Cottafava, G., and
LeMoli, G.,
The Automated Contour Map,
CACM(12), No. 7, July 1969, pp. 386-391.
BibRef
6907
Mori, K.,
Kidode, M., and
Asada, H.,
An Iterative Prediction and Correction Method for
Automatic Stereo Comparison,
CGIP(2), 1973, pp. 393-401.
BibRef
7300
Dev, P.,
Perception of Depth Surfaces in Random-Dot Stereograms:
A Neural Model,
MMS(7), 1978, pp. 511-528.
BibRef
7800
Grimson, W.E.L.,
Computational Experiments with a Feature Based Stereo Algorithm,
PAMI(7), No. 1, January 1985, pp. 17-34.
BibRef
8501
And:
MIT AI Memo-762, January 1984.
Stereo, Grimson. Description of the new Grimson algorithm that uses the
modifications suggested by the work since 1980. The major changes
are in the area of matching. Very detailed description of the
algorithm and the implementation.
See also From Images to Surfaces: A Computational Study of the Human Early Visual System.
BibRef
Drumheller, M., and
Poggio, T.A.,
On Parallel Stereo,
CRA87(527-538).
BibRef
8700
And:
Same title.
CRA86(1439-1448).
BibRef
Drumheller, M.,
Connection Machine Stereomatching,
AAAI-86(748-753).
BibRef
8600
White, S.,
Stereo Using the Displacement Representation,
DARPA92(391-399). Scale space extraction of disparities.
BibRef
9200
Prazdny, K.,
Detection of Binocular Disparities,
BioCyber(52), 1985, pp. 93-99.
BibRef
8500
And:
RCV87(73-79).
Relaxation. Generate all possible disparities, then use a relaxation
procedure to get some neighborhood consistency.
BibRef
Prazdny, K.,
The Role of Eye Position Information in Algorithms for
Stereoscopic Matching,
AAAI-82(1-4).
BibRef
8200
Jones, D.G.[David G.],
Malik, J.[Jitendra],
Computational Framework for Determining Stereo Correspondence
from a Set of Linear Spatial Filters,
IVC(10), No. 10, December 1992, pp. 699-708.
Elsevier DOI
BibRef
9212
Earlier:
ECCV92(395-410).
Springer DOI
BibRef
And:
UCBCSD-91-655, October 1991.
BibRef
Gerstenberger, J.S.[Jeffrey S.],
Mechanism for determining parallax between digital images,
US_Patent5,220,441, Jun 15, 1993
WWW Link. Correlation matching.
BibRef
9306
Kara, A.[Atsushi],
Wilkes, D.M.[D. Mitchell],
Kawamura, K.[Kazuhiko],
3D Structure Reconstruction from Point Correspondences between
Two Perspective Projections,
CVGIP(60), No. 3, November 1994, pp. 392-397.
DOI Link
BibRef
9411
Reimann, D.,
Haken, H.,
Stereo Vision by Self-Organization,
BioCyber(71), No. 1, 1994, pp. 17-26.
Disparity at each point, relaxation process.
BibRef
9400
Agouris, P.,
Schenk, T.,
Automated Aerotriangulation Using Multiple Image Multipoint Matching,
PhEngRS(62), No. 6, June 1996, pp. 703-710.
9606
BibRef
Toth, C.K.,
Krupnik, A.,
Concept, Implementation, and Results of an
Automatic Aerotriangulation System,
PhEngRS(62), No. 6, June 1996, pp. 711-717.
9606
BibRef
Toth, C.K.[Charles K.],
Schenk, T.[Toni],
Multiple image matching in an automatic aerotriangulation system,
CAIP93(750-758).
Springer DOI
9309
BibRef
March, R.,
Computation of Stereo Disparity Using Regularization,
PRL(8), 1988, pp. 181-187.
BibRef
8800
March, R.,
A Regularization Model for Stereo Vision with Controlled Continuity,
PRL(10), 1989, pp. 259-263.
