Nguyen, V.H.[Van-Hanh],
Merienne, F.[Frederic],
Martinez, J.L.[Jean-Luc],
Training Based On Real-time Motion Evaluation For Functional
Rehabilitation In Virtual Environment,
IJIG(10), No. 2, April 2010, pp. 235-250.
DOI Link
1003
BibRef
Nguyen, V.H.[Van-Hanh],
Merienne, F.[Frederic],
Martinez, J.L.[Jean-Luc],
An Efficient Approach for Human Motion Data Mining Based on Curves
Matching,
ICCVG10(I: 163-184).
Springer DOI
1009
BibRef
Ferrari, A.,
Technical innovations for the diagnosis and the rehabilitation
of motor and perceptive impairments of the child with Cerebral Palsy,
Ph.D.Thesis, University of Bologna, 2010.
PDF File.
1109
BibRef
Huete, A.J.,
Victores, J.G.,
Martinez, S.,
Gimenez, A.,
Balaguer, C.,
Personal Autonomy Rehabilitation in Home Environments by a Portable
Assistive Robot,
SMC-C(42), No. 4, July 2012, pp. 561-570.
IEEE DOI
1206
BibRef
Liu, Y.J.[Yong-Jiu],
Song, Q.J.[Quan-Jun],
Wang, B.[Buyun],
Liu, Y.Y.[Yan-Yang],
Nie, Y.M.[Yu-Man],
Wang, H.[Hui],
Shuang, F.[Feng],
Design of A Novel Gait Simulator for Rehabilitation Training,
Sensors(150), No. 2, March 2013, pp. 90-96.
HTML Version.
1304
BibRef
Regenbrecht, H.,
Hoermann, S.,
Ott, C.,
Muller, L.,
Franz, E.,
Manipulating the Experience of Reality for Rehabilitation
Applications,
PIEEE(102), No. 2, February 2014, pp. 170-184.
IEEE DOI
1403
augmented reality
BibRef
Raheja, J.L.[Jagdish L.],
Chaudhary, A.[Ankit],
Nandhini, K.,
Maiti, S.,
Pre-consultation help necessity detection based on gait recognition,
SIViP(9), No. 6, September 2015, pp. 1357-1363.
Springer DOI
1509
BibRef
Lai, C.L.[Chung-Liang],
Tseng, C.M.[Chien-Ming],
Erdenetsogt, D.,
Liao, T.K.[Tzu-Kuan],
Huang, Y.L.[Ya-Ling],
Chen, Y.F.[Yung-Fu],
A Kinect-Based System for Balance Rehabilitation of Stroke Patients,
IEICE(E99-D), No. 4, April 2016, pp. 1032-1037.
WWW Link.
1604
BibRef
Wang, W.Q.[Wei-Qun],
Hou, Z.G.[Zeng-Guang],
Cheng, L.[Long],
Tong, L.[Lina],
Peng, L.[Liang],
Peng, L.[Long],
Tan, M.[Min],
Toward Patients-' Motion Intention Recognition: Dynamics Modeling and
Identification of iLeg: An LLRR Under Motion Constraints,
SMCS(46), No. 7, July 2016, pp. 980-992.
IEEE DOI
1606
Dynamics
BibRef
Stirling, L.,
MacLean, J.,
Roadmap for the Development of at-Home Telemonitoring Systems to
Augment Occupational Therapy,
HMS(46), No. 4, August 2016, pp. 569-580.
IEEE DOI
1608
cognition
BibRef
Novak, D.[Domen],
Riener, R.[Robert],
Control Strategies and Artificial Intelligence in Rehabilitation
Robotics,
AIMag(36), No. 4, Winter 2015, pp. 23-33.
WWW Link.
1609
BibRef
Zhang, F.,
Hou, Z.G.,
Cheng, L.,
Wang, W.,
Chen, Y.,
Hu, J.,
Peng, L.,
Wang, H.,
iLeg: A Lower Limb Rehabilitation Robot: A Proof of Concept,
HMS(46), No. 5, October 2016, pp. 761-768.
