atsushi], Matsui, I.[Ichiro], Jin, Y.[Yoshitaka], Higurashi, A.[Akiko], Uno, I.[Itsushi], Hara, Y.[Yukari], Yumimoto, K.[Keiya], Kudo, R.[Rei],
Continuous observations of atmospheric aerosols across East Asia,
SPIE(Newsroom), October 21, 2015
DOI Link 1602
The Asian Dust and Aerosol Lidar Observation Network has 20 stations equipped with several polarization-sensitive lidar instruments. BibRef

Maes, K.[Kwinten], Vandenbussche, S.[Sophie], Klüser, L.[Lars], Kumps, N.[Nicolas], de Mazičre, M.[Martine],
Vertical Profiling of Volcanic Ash from the 2011 Puyehue Cordón Caulle Eruption Using IASI,
RS(8), No. 2, 2016, pp. 103.
DOI Link 1603
BibRef

Merucci, L.[Luca], Zakšek, K.[Klemen], Carboni, E.[Elisa], Corradini, S.[Stefano],
Stereoscopic Estimation of Volcanic Ash Cloud-Top Height from Two Geostationary Satellites,
RS(8), No. 3, 2016, pp. 206.
DOI Link 1604
BibRef

Fang, L.[Li], Wang, S.P.[Shu-Peng], Yu, T.[Tao], Gu, X.F.[Xing-Fa], Zhang, X.Y.[Xing-Ying], Wang, W.[Weihe], Ren, S.[Suling],
Changes in Aerosol Optical and Micro-Physical Properties over Northeast Asia from a Severe Dust Storm in April 2014,
RS(8), No. 5, 2016, pp. 394.
DOI Link 1606
BibRef

Di, A.[Aojie], Xue, Y.[Yong], Yang, X.[Xihua], Leys, J.[John], Guang, J.[Jie], Mei, L.[Linlu], Wang, J.L.[Jing-Li], She, L.[Lu], Hu, Y.C.[Yin-Cui], He, X.W.[Xing-Wei], Che, Y.H.[Ya-Hui], Fan, C.[Cheng],
Dust Aerosol Optical Depth Retrieval and Dust Storm Detection for Xinjiang Region Using Indian National Satellite Observations,
RS(8), No. 9, 2016, pp. 702.
DOI Link 1610
BibRef

Jung, J., Kim, D.j., Lavalle, M., Yun, S.H.,
Coherent Change Detection Using InSAR Temporal Decorrelation Model: A Case Study for Volcanic Ash Detection,
GeoRS(54), No. 10, October 2016, pp. 5765-5775.
IEEE DOI 1610
ash BibRef

Marzano, F.S., Picciotti, E., di Fabio, S., Montopoli, M., Mereu, L., Degruyter, W., Bonadonna, C., Ripepe, M.,
Near-Real-Time Detection of Tephra Eruption Onset and Mass Flow Rate Using Microwave Weather Radar and Infrasonic Arrays,
GeoRS(54), No. 11, November 2016, pp. 6292-6306.
IEEE DOI 1610
Clouds BibRef

Shiina, T.[Tatsuo], Yamada, S.[Sonoko], Senshu, H.[Hiroki], Otobe, N.[Naohito], Hashimoto, G.[George], Kawabata, Y.[Yasuhiro],
LED-powered mini-lidar for martian atmospheric dust studies,
SPIE(Newsroom), October 28, 2016
DOI Link 1611
A 10cm3, physically robust instrument has been tested in wind-tunnel experiments, and is suitable for diffusion and convection studies. BibRef