BibRef
8900
Baillard, C.,
Dissard, O.,
Jamet, O.,
Maitre, H.,
Extraction and Textural Characterization of Aboveground Areas
from Aerial Stereo Pairs: A Quality Assessment,
PandRS(53), No. 2, April 1998, pp. 130-141.
9805
See also Above-Ground Objects in Urban Scenes from Medium Scale Aerial Imagery.
BibRef
Scharstein, D.[Daniel],
Szeliski, R.S.[Richard S.],
Stereo Matching With Nonlinear Diffusion,
IJCV(28), No. 2, June-July 1998, pp. 155-174.
DOI Link
9808
BibRef
Earlier:
CVPR96(343-350).
IEEE DOI
BibRef
And:
CornellComputer Science, TR96-1575, March 1996.
Code, Stereo. Code:
HTML Version. Point matching using Sum of Squared Differences (SSD).
BibRef
Sinha, S.N.[Sudipta Narayan],
Scharstein, D.[Daniel],
Szeliski, R.S.[Richard S.],
Efficient High-Resolution Stereo Matching Using Local Plane Sweeps,
CVPR14(1582-1589)
IEEE DOI
1409
plane sweep;semi-global matching;stereo matching
BibRef
Scharstein, D.,
Matching Images by Comparing Their Gradient Fields,
ICPR94(A:572-575).
IEEE DOI
BibRef
9400
Szeliski, R.S.[Richard S.],
Scharstein, D.,
Symmetric Sub-Pixel Stereo Matching,
ECCV02(II: 525 ff.).
Springer DOI
0205
BibRef
Chen, T.Y.,
Bovik, A.C.[Alan C.],
Cormack, L.K.[Lawrence K.],
Stereoscopic Ranging by Matching Image Modulations,
IP(8), No. 6, June 1999, pp. 785-797.
IEEE DOI
BibRef
9906
Liu, Y.,
Cormack, L.K.[Lawrence K.],
Bovik, A.C.[Alan C.],
Statistical Modeling of 3-D Natural Scenes With Application to Bayesian
Stereopsis,
IP(20), No. 9, September 2011, pp. 2515-2530.
IEEE DOI
1109
BibRef
Su, C.C.[Che-Chun],
Cormack, L.K.[Lawrence K.],
Bovik, A.C.[Alan C.],
Color and Depth Priors in Natural Images,
IP(22), No. 6, 2013, pp. 2259-2274.
IEEE DOI stereo image processing; image discontinuity; Gabor filter bank
1307
BibRef
Earlier: A1, A3, A2:
Statistical model of color and disparity with application to Bayesian
stereopsis,
Southwest12(169-172).
IEEE DOI
1205
BibRef
Earlier: A1, A3, A2:
Natural scene statistics of color and range,
ICIP11(257-260).
IEEE DOI
1201
BibRef
Su, C.C.[Che-Chun],
Cormack, L.K.[Lawrence K.],
Bovik, A.C.[Alan C.],
Closed-Form Correlation Model of Oriented Bandpass Natural Images,
SPLetters(22), No. 1, January 2015, pp. 21-25.
IEEE DOI
1410
image processing
BibRef
Su, C.C.[Che-Chun],
Cormack, L.K.[Lawrence K.],
Bovik, A.C.[Alan C.],
Oriented Correlation Models of Distorted Natural Images With
Application to Natural Stereopair Quality Evaluation,
IP(24), No. 5, May 2015, pp. 1685-1699.
IEEE DOI
1504
Computational modeling
BibRef
Birchfield, S.T.[Stan T.],
Tomasi, C.[Carlo],
Depth Discontinuities by Pixel-to-Pixel Stereo,
IJCV(35), No. 3, December 1999, pp. 269-293.
DOI Link
BibRef
9912
Earlier:
ICCV98(1073-1080).
IEEE DOI
BibRef
And:
STAN-CS--TR-96-1573, Stanford Univ. July 1996.
BibRef
Mühlmann, K.[Karsten],
Maier, D.[Dennis],
Hesser, J.[Jürgen],
Männer, R.[Reinhard],
Calculating Dense Disparity Maps from Color Stereo Images, an Efficient
Implementation,
IJCV(47), No. 1-3, April-June 2002, pp. 79-88.