IEEE DOI
1610
PI control
BibRef
Gomez-Donoso, F.[Francisco],
Orts-Escolano, S.[Sergio],
Garcia-Garcia, A.[Alberto],
Garcia-Rodriguez, J.[Jose],
Castro-Vargas, J.A.[John Alejandro],
Ovidiu-Oprea, S.[Sergiu],
Cazorla, M.[Miguel],
A robotic platform for customized and interactive rehabilitation of
persons with disabilities,
PRL(99), No. 1, 2017, pp. 105-113.
Elsevier DOI
1710
BibRef
Kurita, Y.,
Sato, J.,
Tanaka, T.,
Shinohara, M.,
Tsuji, T.,
Unpowered Sensorimotor-Enhancing Suit Reduces Muscle Activation and
Improves Force Perception,
HMS(47), No. 6, December 2017, pp. 1158-1163.
IEEE DOI
1712
Breast, Clothing, Electromyography, Fabrics, Force, Muscles, Shoulder,
Force reproduction, sensorimotor performance, unpowered assistive clothing
BibRef
Erdogan, H.[Huseyin],
Palaska, Y.[Yunus],
Masazade, E.[Engin],
Barkana, D.E.[Duygun Erol],
Ekenel, H.K.[Hazim Kemal],
Vision-based game design and assessment for physical exercise in a
robot-assisted rehabilitation system,
IET-CV(12), No. 1, February 2018, pp. 59-68.
DOI Link
1801
BibRef
Tao, L.[Lili],
Burghardt, T.[Tilo],
Mirmehdi, M.[Majid],
Damen, D.[Dima],
Cooper, A.[Ashley],
Camplani, M.[Massimo],
Hannuna, S.[Sion],
Paiement, A.[Adeline],
Craddock, I.[Ian],
Energy expenditure estimation using visual and inertial sensors,
IET-CV(12), No. 1, February 2018, pp. 36-47.
DOI Link
1801
BibRef
Ma, R.,
Hu, F.,
An Intelligent Thermal Sensing System for Automatic, Quantitative
Assessment of Motion Training in Lower-Limb Rehabilitation,
SMCS(48), No. 5, May 2018, pp. 661-669.
IEEE DOI
1804
Cameras, Foot, Legged locomotion, Motion segmentation, Sensors,
Skeleton, Training, Motion segmentation, physical therapy,
thermal camera
BibRef
Capecci, M.[Marianna],
Ciabattoni, L.[Lucio],
Ferracuti, F.[Francesco],
Monteriù, A.[Andrea],
Romeo, L.[Luca],
Verdini, F.[Federica],
Collaborative design of a telerehabilitation system enabling virtual
second opinion based on fuzzy logic,
IET-CV(12), No. 4, June 2018, pp. 502-512.
DOI Link
1805
BibRef
Watanabe, T.[Takashi],
Tadano, T.[Takumi],
Experimental Tests of a Prototype of IMU-Based Closed-Loop Fuzzy
Control System for Mobile FES Cycling with Pedaling Wheelchair,
IEICE(E101-D), No. 7, July 2018, pp. 1906-1914.
WWW Link.
1807
FES: functional electrical stimulation.
BibRef
Eichler, N.[Nadav],
Hel-Or, H.[Hagit],
Shimshoni, I.[Ilan],
Itah, D.[Dorit],
Gross, B.[Bella],
Raz, S.[Shmuel],
3D motion capture system for assessing patient motion during Fugl-Meyer
stroke rehabilitation testing,
IET-CV(12), No. 7, October 2018, pp. 963-975.
DOI Link
1809
BibRef
Sekhavat, Y.A.,
Namani, M.S.,
Projection-Based AR: Effective Visual Feedback in Gait Rehabilitation,
HMS(48), No. 6, December 2018, pp. 626-636.
IEEE DOI
1812
augmented reality, cognition, feedback, gait analysis, kinematics,
patient rehabilitation, projection-based AR, gait rehabilitation,
visual feedback
BibRef
Rechy-Ramirez, E.J.[Ericka Janet],
Marin-Hernandez, A.[Antonio],
Rios-Figueroa, H.V.[Homero Vladimir],
A human-computer interface for wrist rehabilitation:
A pilot study using commercial sensors to detect wrist movements,
VC(35), No. 1, January 2018, pp. 41-55.
Springer DOI
WWW Link.
