Dietterich, T.G.,
Random Forests,
MachLearn(40), No. 2, 2000, pp. 139-157.
BibRef
0001
Breiman, L.,
Random Forests,
MachLearn(45), No. 1, 2001, pp. 5-32.
DOI Link
See also Bagging Predictors.
BibRef
0100
Ham, J.,
Chen, Y.,
Crawford, M.M.,
Ghosh, J.,
Investigation of the Random Forest Framework for Classification of
Hyperspectral Data,
GeoRS(43), No. 3, March 2005, pp. 492-501.
IEEE Abstract.
0501
BibRef
Kang, Y.[Yousun],
Nagahashi, H.[Hiroshi],
Sugimoto, A.[Akihiro],
Image Categorization Using Scene-Context Scale Based on Random Forests,
IEICE(E94-D), No. 9, September 2011, pp. 1809-1816.
WWW Link.
1110
BibRef
Earlier:
Semantic Segmentation and Object Recognition Using Scene-Context Scale,
PSIVT10(39-45).
IEEE DOI
1011
Effective region size to classify pixels.
BibRef
Aoki, K.[Kota],
Nagahashi, H.[Hiroshi],
Visual Correspondence Grouping via Local Consistent Neighborhood,
IEICE(E96-D), No. 6, June 2013, pp. 1351-1358.
WWW Link.
1306
Keypoint matches.
BibRef
Ye, Y.M.[Yun-Ming],
Wu, Q.Y.[Qing-Yao],
Huang, J.Z.[Joshua Zhexue],
Ng, M.K.[Michael K.],
Li, X.T.[Xu-Tao],
Stratified sampling for feature subspace selection in random forests
for high dimensional data,
PR(46), No. 3, March 2013, pp. 769-787.
Elsevier DOI
1212
Stratified sampling; High-dimensional data; Classification; Ensemble
classifier; Decision trees; Random forests
BibRef
Bosch, A.[Anna],
Zisserman, A.[Andrew],
Muñoz, X.[Xavier],
Scene Classification Using a Hybrid Generative/Discriminative Approach,
PAMI(30), No. 4, April 2008, pp. 712-727.
IEEE DOI
0803
BibRef
Earlier:
Image Classification using Random Forests and Ferns,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Earlier:
Scene Classification Via pLSA,
ECCV06(IV: 517-530).
Springer DOI
0608
BibRef
Bosch, A.[Anna],
Zisserman, A.[Andrew],
Munoz, X.[Xavier],
Representing shape with a spatial pyramid kernel,
CIVR07(401-408).
DOI Link
0707
BibRef
Bosch, A.[Anna],
Muñoz, X.[Xavier],
Marti, J.,
Using Appearance and Context for Outdoor Scene Object Classification,
ICIP05(II: 1218-1221).
IEEE DOI
0512
BibRef
Bosch, A.[Anna],
Munoz, X.[Xavier],
Oliver, A.[Arnau],
Marti, R.[Robert],
Object and Scene Classification:
What does a Supervised Approach Provide us?,
ICPR06(I: 773-777).
IEEE DOI
0609
BibRef
Rota Bulò, S.[Samuel],
Torsello, A.[Andrea],
Pelillo, M.[Marcello],
A game-theoretic approach to partial clique enumeration,
IVC(27), No. 7, 4 June 2009, pp. 911-922.
Elsevier DOI
0904
BibRef
Earlier:
A Continuous-Based Approach for Partial Clique Enumeration,
GbRPR07(61-70).
Springer DOI
0706
Maximal clique enumeration; Maximum clique problem; Evolutionary game
theory; Evolutionary stable strategy
See also Polynomial-Time Metrics for Attributed Trees.
BibRef
Albarelli, A.[Andrea],
Rota Bulo, S.[Samuel],
Torsello, A.[Andrea],
Pelillo, M.[Marcello],
Matching as a non-cooperative game,
ICCV09(1319-1326).
IEEE DOI
0909
See also Fast 3D surface reconstruction by unambiguous compound phase coding.