DOI Link
0203
BibRef
Earlier:
SMBV01(xx-yy).
0110
BibRef
Wiora, G.[Georg],
Babrou, P.[Pavel],
Männer, R.[Reinhard],
Real Time High Speed Measurement of Photogrammetric Targets,
DAGM04(562-569).
Springer DOI
0505
BibRef
Okutomi, M.[Masatoshi],
Katayama, Y.[Yasuhiro],
Oka, S.[Setsuko],
A Simple Stereo Algorithm to Recover Precise Object Boundaries and
Smooth Surfaces,
IJCV(47), No. 1-3, April-June 2002, pp. 261-273.
DOI Link
0203
BibRef
Earlier:
CVPR01(II:138-144).
IEEE DOI
0110
BibRef
And: A1, A2 only:
Simple Stereo Algorithm to Recover Precise Object Boundaries and Smooth
Surfaces,
SMBV01(xx-yy).
0110
Area based matching. Adaptive.
Use multiple pairs and multiple windows to limit area matching errors.
BibRef
Lhuillier, M.[Maxime],
Quan, L.[Long],
Match Propagation for Image-Based Modeling and Rendering,
PAMI(24), No. 8, August 2002, pp. 1140-1146.
IEEE Abstract.
0208
Image Based Rendering. Start from sparse set of seed matches, propagate to neighbors.
The procedure can generate inbetween images (blended images).
BibRef
Lhuillier, M.[Maxime],
Quan, L.[Long],
A Quasi-Dense Approach to Surface Reconstruction from Uncalibrated
Images,
PAMI(27), No. 3, March 2005, pp. 418-433.
IEEE Abstract.
0501
BibRef
Earlier:
Quasi-Dense Reconstruction from Image Sequence,
ECCV02(II: 125 ff.).
Springer DOI
0205
BibRef
Earlier:
Robust Dense Matching Using Local and Global Geometric Constraints,
ICPR00(Vol I: 968-972).
IEEE DOI
0009
Structure from resampled dense matches rather than just feature points.
BibRef
Zeng, G.[Gang],
Paris, S.[Sylvain],
Quan, L.[Long],
Lhuillier, M.[Maxime],
Surface Reconstruction by Propagating 3D Stereo Data in Multiple 2D
Images,
ECCV04(Vol I: 163-174).
Springer DOI
0405
See also Accurate and Scalable Surface Representation and Reconstruction from Images.
BibRef
Lhuillier, M.,
Efficient Dense Matching for Textured Scenes using Region Growing,
BMVC98(xx-yy).
BibRef
9800
Xiao, J.X.[Jian-Xiong],
Chen, J.N.[Jing-Ni],
Yeung, D.Y.[Dit-Yan],
Quan, L.[Long],
Learning Two-View Stereo Matching,
ECCV08(III: 15-27).
Springer DOI
0810
BibRef
Binaghi, E.[Elisabetta],
Gallo, I.[Ignazio],
Marino, G.[Giuseppe],
Raspanti, M.[Mario],
Neural adaptive stereo matching,
PRL(25), No. 15, November 2004, pp. 1743-1758.
Elsevier DOI
0411
BibRef
Binaghi, E.[Elisabetta],
Gallo, I.[Ignazio],
Guidali, A.,
Raspanti, M.[Mario],
Salvini, G.,
Adaptive Neural Regularization Assignment for Semi-Blind Biomedical
Image Restoration,
IMVIP07(207-207).
IEEE DOI
0709
BibRef
Sarkar, I.,
Bansal, M.,
A Wavelet-Based Multiresolution Approach to Solve the Stereo
Correspondence Problem Using Mutual Information,
SMC-B(37), No. 4, August 2007, pp. 1009-1014.
IEEE DOI
0707
BibRef
Sizintsev, M.[Mikhail],
Wildes, R.P.[Richard P.],
Coarse-to-fine stereo vision with accurate 3D boundaries,
IVC(28), No. 3, March 2010, pp. 352-366.