1902
BibRef
Liu, Z.[Zhong],
Wang, X.[Xin'an],
Su, M.L.[Ming-Liang],
Le, L.[Leon],
Research on rehabilitation training bed with action prediction based
on NARX neural network,
IJIST(29), No. 4, 2019, pp. 539-546.
DOI Link
1911
action prediction, electromyography signal, NARX,
recurrent neural network, rehabilitation training
BibRef
Zhang, Y.J.[Yu-Jing],
Lu, X.[Xu],
Measurement method for human body anteflexion angle based on image
processing,
IJIST(29), No. 4, 2019, pp. 518-530.
DOI Link
1911
adaptive Gaussian filter, angle of the human body,
edge detection, feature point extraction, gradient magnitude
BibRef
Miura, S.,
Yokoo, Y.,
Nakashima, Y.,
Ogaya, Y.,
Nihei, M.,
Ando, T.,
Kobayashi, Y.,
Fujie, M.G.,
Determination of the Gain for a Walking Speed Amplifying Belt Using
Brain Activity,
HMS(50), No. 2, April 2020, pp. 154-164.
IEEE DOI
2004
Ergonomics, gait recognition, human-computer interaction,
human-robot interaction
BibRef
Ferreira, B.[Bruno],
Ferreira, P.M.[Pedro M.],
Pinheiro, G.[Gil],
Figueiredo, N.[Nelson],
Carvalho, F.[Filipe],
Menezes, P.[Paulo],
Batista, J.[Jorge],
Deep learning approaches for workout repetition counting and
validation,
PRL(151), 2021, pp. 259-266.
Elsevier DOI
2110
BibRef
Earlier:
Exploring Workout Repetition Counting and Validation Through Deep
Learning,
ICIAR20(I:3-15).
Springer DOI
2007
Workout repetition counting, Human physical activity analysis,
2D Human pose estimation, Deep learning
BibRef
Garcia-Rodriguez, J.[Jose],
Gomez-Donoso, F.[Francisco],
Oprea, S.[Sergiu],
Garcia-Garcia, A.[Alberto],
Cazorla, M.[Miguel],
Orts-Escolano, S.[Sergio],
Bauer, Z.[Zuria],
Castro-Vargas, J.[John],
Escalona, F.[Felix],
Ivorra-Piqueres, D.[David],
Martinez-Gonzalez, P.[Pablo],
Aguirre, E.[Eugenio],
Garcia-Silviente, M.[Miguel],
Garcia-Perez, M.[Marcelo],
Cañas, J.M.[Jose M.],
Martin-Rico, F.[Francisco],
Gines, J.[Jonathan],
Rivas-Montero, F.[Francisco],
COMBAHO: A deep learning system for integrating brain injury patients
in society,
PRL(137), 2020, pp. 80-90.
Elsevier DOI
2008
Robot assistants, Ambient assisted living, Rehabilitation aids
BibRef
Ito, T.[Takahide],
Nakamura, Y.[Yuichi],
Kondo, K.[Kazuaki],
Knoop, E.[Espen],
Rossiter, J.[Jonathan],
Design and Performance Analysis of a Skin-Stretcher Device for Urging
Head Rotation,
IEICE(E103-D), No. 11, November 2020, pp. 2314-2322.
WWW Link.
2011
BibRef
Akiyama, Y.,
Kushida, R.,
Okamoto, S.,
Yamada, Y.,
Characteristics of Recovery Motion Resulting From Side Contact With a
Physical Assistant Robot Worn During Gait,
HMS(50), No. 6, December 2020, pp. 518-528.
IEEE DOI
2011
Legged locomotion, Collision mitigation, Motion analysis,
Assistive technology, Wearable computers, Collision, fall risk,
reaction motion
BibRef
Bouton, C.,
Brain Implants and Wearables Reroute Signals to Restore Movement and
Sensation,
Spectrum(58), No. 2, February 2021, pp. 28-33.
IEEE DOI
2102
Presses, Wearable computers, Games, Neural implants, Bars
BibRef
Chen, J.H.[Jia-Hao],
Qiao, H.[Hong],
Muscle-Synergies-Based Neuromuscular Control for Motion Learning and
Generalization of a Musculoskeletal System,
SMCS(51), No. 6, June 2021, pp. 3993-4006.