BibRef
Rota Bulo, S.,
Albarelli, A.,
Torsello, A.,
Pelillo, M.,
A hypergraph-based approach to affine parameters estimation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Kontschieder, P.[Peter],
Fiterau, M.,
Criminisi, A.,
Rota Bulò, S.[Samuel],
Deep Neural Decision Forests,
ICCV15(1467-1475)
IEEE DOI
1602
Award, Marr Prize. Computer vision
BibRef
Kontschieder, P.[Peter],
Rota Bulò, S.[Samuel],
Donoser, M.[Michael],
Pelillo, M.[Marcello],
Bischof, H.[Horst],
Semantic Image Labelling as a Label Puzzle Game,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Genuer, R.[Robin],
Poggi, J.M.[Jean-Michel],
Tuleau-Malot, C.[Christine],
Variable selection using random forests,
PRL(31), No. 14, 15 October 2010, pp. 2225-2236.
Elsevier DOI
1003
Random forests; Regression; Classification; Variable importance;
Variable selection; High dimensional data
BibRef
Whalen, S.[Sean],
Peisert, S.[Sean],
Bishop, M.[Matt],
Multiclass classification of distributed memory parallel computations,
PRL(34), No. 3, 1 February 2013, pp. 322-329.
Elsevier DOI
1301
Multiclass classification; Bayesian networks; Random forests;
Self-organizing maps; High performance computing; Communication
patterns
BibRef
Désir, C.[Chesner],
Bernard, S.[Simon],
Petitjean, C.[Caroline],
Heutte, L.[Laurent],
One class random forests,
PR(46), No. 12, 2013, pp. 3490-3506.
Elsevier DOI
1308
BibRef
Earlier:
A Random Forest Based Approach for One Class Classification in Medical
Imaging,
MLMI12(250-257).
Springer DOI
1211
BibRef
Earlier:
A New Random Forest Method for One-Class Classification,
SSSPR12(282-290).
Springer DOI
1211
One class classification
BibRef
Zhang, L.[Le],
Suganthan, P.N.[Ponnuthurai Nagaratnam],
Random Forests with ensemble of feature spaces,
PR(47), No. 10, 2014, pp. 3429-3437.
Elsevier DOI
1406
Ensemble
BibRef
Hernández-Lobato, D.[Daniel],
Martínez-Muñoz, G.[Gonzalo],
Suárez, A.[Alberto],
How large should ensembles of classifiers be?,
PR(46), No. 5, May 2013, pp. 1323-1336.
Elsevier DOI
1302
Ensemble learning; Bagging; Random forest; Asymptotic ensemble
prediction; Ensemble size
BibRef
Quadrianto, N.[Novi],
Ghahramani, Z.[Zoubin],
A Very Simple Safe-Bayesian Random Forest,
PAMI(37), No. 6, June 2015, pp. 1297-1303.
IEEE DOI
1506
Bayes methods
BibRef
Du, P.J.[Pei-Jun],
Samat, A.[Alim],
Waske, B.[Björn],
Liu, S.C.[Si-Cong],
Li, Z.H.[Zhen-Hong],
Random Forest and Rotation Forest for fully polarized SAR image
classification using polarimetric and spatial features,
PandRS(105), No. 1, 2015, pp. 38-53.
Elsevier DOI
1506
Polarimetric SAR
BibRef
Millard, K.[Koreen],
Richardson, M.[Murray],
On the Importance of Training Data Sample Selection in Random Forest
Image Classification: A Case Study in Peatland Ecosystem Mapping,
RS(7), No. 7, 2015, pp. 8489.
DOI Link
1506
BibRef
Balzter, H.[Heiko],
Cole, B.[Beth],
Thiel, C.[Christian],
Schmullius, C.[Christiane],
Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital
Elevation Model Data using Random Forests,
RS(7), No. 11, 2015, pp. 14876.
DOI Link
1512
BibRef
Liu, X.[Xiao],
Song, M.L.[Ming-Li],
Tao, D.C.[Da-Cheng],
Liu, Z.C.[Zi-Cheng],
Zhang, L.M.[Lu-Ming],
Chen, C.[Chun],
Bu, J.J.[Jia-Jun],
Random Forest Construction With Robust Semisupervised Node Splitting,
IP(24), No. 1, January 2015, pp. 471-483.