Elsevier DOI
1001
BibRef
Earlier:
Efficient Stereo with Accurate 3-D Boundaries,
BMVC06(I:237).
PDF File.
0609
Stereo; Coarse-to-fine; Occlusions; Real-time algorithms
See also Spatiotemporal Stereo and Scene Flow via Stequel Matching.
BibRef
Sizintsev, M.[Mikhail],
Hierarchical Stereo with Thin Structures and Transparency,
CRV08(97-104).
IEEE DOI
0805
BibRef
Shi, C.B.[Chen-Bo],
Wang, G.J.[Gui-Jin],
Pei, X.K.[Xiao-Kang],
He, B.[Bei],
Lin, X.G.[Xing-Gang],
Stereo Matching Using Local Plane Fitting in Confidence-Based Support
Window,
IEICE(E95-D), No. 2, February 2012, pp. 699-702.
WWW Link.
1202
BibRef
Shi, C.B.[Chen-Bo],
Wang, G.J.[Gui-Jin],
Pei, X.K.[Xiao-Kang],
He, B.[Bei],
Lin, X.G.[Xing-Gang],
An Interleaving Updating Framework of Disparity and Confidence Map for
Stereo Matching,
IEICE(E95-D), No. 5, May 2012, pp. 1552-1555.
WWW Link.
1202
See also High-Accuracy Stereo Matching Based on Adaptive Ground Control Points.
BibRef
Kumar, S.[Suryansh],
Dai, Y.C.[Yu-Chao],
Li, H.D.[Hong-Dong],
Superpixel Soup: Monocular Dense 3D Reconstruction of a Complex
Dynamic Scene,
PAMI(43), No. 5, May 2021, pp. 1705-1717.
IEEE DOI
2104
BibRef
Earlier:
Monocular Dense 3D Reconstruction of a Complex Dynamic Scene from Two
Perspective Frames,
ICCV17(4659-4667)
IEEE DOI
1802
Dynamics, Image reconstruction,
Heuristic algorithms, Cameras, Motion segmentation,
structure from motion.
approximation theory, image motion analysis,
image segmentation, image sequences,
Vehicle dynamics
BibRef
Wen, S.[Shuhuan],
Liu, X.[Xin],
Zhang, H.[Hong],
Sun, F.C.[Fu-Chun],
Sheng, M.[Miao],
Fan, S.K.[Shao-Kang],
Dense point cloud map construction based on stereo VINS for mobile
vehicles,
PandRS(178), 2021, pp. 328-344.
Elsevier DOI
2108
Visual-Inertial System, Depth filter, Dense map, SLAM
BibRef
Jeon, H.G.[Hae-Gon],
Im, S.H.[Sung-Hoon],
Choe, J.[Jaesung],
Kang, M.J.[Min-Jun],
Lee, J.Y.[Joon-Young],
Hebert, M.[Martial],
CMSNet: Deep Color and Monochrome Stereo,
IJCV(130), No. 3, March 2022, pp. 652-668.
Springer DOI
2203
Stereo matching with color and monochrome cameras.
BibRef
Chen, C.H.[Chang-Hao],
Song, B.F.[Bi-Feng],
Bu, S.H.[Shu-Hui],
He, L.[Lei],
An improved point feature-based sparse stereo vision,
IET-IPR(16), No. 12, 2022, pp. 3284-3299.
DOI Link
2209
BibRef
Yao, G.B.[Guo-Biao],
Zhang, J.[Jin],
Zhu, F.Q.[Feng-Qi],
Gong, J.Y.[Jian-Ya],
Jin, F.X.[Feng-Xiang],
Fu, Q.Q.[Qing-Qing],
Ren, X.F.[Xiao-Fang],
Quasi-Dense Matching for Oblique Stereo Images through Semantic
Segmentation and Local Feature Enhancement,
RS(16), No. 4, 2024, pp. 632.