IEEE DOI
2106
Mathematical model, Robots, Computational modeling,
Control systems, Neuromuscular, Motion generalization,
neuromuscular control
BibRef
Mengüç, E.C.[Engin Cemal],
Çinar, S.[Salim],
Xiang, M.[Min],
Mandic, D.P.[Danilo P.],
Online Censoring Based Weighted-Frequency Fourier Linear Combiner for
Estimation of Pathological Hand Tremors,
SPLetters(28), 2021, pp. 1460-1464.
IEEE DOI
2108
Frequency measurement, Real-time systems, Pathology, Estimation,
Signal processing algorithms, Indexes, Weight measurement,
wearable and assistive technology
BibRef
Xu, W.[Wei],
Xiang, D.H.[Dong-Hai],
Wang, G.[Guotai],
Liao, R.[Ruisong],
Shao, M.[Ming],
Li, K.[Kang],
Multiview Video-Based 3-D Pose Estimation of Patients in
Computer-Assisted Rehabilitation Environment (CAREN),
HMS(52), No. 2, April 2022, pp. 196-206.
IEEE DOI
2203
Heating systems, Training, Pose estimation, Kernel, Videos, Hospitals,
Deep learning, orthopedic patients
BibRef
Rivas, J.J.[Jesús Joel],
del Carmen-Lara, M.[María],
Castrejón, L.[Luis],
Hernández-Franco, J.[Jorge],
Orihuela-Espina, F.[Felipe],
Palafox, L.[Lorena],
Williams, A.[Amanda],
Bianchi-Berthouze, N.[Nadia],
Sucar, L.E.[Luis Enrique],
Multi-Label and Multimodal Classifier for Affective States
Recognition in Virtual Rehabilitation,
AffCom(13), No. 3, July 2022, pp. 1183-1194.
IEEE DOI
2209
Pain, Bayes methods, Computational modeling, Videos,
Integrated optics, Face recognition, Convergence, Affective states,
virtual rehabilitation
BibRef
Thomas, B.[Brennan],
Lu, M.L.[Ming-Lun],
Jha, R.[Rashmi],
Bertrand, J.[Joseph],
Machine Learning for Detection and Risk Assessment of Lifting Action,
HMS(52), No. 6, December 2022, pp. 1196-1204.
IEEE DOI
2212
Lifting equipment, Sensors, Wearable computers, Data models, Safety,
Risk management, Employee welfare, Signal detection,
wearable systems
BibRef
Goyal, T.[Tanishka],
Hussain, S.[Shahid],
Martinez-Marroquin, E.[Elisa],
Brown, N.A.T.[Nicholas A. T.],
Jamwal, P.K.[Prashant K.],
Stiffness-Observer-Based Adaptive Control of an Intrinsically
Compliant Parallel Wrist Rehabilitation Robot,
HMS(53), No. 1, February 2023, pp. 65-74.
IEEE DOI
2301
Wrist, Actuators, End effectors, Muscles, Robots, Robot kinematics,
Prototypes, Biomimetic muscle actuators (BMAs), wrist stiffness model
BibRef
Sabater, A.[Alberto],
Montesano, L.[Luis],
Murillo, A.C.[Ana C.],
Event Transformer^+. A Multi-Purpose Solution for Efficient Event
Data Processing,
PAMI(45), No. 12, December 2023, pp. 16013-16020.
IEEE DOI
2311
BibRef
Earlier:
Event Transformer. A sparse-aware solution for efficient event data
processing,
ECV22(2676-2685)
IEEE DOI
2210
Power demand, Graphics processing units, Gesture recognition,
Benchmark testing, Transformers, Data processing
BibRef
Sabater, A.[Alberto],
Santos, L.[Laura],
Santos-Victor, J.[José],
Bernardino, A.[Alexandre],
Montesano, L.[Luis],
Murillo, A.C.[Ana C.],
One-shot action recognition in challenging therapy scenarios,
LLID21(2771-2779)
IEEE DOI
2109
Target recognition, Dynamics, Medical treatment,
Kinematics, Pattern recognition, Noise measurement
BibRef
Liu, Z.[Zemin],
Ai, Q.S.[Qing-Song],
Liu, H.J.[Hao-Jie],
Meng, W.[Wei],
Liu, Q.[Quan],
Human-Like Trajectory Planning Based on Postural Synergistic
Kernelized Movement Primitives for Robot-Assisted Rehabilitation,
HMS(54), No. 2, April 2024, pp. 152-161.