Pering, T.D.[Tom D.], McGonigle, A.J.S.[Andrew J. S.], Tamburello, G.[Giancarlo], Aiuppa, A.[Alessandro], Bitetto, M.[Marcello], Rubino, C.[Cosimo], Wilkes, T.C.[Thomas C.],
A Novel and Inexpensive Method for Measuring Volcanic Plume Water Fluxes at High Temporal Resolution,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link 1703
Comment on: See also Difficulty of Measuring the Absorption of Scattered Sunlight by H2O and CO2 in Volcanic Plumes: A Comment on Pering et al. A Novel and Inexpensive Method for Measuring Volcanic Plume Water Fluxes at High Temporal Resolution, The. BibRef
And: Reply to comments: RS(9), No. 10, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Wang, C.L.[Chun-Lei], Tang, B.H.[Bo-Hui], Wu, H.[Hua], Tang, R.L.[Rong-Lin], Li, Z.L.[Zhao-Liang],
Estimation of Downwelling Surface Longwave Radiation under Heavy Dust Aerosol Sky,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Bryan, S., Clarke, A., Vanderkluysen, L., Groppi, C., Paine, S., Bliss, D.W., Aberle, J., Mauskopf, P.,
Measuring Water Vapor and Ash in Volcanic Eruptions With a Millimeter-Wave Radar/Imager,
GeoRS(55), No. 6, June 2017, pp. 3177-3185.
IEEE DOI 1706
Atmospheric measurements, Geophysical measurements, Millimeter wave measurements, Millimeter wave technology, Particle measurements, Radiometers, Temperature measurement, Millimeter wave radar, radiometry, volcanic ash BibRef

Kern, C.[Christoph],
The Difficulty of Measuring the Absorption of Scattered Sunlight by H2O and CO2 in Volcanic Plumes: A Comment on Pering et al. 'A Novel and Inexpensive Method for Measuring Volcanic Plume Water Fluxes at High Temporal Resolution',
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link 1706
See also Novel and Inexpensive Method for Measuring Volcanic Plume Water Fluxes at High Temporal Resolution, A. BibRef

Marchese, F.[Francesco], Sannazzaro, F.[Filomena], Falconieri, A.[Alfredo], Filizzola, C.[Carolina], Pergola, N.[Nicola], Tramutoli, V.[Valerio],
An Enhanced Satellite-Based Algorithm for Detecting and Tracking Dust Outbreaks by Means of SEVIRI Data,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Tochon, G., Chanussot, J., Dalla Mura, M., Bertozzi, A.L.,
Object Tracking by Hierarchical Decomposition of Hyperspectral Video Sequences: Application to Chemical Gas Plume Tracking,
GeoRS(55), No. 8, August 2017, pp. 4567-4585.
IEEE DOI 1708
Chemicals, Hyperspectral imaging, Object detection, Object tracking, Shape, Video sequences, Binary partition tree, gas plume tracking, hyperspectral video sequence, object, detection BibRef

Leng, X.G.[Xiang-Guang], Ji, K.F.[Ke-Feng], Zhou, S.L.[Shi-Lin], Zou, H.X.[Huan-Xin],
Azimuth Ambiguities Removal in Littoral Zones Based on Multi-Temporal SAR Images,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Xie, Y.[Yong], Zhang, W.H.[Wen-Hao], Qu, J.J.[John J.],
Detection of Asian Dust Storm Using MODIS Measurements,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Mishra, M.K., Gupta, A.K., Rajeev, K.,
Spaceborne Observations of the Diurnal Variation of Shortwave Aerosol Direct Radiative Effect at Top of Atmosphere Over the Dust-Dominated Arabian Sea and the Atlantic Ocean,
GeoRS(55), No. 11, November 2017, pp. 6610-6616.
IEEE DOI 1711
Aerosols, Clouds, Minerals, Oceans, Satellites, Sea measurements, Wavelength measurement, Aerosols, solar, radiation BibRef

Gonzalez, L.[Louis], Briottet, X.[Xavier],
North Africa and Saudi Arabia Day/Night Sandstorm Survey (NASCube),
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Jackson, B.[Brian], Lorenz, R.[Ralph], Davis, K.[Karan], Lipple, B.[Brock],
Using an Instrumented Drone to Probe Dust Devils on Oregon's Alvord Desert,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

She, L.[Lu], Xue, Y.[Yong], Yang, X.[Xihua], Guang, J.[Jie], Li, Y.[Ying], Che, Y.H.[Ya-Hui], Fan, C.[Cheng], Xie, Y.Q.[Yan-Qing],
Dust Detection and Intensity Estimation Using Himawari-8/AHI Observation,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Zheng, S.[Sheng], Singh, R.P.[Ramesh P.],
Aerosol and Meteorological Parameters Associated with the Intense Dust Event of 15 April 2015 over Beijing, China,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Marchese, F.[Francesco], Falconieri, A.[Alfredo], Pergola, N.[Nicola], Tramutoli, V.[Valerio],
Monitoring the Agung (Indonesia) Ash Plume of November 2017 by Means of Infrared Himawari 8 Data,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Huang, Z.W.[Zhong-Wei], Nee, J.B.[Jan-Bai], Chiang, C.W.[Chih-Wei], Zhang, S.[Shuang], Jin, H.C.[Hong-Chun], Wang, W.C.[Wen-Cai], Zhou, T.[Tian],
Real-Time Observations of Dust-Cloud Interactions Based on Polarization and Raman Lidar Measurements,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808
BibRef