IEEE DOI
1502
BibRef
Earlier:
Semi-supervised Node Splitting for Random Forest Construction,
CVPR13(492-499)
IEEE DOI
1309
node splitting; random forest; semi-supervised learning
See also Attribute-restricted latent topic model for person re-identification.
BibRef
Belgiu, M.[Mariana],
Dragut, L.[Lucian],
Random forest in remote sensing:
A review of applications and future directions,
PandRS(114), No. 1, 2016, pp. 24-31.
Elsevier DOI
1604
Survey, Random Forests. Random forest
BibRef
Xia, J.[Jing],
Zhang, S.Y.[Sheng-Yu],
Cai, G.L.[Guo-Long],
Li, L.[Li],
Pan, Q.[Qing],
Yan, J.[Jing],
Ning, G.M.[Gang-Min],
Adjusted weight voting algorithm for random forests in handling
missing values,
PR(69), No. 1, 2017, pp. 52-60.
Elsevier DOI
1706
Random forests
BibRef
Tsagkrasoulis, D.[Dimosthenis],
Montana, G.[Giovanni],
Random forest regression for manifold-valued responses,
PRL(101), No. 1, 2018, pp. 6-13.
Elsevier DOI
1801
Manifold regression
BibRef
Jampour, M.[Mahdi],
Moin, M.S.[Mohammad-Shahram],
Bischof, L.F.Y.H.[Lap-Fai Yu Horst],
Mapping Forests:
A Comprehensive Approach for Nonlinear Mapping Problems,
JMIV(60), No. 2, February 2018, pp. 232-245.
Springer DOI
1802
BibRef
Jinguji, A.[Akira],
Sato, S.[Shimpei],
Nakahara, H.[Hiroki],
An FPGA Realization of a Random Forest with k-Means Clustering Using a
High-Level Synthesis Design,
IEICE(E101-D), No. 2, February 2018, pp. 354-362.
WWW Link.
1802
BibRef
Paul, A.,
Mukherjee, D.P.,
Das, P.,
Gangopadhyay, A.,
Chintha, A.R.,
Kundu, S.,
Improved Random Forest for Classification,
IP(27), No. 8, August 2018, pp. 4012-4024.
IEEE DOI
1806
Etching, Feature extraction, Ferrites, Manuals, Microstructure, Steel,
Vegetation, Random forest, classification accuracy,
optimal number of trees
BibRef
Paul, A.[Angshuman],
Mukherjee, D.P.[Dipti Prasad],
Reinforced quasi-random forest,
PR(94), 2019, pp. 13-24.
Elsevier DOI
1906
Random forest, Reinforcement learning,
Orthogonal decision trees, Importance of attributes
BibRef
O'Brien, R.[Robert],
Ishwaran, H.[Hemant],
A random forests quantile classifier for class imbalanced data,
PR(90), 2019, pp. 232-249.
Elsevier DOI
1903
Weighted Bayes classifier, Response-based sampling,
Class imbalance, Minority class, Random forests
BibRef
Zafari, A.[Azar],
Zurita-Milla, R.[Raul],
Izquierdo-Verdiguier, E.[Emma],
Evaluating the Performance of a Random Forest Kernel for Land Cover
Classification,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
And:
Correction:
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Andrejchenko, V.[Vera],
Liao, W.Z.[Wen-Zhi],
Philips, W.[Wilfried],
Scheunders, P.[Paul],
Decision Fusion Framework for Hyperspectral Image Classification
Based on Markov and Conditional Random Fields,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Kang, B.,
Nguyen, T.Q.,
Random Forest With Learned Representations for Semantic Segmentation,
IP(28), No. 7, July 2019, pp. 3542-3555.
IEEE DOI
1906
Semantics, Shape, Image segmentation, Convolution, Task analysis,
Neural networks, Real-time systems, Semantic segmentation,
real-time systems
BibRef
Gazzola, G.[Gianluca],
Jeong, M.K.[Myong Kee],
Dependence-biased clustering for variable selection with random
forests,
PR(96), 2019, pp. 106980.