IEEE DOI
2404
Trajectory, Robots, Task analysis, Trajectory planning,
Robot kinematics, Principal component analysis, Motors,
trajectory planning
BibRef
Abedi, A.[Ali],
Bisht, P.[Paritosh],
Chatterjee, R.[Riddhi],
Agrawal, R.[Rachit],
Sharma, V.[Vyom],
Jayagopi, D.B.[Dinesh Babu],
Khan, S.S.[Shehroz S.],
Rehabilitation Exercise Repetition Segmentation and Counting Using
Skeletal Body Joints,
CRV23(288-295)
IEEE DOI
2406
Analytical models, Privacy, Data privacy, Computational modeling,
Neural networks, Patient rehabilitation, exercise segmentation,
virtual rehabilitation
BibRef
Ahn, S.[Sihu],
Jo, Y.W.[Yong-Won],
Park, J.[Jinhyeok],
Kim, S.[Sangmin],
Kim, J.[Jungin],
Kim, S.B.[Seoung Bum],
Lee, M.G.[Min-Goo],
Lee, S.[Sangmin],
Kim, Y.[Younghoon],
Multimodal Human Action Recognition for Rehabilitation Exercise of
Upper Body for Individuals With Cerebral Palsy,
SMCS(54), No. 7, July 2024, pp. 4164-4174.
IEEE DOI
2406
Skeleton, Data models, Computational modeling,
Human activity recognition, Cybernetics, Current measurement,
upper body rehabilitation exercise
BibRef
Zhao, Z.[Ziyi],
Kiciroglu, S.[Sena],
Vinzant, H.[Hugues],
Cheng, Y.[Yuan],
Katircioglu, I.[Isinsu],
Salzmann, M.[Mathieu],
Fua, P.[Pascal],
3d Pose Based Feedback for Physical Exercises,
ACCV22(IV:189-205).
Springer DOI
2307
BibRef
Kanade, A.[Aditya],
Sharma, M.[Mansi],
Muniyandi, M.[Manivannan],
Tele-evalnet: A Low-cost, Teleconsultation System for Home Based
Rehabilitation of Stroke Survivors Using Multiscale CNN-convlstm
Architecture,
ACVR22(738-750).
Springer DOI
2304
BibRef
Réby, K.[Kévin],
Dulau, I.[Idriss],
Dubrasquet, G.[Guillaume],
Aimar, M.B.[Marie Beurton],
Graph Transformer for Physical Rehabilitation Evaluation,
FG23(1-8)
IEEE DOI
2303
Patient monitoring, Medical specialties, Predictive models,
Transformers, Skeleton, Motion capture, Behavioral sciences
BibRef
Sun, Y.[Yaowei],
Li, G.[Gang],
Zhao, T.Z.[Tong-Zhou],
Research on Lightweight Network of Human Posture Estimation for
Physical Training,
ICRVC22(62-67)
IEEE DOI
2301
Training, Computational modeling, Robot kinematics,
Pose estimation, Real-time systems, Mobile handsets
BibRef
Bai, X.T.[Xiang-Tian],
Ma, J.[Jun],
Dai, D.[Duan],
The Wearable Resistance Exercise Booster's Design for the Elderly,
DHM21(I:81-91).
Springer DOI
2108
BibRef
Cotton, R.J.,
Kinematic Tracking of Rehabilitation Patients With Markerless Pose
Estimation Fused with Wearable Inertial Sensors,
FG20(508-514)
IEEE DOI
2102
gait analysis, handicapped aids, image motion analysis, injuries,
kinematics, neurophysiology, patient rehabilitation,
markerless pose estimation
BibRef
Gu, Y.,
Pandit, S.,
Saraee, E.,
Nordahl, T.,
Ellis, T.,
Betke, M.,
Home-Based Physical Therapy with an Interactive Computer Vision
System,
ACVR19(2619-2628)
IEEE DOI
2004
diseases, interactive systems,
learning (artificial intelligence), medical computing, deep learning models
BibRef
Dahms, R.[Rebecca],
Stamm, O.[Oskar],
Müller-Werdan, U.[Ursula],
Developing a VR Training Program for Geriatric Patients with Chronic
Back Pain,
VAMR19(II:243-255).