Plank, S.[Simon], Nolde, M.[Michael], Richter, R.[Rudolf], Fischer, C.[Christian], Martinis, S.[Sandro], Riedlinger, T.[Torsten], Schoepfer, E.[Elisabeth], Klein, D.[Doris],
Monitoring of the 2015 Villarrica Volcano Eruption by Means of DLR's Experimental TET-1 Satellite,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
BibRef

Mereu, L., Scollo, S., Mori, S., Boselli, A., Leto, G., Marzano, F.S.,
Maximum-Likelihood Retrieval of Volcanic Ash Concentration and Particle Size From Ground-Based Scanning Lidar,
GeoRS(56), No. 10, October 2018, pp. 5824-5842.
IEEE DOI 1810
Laser radar, Volcanic ash, Backscatter, Aerosols, Explosives, Atmospheric measurements, Shape, Ash mean size, volcanic ash concentration BibRef

Bredemeyer, S.[Stefan], Ulmer, F.G.[Franz-Georg], Hansteen, T.H.[Thor H.], Walter, T.R.[Thomas R.],
Radar Path Delay Effects in Volcanic Gas Plumes: The Case of Láscar Volcano, Northern Chile,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Tsarpalis, K.[Konstantinos], Papadopoulos, A.[Anastasios], Mihalopoulos, N.[Nikolaos], Spyrou, C.[Christos], Michaelides, S.[Silas], Katsafados, P.[Petros],
The Implementation of a Mineral Dust Wet Deposition Scheme in the GOCART-AFWA Module of the WRF Model,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef


Youn, J., Kim, T.,
3d Visualization Of Volcanic Ash Dispersion Prediction With Spatial Information Open Platform In Korea,
ISPRS16(B8: 185-190).
DOI Link 1610
BibRef

Lee, K.H., Lee, K.T.,
Volcanic Ash Retrieval Using a New Geostationary Satellite,
IWIDF15(67-74).
DOI Link 1508
BibRef

Liu, F., Li, C.F., Yin, J.Y.,
Volcanic ash cloud extraction for RS image by combining PCA, ICA and SVM methods,
Southwest16(153-156)
IEEE DOI 1605
Clouds BibRef

Wang, J.[Jian], Pang, Y.W.[Yan-Wei], He, Y.Q.[Yu-Qing], Liu, C.S.[Chang-Shu],
Enhancement for Dust-Sand Storm Images,
MMMod16(I: 842-849).
Springer DOI 1601
BibRef

Maeda, K.[Keisuke], Ogawa, T.[Takahiro], Haseyama, M.[Miki],
Automatic martian dust storm detection via decision level fusion basedondeep extreme learning machine,
ICIP17(435-439)
IEEE DOI 1803
BibRef
Earlier:
Automatic detection of martian dust storms from heterogeneous data based on decision level fusion,
ICIP15(2246-2250)
IEEE DOI 1512
Feature extraction, Kernel, Mars, Monitoring, Satellites, Storms, Training, Mars, decision level fusion. Mars; decision level fusion; detection; dust storm; heterogeneous data BibRef

Xiao, F., Shea, G.Y.K., Wong, M.S., Campbell, J.,
An automated and integrated framework for dust storm detection based on OGC web processing services,
Geospatial14(151-156).
DOI Link 1411
BibRef

Okuda, W., Kusaka, T.,
The Visualization Method of the 3D Concentration Distribution of Asian Dust in the Google Earth,
ISPRS12(XXXIX-B4:331-334).
DOI Link 1209
BibRef

Rivas-Perea, P., Rosiles, J.G., Chacon, M.I.M.,
Traditional and neural probabilistic multispectral image processing for the dust aerosol detection problem,
Southwest10(169-172).
IEEE DOI 1005
BibRef

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Ionosphere, Ionosphere Tomography, Reflections, Ionospheric Effects .


Last update:Nov 12, 2018 at 11:26:54