Elsevier DOI
1909
Variable selection, Random forest, Permutation importance,
Regression, Classification, Clustering
BibRef
Maas, A.E.[Alina E.],
Rottensteiner, F.[Franz],
Heipke, C.[Christian],
A label noise tolerant random forest for the classification of remote
sensing data based on outdated maps for training,
CVIU(188), 2019, pp. 102782.
Elsevier DOI
1910
Change detection, Label noise, Random forest, Supervised classification
BibRef
Katuwal, R.[Rakesh],
Suganthan, P.N.,
Zhang, L.[Le],
Heterogeneous oblique random forest,
PR(99), 2020, pp. 107078.
Elsevier DOI
1912
Benchmarking, Classifiers, Oblique random forest, Heterogeneous,
One-vs-all, Ensemble learning
BibRef
Zhang, Y.Q.[You-Qiang],
Cao, G.[Guo],
Li, X.S.[Xue-Song],
Wang, B.S.[Bi-Sheng],
Fu, P.[Peng],
Active Semi-Supervised Random Forest for Hyperspectral Image
Classification,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Tahir, M.[Muhammad],
Taj, I.A.[Imtiaz A.],
Assuncao, P.A.[Pedro A.],
Asif, M.[Muhammad],
Fast video encoding based on random forests,
RealTimeIP(17), No. 4, August 2020, pp. 1029-1049.
Springer DOI
2007
BibRef
Vitrack-Tamam, S.[Snir],
Holtzman, L.[Lilach],
Dagan, R.[Reut],
Levi, S.[Shai],
Tadmor, Y.[Yuval],
Azizi, T.[Tamir],
Rabinovitz, O.[Onn],
Naor, A.[Amos],
Liran, O.[Oded],
Random Forest Algorithm Improves Detection of Physiological Activity
Embedded within Reflectance Spectra Using Stomatal Conductance as a
Test Case,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Phan, T.N.[Thanh Noi],
Kuch, V.[Verena],
Lehnert, L.W.[Lukas W.],
Land Cover Classification using Google Earth Engine and Random Forest
Classifier: The Role of Image Composition,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Obata, S.[Shingo],
Cieszewski, C.J.[Chris J.],
Lowe, R.C.[Roger C.],
Bettinger, P.[Pete],
Random Forest Regression Model for Estimation of the Growing Stock
Volumes in Georgia, USA, Using Dense Landsat Time Series and FIA
Dataset,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Marques F., P.C.[Paulo C.],
Confidence intervals for the random forest generalization error,
PRL(158), 2022, pp. 171-175.
Elsevier DOI
2205
WWW Link.
Code, Random Forest. Random forests, Generalization error, Out-of-bag estimation,
Confidence interval, Bootstrapping
BibRef
Boston, T.[Tony],
van Dijk, A.[Albert],
Larraondo, P.R.[Pablo Rozas],
Thackway, R.[Richard],
Comparing CNNs and Random Forests for Landsat Image Segmentation
Trained on a Large Proxy Land Cover Dataset,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Jozwicki, D.[Dorota],
Sharma, P.[Puneet],
Mann, I.[Ingrid],
Hoppe, U.P.[Ulf-Peter],
Segmentation of PMSE Data Using Random Forests,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Bicego, M.[Manuele],
DisRFC: a dissimilarity-based Random Forest Clustering approach,
PR(133), 2023, pp. 109036.
Elsevier DOI
2210
Random forests clustering, Dissimilarities,
Unsupervised learning, Clustering, Non-vectorial representation
BibRef
Schulthess, U.[Urs],
Rodrigues, F.[Francelino],
Taymans, M.[Matthieu],
Bellemans, N.[Nicolas],
Bontemps, S.[Sophie],
Ortiz-Monasterio, I.[Ivan],
Gérard, B.[Bruno],
Defourny, P.[Pierre],
Optimal Sample Size and Composition for Crop Classification with
Sen2-Agri's Random Forest Classifier,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Almeida, R.[Raquel],
Kijak, E.[Ewa],
Malinowski, S.[Simon],
Patrocínio, Jr., Z.K.G.[Zenilton K.G.],
Araújo, A.A.[Arnaldo A.],
Guimarães, S.J.F.[Silvio J.F.],
Graph-based image gradients aggregated with random forests,
PRL(166), 2023, pp. 182-189.