Springer DOI
1909
BibRef
Alex, M.,
Chen, C.,
Wünsche, B.C.,
A review of sensor devices in stroke rehabilitation,
IVCNZ17(1-6)
IEEE DOI
1902
body sensor networks, computer games, patient rehabilitation,
patient treatment, rehabilitation outcomes,
sensor technologies
BibRef
Armas, J.[Joseph],
Andaluz, V.H.[Víctor H.],
Alternative Treatment of Psychological Disorders Such as Spider Phobia
Through Virtual Reality Environments,
ISVC18(687-697).
Springer DOI
1811
BibRef
Galarza, E.E.[Eddie E.],
Pilatasig, M.[Marco],
Galarza, E.D.[Eddie D.],
López, V.M.[Victoria M.],
Zambrano, P.A.[Pablo A.],
Buele, J.[Jorge],
Espinoza, J.[Jhon],
Virtual Reality System for Children Lower Limb Strengthening with the
Use of Electromyographic Sensors,
ISVC18(215-225).
Springer DOI
1811
BibRef
Ilyas, C.M.A.,
Nasrollahi, K.,
Rehm, M.,
Moeslund, T.B.,
Rehabilitation of Traumatic Brain Injured Patients:
Patient Mood Analysis from Multimodal Video,
ICIP18(2291-2295)
IEEE DOI
1809
Face, Databases, Brain injuries, Face recognition,
Feature extraction, Machine learning, Cameras
BibRef
Liu, L.[Lu],
Dong, Z.X.[Zhan-Xun],
Tang, N.[Ning],
An Interactive Training System Design for Ankle Rehabilitation,
DHM18(169-182).
Springer DOI
1807
BibRef
Nagaya, S.[Sachiko],
Hayashi, H.[Hisae],
The Effect of Ankle Exercise on Cerebral Blood Oxygenation During and
After Postural Change,
DHM18(183-192).
Springer DOI
1807
BibRef
Kim, G.[Gyoung],
Biocca, F.[Frank],
Immersion in Virtual Reality Can Increase Exercise Motivation and
Physical Performance,
VAMR18(II: 94-102).
Springer DOI
1807
BibRef
Guryanov, R.A.,
Monkin, S.,
Monkin, A.,
Petrov, A.,
Approach to 3D Analysis of Gravity Ptosis,
PTVSBB17(123-127).
DOI Link
1805
BibRef
Bonenfant, M.,
Laurendeau, D.,
Fortin-Côté, A.,
Cardou, P.,
Gosselin, C.,
Faure, C.,
McFadyen, B.,
Mercier, C.,
Bouyer, L.,
A Computer Vision System for Virtual Rehabilitation,
CRV17(269-276)
IEEE DOI
1804
image motion analysis, image sensors,
medical image processing, patient rehabilitation,
virtual reality
BibRef
Baharum, A.[Aslina],
Yusop, N.M.M.[Nurhafizah Moziyana Mohd],
Ramli, R.Z.[Ratna Zuarni],
Fabeil, N.F.[Noor Fazlinda],
Amirul, S.M.[Sharifah Milda],
Halamy, S.[Suhaida],
Utilizing Mobile Application for Reducing Stress Level,
IVIC17(489-499).
Springer DOI
1711
BibRef
Omar, M.Y.[Mohd Yusoff],
Rambli, D.R.A.[Dayang Rohaya Awang],
Shiratuddin, M.F.[Mohd Fairuz],
Designing Persuasive Stroke Rehabilitation Game:
An Analysis of Persuasion Context,
IVIC17(559-569).
Springer DOI
1711
BibRef
Dhamija, S.,
Boult, T.E.,
Learning Visual Engagement for Trauma Recovery,
Assist18(84-93)
IEEE DOI
1806
BibRef
Earlier:
Exploring Contextual Engagement for Trauma Recovery,
DeepAffective17(2267-2277)
IEEE DOI
1709
behavioural sciences computing, emotion recognition,
face recognition, human factors,
Visualization.
Context modeling, Facial features, Machine learning, Mood,
Predictive models, Videos
BibRef
Dittmar, C.[Cornelia],
Denzler, J.[Joachim],
Gross, H.M.[Horst-Michael],
A Feedback Estimation Approach for Therapeutic Facial Training,
FG17(141-148)
IEEE DOI
1707
Estimation, Face, Facial features, Feature extraction,
Medical treatment, Training
BibRef
Andaluz, V.H.[Víctor H.],
Salazar, P.J.[Pablo J.],
Escudero V., M.[Miguel],
Bustamante D., C.[Carlos],
Quevedo, W.[Washington],
Sánchez, J.S.[Jorge S.],
Espinosa, E.G.[Edison G.],
Rivas, D.[David],
Virtual Reality Integration with Force Feedback in Upper Limb
Rehabilitation,
ISVC16(II: 259-268).
Springer DOI
1701
BibRef
Antunes, M.[Michel],
Baptista, R.[Renato],
Demisse, G.[Girum],
Aouada, D.[Djamila],
Ottersten, B.[Björn],
Visual and Human-Interpretable Feedback for Assisting Physical Activity,
ACVR16(II: 115-129).
Springer DOI
1611
BibRef
Carrier-Baudouin, T.[Tristan],
Chapdelaine, C.[Claude],
Lalonde, M.[Marc],
Quinn, P.[Philippe],
Foucher, S.[Samuel],
Solving Rendering Issues in Realistic 3D Immersion for Visual
Rehabilitation,
ACVR16(II: 223-237).
Springer DOI
1611
BibRef
Busam, B.,
Esposito, M.,
Frisch, B.,
Navab, N.,
Quaternionic Upsampling:
Hyperspherical Techniques for 6 DoF Pose Tracking,
3DV16(629-638)
IEEE DOI
1701
computer vision
BibRef
Busam, B.,
Esposito, M.,
Che'Rose, S.,
Navab, N.,
Frisch, B.,
A Stereo Vision Approach for Cooperative Robotic Movement Therapy,
ACVR15(519-527)
IEEE DOI
1602
Cameras
BibRef
Palma, C.[Carlos],
Salazar, A.[Augusto],
Vargas, F.[Francisco],
HMM Based Evaluation of Physical Therapy Movements Using Kinect
Tracking,
ISVC15(I: 174-183).
Springer DOI
1601
BibRef
Patil, Y.[Yogendra],
Brandão, I.[Iara],
Siqueira, G.[Guilherme],
Hu, F.[Fei],
Home Oriented Virtual e-Rehabilitation,
ISVC15(II: 586-596).
Springer DOI
1601
BibRef
Hoermann, S.,
Collins, J.,
Regenbrecht, H.,
Learning from rehabilitation: A bi-manual interface approach,
3DUI15(163-164)
IEEE DOI
1511
augmented reality
BibRef
Ye, M.X.[Min-Xiang],
Yang, C.[Cheng],
Stankovic, V.[Vladimir],
Stankovic, L.[Lina],
Kerr, A.[Andrew],
Kinematics Analysis Multimedia System for Rehabilitation,
QoEM15(571-579).
Springer DOI
1511
BibRef
Babruwad, S.[Sujay],
Avaghan, R.[Rahul],
Mudenagudi, U.[Uma],
A Mobile Augmented Reality Framework for Post-stroke Patient
Rehabilitation,
IMEV14(396-406).
Springer DOI
1504
BibRef
Matthew, R.P.[Robert Peter],
Kurillo, G.[Gregorij],
Han, J.J.[Jay J.],
Bajcsy, R.[Ruzena],
Calculating Reachable Workspace Volume for Use in Quantitative Medicine,
ACVR14(570-583).
Springer DOI
1504
Where a person can reach, evaluation of disease, etc.