Elsevier DOI
2302
Random forest, Graph, Segmentation, Edge detection, Hierarchical watershed
BibRef
Mensi, A.[Antonella],
Tax, D.M.J.[David M.J.],
Bicego, M.[Manuele],
Detecting outliers from pairwise proximities:
Proximity isolation forests,
PR(138), 2023, pp. 109334.
Elsevier DOI
2303
Random forest, Outlier detection, Isolation, Pairwise distances
BibRef
Rhodes, J.S.[Jake S.],
Cutler, A.[Adele],
Moon, K.R.[Kevin R.],
Geometry- and Accuracy-Preserving Random Forest Proximities,
PAMI(45), No. 9, September 2023, pp. 10947-10959.
IEEE DOI
2309
BibRef
Ding, Y.[Yan],
Zhai, Y.[Yujuan],
Hu, M.[Ming],
Zhao, J.[Jia],
Deep forest auto-Encoder for resource-Centric attributes graph
embedding,
PR(143), 2023, pp. 109747.
Elsevier DOI
2310
Graph embedding, Deep random forest, Deep auto-encoder, Self-attention
BibRef
Ji, J.Z.[Jun-Zhong],
Li, J.W.[Jun-Wei],
Tri-objective optimization-based cascade ensemble pruning for deep
forest,
PR(143), 2023, pp. 109744.
Elsevier DOI
2310
Ensemble learning, Ensemble pruning, Deep forest,
Multi-objective optimization, Coupled diversity
BibRef
Jiang, M.[Mudi],
Wang, J.Q.[Jia-Qi],
Hu, L.[Lianyu],
He, Z.[Zengyou],
Random forest clustering for discrete sequences,
PRL(174), 2023, pp. 145-151.
Elsevier DOI
2310
Clustering, Random forest, Sequential data, Decision trees
BibRef
Yuan, X.G.[Xiao-Guang],
Liu, S.[Shiruo],
Feng, W.[Wei],
Dauphin, G.[Gabriel],
Feature Importance Ranking of Random Forest-Based End-to-End Learning
Algorithm,
RS(15), No. 21, 2023, pp. 5203.
DOI Link
2311
BibRef
Galka, L.[Lukasz],
Karczmarek, P.[Pawel],
Deterministic attribute selection for isolation forest,
PR(151), 2024, pp. 110395.
Elsevier DOI
2404
Anomaly detection, Isolation forest, Outlier detection, Deterministic model
BibRef
Raniero, M.[Matteo],
Bicego, M.[Manuele],
Cicalese, F.[Ferdinando],
Distance-Based Random Forest Clustering with Missing Data,
CIAP22(III:121-132).
Springer DOI
2205
BibRef
Bicego, M.[Manuele],
Escolano, F.[Francisco],
On learning Random Forests for Random Forest-clustering,
ICPR21(3451-3458)
IEEE DOI
2105
Radio frequency, Estimation, Entropy,
Random forests, Guidelines
BibRef
Mensi, A.[Antonella],
Bicego, M.[Manuele],
Tax, D.M.J.[David M.J.],
Proximity Isolation Forests,
ICPR21(8021-8028)
IEEE DOI
2105
Prototypes, Vegetation, Feature extraction, Task analysis,
Anomaly detection, Optimization
BibRef
Tombe, R.[Ronald],
Viriri, S.[Serestina],
Dombeu, J.V.F.[Jean Vincent Fonou],
Scene Classification of Remote Sensing Images Based on Convnet Features
and Multi-Grained Forest,
ISVC20(I:731-740).
Springer DOI
2103
BibRef
Gupta, K.,
Awate, S.P.,
Random Forests for Simultaneous-Multislice (SMS) Undersampled HARDI
Reconstruction and Uncertainty Estimation,
ICIP19(2626-2630)
IEEE DOI
1910
HARDI, simultaneous multislice MRI, reconstruction, random forest, uncertainty
BibRef
Mensi, A.[Antonella],
Bicego, M.[Manuele],
A Novel Anomaly Score for Isolation Forests,
CIAP19(I:152-163).