BibRef
Cantu, M.,
Espinoza, E.,
Guo, R.[Rongkai],
Quarles, J.,
Game cane: An assistive 3DUI for rehabilitation games,
3DUI14(43-46)
IEEE DOI
1406
computer games
BibRef
Avola, D.[Danilo],
Cinque, L.[Luigi],
Levialdi, S.[Stefano],
Petracca, A.[Andrea],
Placidi, G.[Giuseppe],
Spezialetti, M.[Matteo],
Time-of-Flight Camera Based Virtual Reality Interaction for Balance
Rehabilitation Purposes,
CompIMAGE14(363-374).
Springer DOI
1407
BibRef
Shin, Y.[Yoonyong],
Wunsche, B.C.,
A smartphone-based golf simulation exercise game for supporting
arthritis patients,
IVCNZ13(459-464)
IEEE DOI
1402
Global Positioning System
BibRef
Robertson, C.,
Vink, L.,
Regenbrecht, H.,
Lutteroth, C.,
Wunsche, B.C.,
Mixed reality Kinect Mirror box for stroke rehabilitation,
IVCNZ13(231-235)
IEEE DOI
1402
augmented reality
BibRef
Venkataraman, V.[Vinay],
Vlachos, I.[Ioannis],
Turaga, P.K.[Pavan K.],
Dynamical Regularity for Action Analysis,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Venkataraman, V.[Vinay],
Turaga, P.K.[Pavan K.],
Lehrer, N.[Nicole],
Baran, M.[Michael],
Rikakis, T.[Thanassis],
Wolf, S.L.[Steven L.],
Attractor-Shape for Dynamical Analysis of Human Movement:
Applications in Stroke Rehabilitation and Action Recognition,
HAU3D13(514-520)
IEEE DOI
1309
Action Recognition
BibRef
Li, J.[Jian],
Li, H.[Hui],
Zhang, X.F.[Xiu-Feng],
Pan, G.X.[Guo-Xin],
Xiao, Q.J.[Qi-Jun],
The design and implementation of lower limb rehabilitation robot based
on BWSTT,
ICARCV12(1558-1562).
IEEE DOI
1304
BibRef
Dukes, P.S.,
Hayes, A.,
Hodges, L.F.,
Woodbury, M.,
Punching ducks for post-stroke neurorehabilitation: System design and
initial exploratory feasibility study,
3DUI13(47-54)
IEEE DOI
1406
avatars
BibRef
Bozgeyikli, E.,
Bozgeyikli, L.,
Clevenger, M.,
Raij, A.,
Alqasemi, R.,
Dubey, R.,
Design and development of a virtual reality system for
vocational rehabilitation of individuals with disabilities,
3DUI14(175-176)
IEEE DOI
1406
computer based training
BibRef
d'Amico, G.[Gianpaolo],
Landucci, L.[Lea],
Pezzatini, D.[Daniele],
Natural Interactive System for Hemispatial Neglect Rehabilitation,
SBA13(501-508).
Springer DOI
1309
Tools for improving rehab systems.
BibRef
Cordella, F.[Francesca],
di Corato, F.[Francesco],
Zollo, L.[Loredana],
Siciliano, B.[Bruno],
A Robust Hand Pose Estimation Algorithm for Hand Rehabilitation,
ACVR13(1-10).
Springer DOI
1309
BibRef
da Gama, A.[Alana],
Chaves, T.[Thiago],
Figueiredo, L.[Lucas],
Teichrieb, V.[Veronica],
Improving motor rehabilitation process through a natural interaction
based system using Kinect sensor,
3DUI12(145-146).
IEEE DOI
1204
BibRef
Gil-Jiménez, P.[Pedro],
Losilla-López, B.[Beatriz],
Torres-Cueco, R.[Rafael],
Campilho, A.[Aurélio],
López-Sastre, R.J.[Roberto J.],
Hand Detection and Tracking Using the Skeleton of the Blob for Medical
Rehabilitation Applications,
ICIAR12(II: 130-137).
Springer DOI
1206
BibRef
Franchi, D.[Danilo],
Maurizi, A.[Alfredo],
Placidi, G.[Giuseppe],
Characterization of a SimMechanics Model for a Virtual Glove
Rehabilitation System,
CompIMAGE10(141-150).
Springer DOI
1006
Track rehab efforts.
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Rehabilitation Systems, Prosthesis Systems, Control .