Springer DOI
1909
BibRef
Zhou, X.,
Ding, P.L.K.,
Li, B.,
Improving Robustness of Random Forest Under Label Noise,
WACV19(950-958)
IEEE DOI
1904
learning (artificial intelligence), pattern classification,
global multiclass noise, classic random forest model,
Training data
BibRef
Qiu, Q.A.[Qi-Ang],
Lezama, J.[José],
Bronstein, A.M.[Alex M.],
Sapiro, G.[Guillermo],
ForestHash: Semantic Hashing with Shallow Random Forests and Tiny
Convolutional Networks,
ECCV18(II: 442-459).
Springer DOI
1810
BibRef
Tewari, A.,
Gu, F.,
Grandidier, F.,
Stricker, D.,
Quantitative Evaluation of Salient Deep Neural Network Features Using
Random Forests,
IVMSP18(1-5)
IEEE DOI
1809
Task analysis, Training, Artificial neural networks,
Vegetation, Feature extraction, Shape, CNN, Feature Evaluation,
Random Forests
BibRef
Burciu, I.[Irina],
Martinetz, T.[Thomas],
Barth, E.[Erhardt],
Sensing Forest for Pattern Recognition,
ACIVS17(126-137).
Springer DOI
1712
Prototype based random forest.
BibRef
Kiran, B.R.[B. Ravi],
Serra, J.[Jean],
Cost-Complexity Pruning of Random Forests,
ISMM17(222-232).
Springer DOI
1706
BibRef
Tran, A.[Antoine],
Manzanera, A.[Antoine],
Fast growing hough forest as a stable model for object detection,
IPTA16(1-6)
IEEE DOI
1703
Hough transforms
BibRef
Wallenberg, M.[Marcus],
Forssén, P.E.[Per-Erik],
Improving Random Forests by Correlation-Enhancing Projections and
Sample-Based Sparse Discriminant Selection,
CRV16(222-227)
IEEE DOI
1612
image classification
BibRef
Moradi, M.[Mehdi],
Syeda-Mahmood, T.[Tanveer],
Hor, S.[Soheil],
Tree-Based Transforms for Privileged Learning,
MLMI16(188-195).
Springer DOI
1611
BibRef
Naji, D.,
Fakir, M.,
Bouikhalene, B.,
Elayachi, R.,
Recognition of 3D Objects Using Heat Diffusion Equations and Random
Forests,
CGiV16(161-166)
IEEE DOI
1608
decision trees
BibRef
Rodriguez, A.L.[Antonio L.],
Sequeira, V.[Vitor],
Improving Ferns Ensembles by Sparsifying and Quantising Posterior
Probabilities,
ICCV15(4103-4111)
IEEE DOI
1602
Image recognition
BibRef
Modolo, D.[Davide],
Vezhnevets, A.[Alexander],
Ferrari, V.[Vittorio],
Context Forest for Object Class Detection,
BMVC15(xx-yy).
DOI Link
1601
BibRef
de Vleeschouwer, C.,
Legrand, A.,
Jacques, L.,
Hebert, M.[Martial],
Mitigating memory requirements for random trees/ferns,
ICIP15(227-231)
IEEE DOI
1512
Random ferns; memory usage; random trees
BibRef
Chen, F.[Fan],
Liu, Z.C.[Zi-Cheng],
Sun, M.T.[Ming-Ting],
Anomaly detection by using random projection forest,
ICIP15(1210-1214)
IEEE DOI
1512
Anomaly Detection; Intelligent Video Surveillance; Random Forest
BibRef
Ren, S.Q.[Shao-Qing],
Cao, X.D.[Xu-Dong],
Wei, Y.C.[Yi-Chen],
Sun, J.[Jian],
Global refinement of random forest,
CVPR15(723-730)
IEEE DOI
1510
BibRef
Baumann, F.[Florian],
Vogt, K.[Karsten],
Ehlers, A.[Arne],
Rosenhahn, B.[Bodo],
Probabilistic nodes for modelling classification uncertainty for
random forest,
MVA15(510-513)
IEEE DOI
1507
Decision trees
BibRef
Villamizar, M.,
Garrell, A.,
Sanfeliu, A.,
Moreno-Noguer, F.,
Multimodal Object Recognition Using Random Clustering Trees,
IbPRIA15(496-504).
Springer DOI
1506
BibRef
Welbl, J.[Johannes],
Casting Random Forests as Artificial Neural Networks (and Profiting
from It),
GCPR14(765-771).
Springer DOI
1411
BibRef
Haeusler, R.[Ralf],
Nair, R.[Rahul],
Kondermann, D.[Daniel],
Ensemble Learning for Confidence Measures in Stereo Vision,
CVPR13(305-312)
IEEE DOI
1309
benchmarking; confidence measure; random forest; stereo
BibRef
Wohlhart, P.[Paul],
Kostinger, M.[Martin],
Donoser, M.[Michael],
Roth, P.M.[Peter M.],
Bischof, H.[Horst],
Optimizing 1-Nearest Prototype Classifiers,
CVPR13(460-467)
IEEE DOI
1309
Classification
BibRef
Schulter, S.[Samuel],
Leistner, C.[Christian],
Bischof, H.[Horst],
Fast and accurate image upscaling with super-resolution forests,
CVPR15(3791-3799)
IEEE DOI
1510
BibRef
Schulter, S.[Samuel],
Leistner, C.[Christian],
Wohlhart, P.[Paul],
Roth, P.M.[Peter M.],
Bischof, H.[Horst],
Accurate Object Detection with Joint Classification-Regression Random
Forests,
CVPR14(923-930)
IEEE DOI
1409
BibRef
Wohlhart, P.[Paul],
Lepetit, V.[Vincent],
Learning descriptors for object recognition and 3D pose estimation,
CVPR15(3109-3118)
IEEE DOI
1510
BibRef
Schulter, S.[Samuel],
Leistner, C.[Christian],
Wohlhart, P.[Paul],
Roth, P.M.[Peter M.],
Bischof, H.[Horst],
Alternating Regression Forests for Object Detection and Pose
Estimation,
ICCV13(417-424)
IEEE DOI
1403
Head Pose Estimation; Object Detection; Random Forest; Regression
See also On-line Hough Forests.
BibRef
Schulter, S.[Samuel],
Wohlhart, P.[Paul],
Leistner, C.[Christian],
Saffari, A.[Amir],
Roth, P.M.[Peter M.],
Bischof, H.[Horst],
Alternating Decision Forests,
CVPR13(508-515)
IEEE DOI
1309
Boosting; Global Loss; Random Forests
BibRef
Straehle, C.[Christoph],
Kandemir, M.[Melih],
Koethe, U.[Ullrich],
Hamprecht, F.A.[Fred A.],
Multiple Instance Learning with Response-Optimized Random Forests,
ICPR14(3768-3773)
IEEE DOI
1412
Accuracy
BibRef
Straehle, C.[Christoph],
Koethe, U.[Ullrich],
Hamprecht, F.A.[Fred A.],
Weakly Supervised Learning of Image Partitioning Using Decision Trees
with Structured Split Criteria,
ICCV13(1849-1856)
IEEE DOI
1403
decision tree
BibRef
Straehle, C.[Christoph],
Peter, S.[Sven],
Köthe, U.[Ullrich],
Hamprecht, F.A.[Fred A.],
K-Smallest Spanning Tree Segmentations,
GCPR13(375-384).
Springer DOI
1311
Award, GCPR, HM.
BibRef
Baumann, F.[Florian],
Ehlers, A.[Arne],
Rosenhahn, B.[Bodo],
Liu, W.[Wei],
Sequential Boosting for Learning a Random Forest Classifier,
WACV15(442-447)
IEEE DOI
1503
Accuracy
BibRef
Baumann, F.[Florian],
Li, F.D.[Fang-Da],
Ehlers, A.[Arne],
Rosenhahn, B.[Bodo],
Thresholding a Random Forest Classifier,
ISVC14(II: 95-106).
Springer DOI
1501
BibRef
Baumann, F.[Florian],
Chen, J.H.[Jing-Hui],
Vogt, K.[Karsten],
Rosenhahn, B.[Bodo],
Improved Threshold Selection by Using Calibrated Probabilities for
Random Forest Classifiers,
CRV15(155-160)
IEEE DOI
1507
Accuracy
BibRef
Baumann, F.[Florian],
Ehlers, A.[Arne],
Vogt, K.[Karsten],
Rosenhahn, B.[Bodo],
Cascaded Random Forest for Fast Object Detection,
SCIA13(131-142).
Springer DOI
1311
BibRef
Fu, H.[Hao],
Zhang, Q.[Qian],
Qiu, G.P.[Guo-Ping],
Random Forest for Image Annotation,
ECCV12(VI: 86-99).
Springer DOI
1210
BibRef
Nowozin, S.[Sebastian],
Rother, C.[Carsten],
Bagon, S.[Shai],
Sharp, T.[Toby],
Yao, B.P.[Bang-Peng],
Kohli, P.[Pushmeet],
Decision tree fields,
ICCV11(1668-1675).
IEEE DOI
1201
Combines and generalizes random forests and conditional random fields.
BibRef
Lefort, R.[Riwal],
Fablet, R.[Ronan],
Boucher, J.M.[Jean-Marc],
Weakly Supervised Classification of Objects in Images Using Soft Random
Forests,
ECCV10(IV: 185-198).
Springer DOI
1009
BibRef
Chu, Y.W.[Yu-Wu],
Liu, T.L.[Tyng-Luh],
Co-occurrence Random Forests for Object Localization and Classification,
ACCV09(III: 621-632).
Springer DOI
0909
Dealing with weakly labeled data.
BibRef
Schwing, A.G.[Alexander G.],
Zach, C.[Christopher],
Zheng, Y.F.[Ye-Feng],
Pollefeys, M.[Marc],
Adaptive random forest:
How many 'experts' to ask before making a decision?,
CVPR11(1377-1384).
IEEE DOI
1106
BibRef
Bossard, L.[Lukas],
Guillaumin, M.[Matthieu],
Van Gool, L.J.[Luc J.],
Food-101: Mining Discriminative Components with Random Forests,
ECCV14(VI: 446-461).
Springer DOI
1408
Dataset, Food. 101 food categories, with 101’000 images
recognizing pictured dishes.
BibRef
Hoo, W.L.[Wai Lam],
Kim, T.K.[Tae-Kyun],
Pei, Y.[Yuru],
Chan, C.S.[Chee Seng],
Enhanced Random Forest with Image/Patch-Level Learning for Image
Understanding,
ICPR14(3434-3439)
IEEE DOI
1412
Accuracy
BibRef
Wang, L.[Liang],
Wang, Y.Z.[Yi-Zhou],
Zhao, D.B.[De-Bin],
Building Emerging Pattern (EP) Random forest for recognition,
ICIP10(1457-1460).
IEEE DOI
1009
BibRef
Wang, A.P.[Ai-Ping],
Wan, G.W.[Guo-Wei],
Cheng, Z.Q.[Zhi-Quan],
Li, S.K.[Si-Kun],
An incremental extremely random forest classifier for online learning
and tracking,
ICIP09(1449-1452).
IEEE DOI
0911
BibRef
Perbet, F.[Frank],
Stenger, B.[Bjorn],
Maki, A.[Atsuto],
Random Forest Clustering and Application to Video Segmentation,
BMVC09(xx-yy).
PDF File.
0909
Large data sets, high-dimensional space.
BibRef
Elgawi, O.H.[Osman Hassab],
Hasegawa, O.[Osamu],
Online incremental random forests,
ICMV07(102-106).
IEEE DOI
0712
Feature selection technique.
BibRef
Elgawi, O.H.[Osman Hassab],
Online random forests based on CorrFS and CorrBE,
Learning08(1-7).
IEEE DOI
0806
BibRef
Prior, M.,
Windeatt, T.,
Parameter Tuning using the Out-of-Bootstrap Generalisation Error
Estimate for Stochastic Discrimination and Random Forests,
ICPR06(II: 498-501).
IEEE DOI
0609
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Self-Organizing Map Classification .