DOI Link
2402
BibRef
Mathew, A.[Alwyn],
Patra, A.P.[Aditya Prakash],
Mathew, J.[Jimson],
Self-Attention Dense Depth Estimation Network for Unrectified Video
Sequences,
ICIP20(2810-2814)
IEEE DOI
2011
Cameras, Estimation, Distortion, Training, Optical distortion,
Pipelines, unrectified image
BibRef
Kang, J.,
Chen, L.,
Deng, F.,
Heipke, C.,
Improving Disparity Estimation Based on Residual Cost Volume And
Reconstruction Error Volume,
ISPRS20(B2:135-142).
DOI Link
2012
BibRef
Chou, Y.,
Lee, D.J.,
Zhang, D.,
Hill, K.,
A parallel convolutional neural network architecture for stereo
vision estimation,
ICIP17(2508-2512)
IEEE DOI
1803
Estimation, Feature extraction, Measurement,
Parallel architectures, Stereo vision, Strips, CNN, Deep Learning,
Stereo Vision
BibRef
Liu, Y.,
Pan, J.,
Su, Z.,
Deep feature matching for dense correspondence,
ICIP17(795-799)
IEEE DOI
1803
Estimation, Feature extraction, Image matching,
Integrated optics, Optical imaging, Robustness, Deep feature,
scene matching
BibRef
Xu, Z.L.[Zong-Lin],
Kamata, S.I.[Sei-Ichiro],
Zhang, Q.S.[Qie-Shi],
Two-stage cross-based stereo disparity refinement,
MVA17(420-423)
DOI Link
1708
Algorithm design and analysis, Color, Complexity theory,
Image edge detection, Information filtering, Matched filters, Organizations
BibRef
Chen, X.G.[Xiao-Guang],
Li, D.[Dan],
Zou, J.C.[Jian-Cheng],
Depth estimation of stereo matching based on microarray camera,
ICIVC17(108-112)
IEEE DOI
1708
Algorithm design and analysis, Calibration, Cameras, Estimation,
Image edge detection, Lenses, Minimization, camera calibration,
depth estimation, markov random field, microarray cameras, stereo, matching
BibRef
Berjón, D.[Daniel],
Pagés, R.[Rafael],
Morán, F.[Francisco],
Fast feature matching for detailed point cloud generation,
IPTA16(1-6)
IEEE DOI
1703
computer graphics
BibRef
Mizukami, Y.[Yoshiki],
Okada, K.[Koichi],
Nomura, A.[Atsushi],
Nakanishi, S.[Shinya],
Tadamura, K.[Katsumi],
Sub-pixel disparity search for binocular stereo vision,
ICPR12(364-367).
WWW Link.
1302
BibRef
Zhang, H.F.[Hao-Feng],
Zhao, C.X.[Chun-Xia],
Tang, Z.M.[Zhen-Min],
Yang, J.Y.[Jing-Yu],
Particle swarm based stereo algorithm and disparity map evaluation,
ICARCV08(1511-1514).
IEEE DOI
1109
BibRef
Einecke, N.[Nils],
Eggert, J.[Julian],
Evaluation of Direct Plane Fitting for Depth and Parameter Estimation,
DICTA10(492-497).
IEEE DOI
1012
BibRef
And:
A Two-Stage Correlation Method for Stereoscopic Depth Estimation,
DICTA10(227-234).
IEEE DOI
1012
BibRef
Miyazawa, K.[Kazuyuki],
Aoki, T.[Takafumi],
A robot-based 3D body scanning system using passive stereo vision,
ICIP08(305-308).
IEEE DOI
0810
BibRef
Shibahara, T.[Takuma],
Aoki, T.[Takafumi],
Nakajima, H.[Hiroshi],
Kobayashi, K.[Koji],
A Sub-Pixel Stereo Correspondence Technique Based on 1D Phase-only
Correlation,
ICIP07(V: 221-224).
IEEE DOI
0709
BibRef
Galarza, L.,
Candocia, F.M.,
Optimal and Dense Small Baseline Stereo Image Correspondence,
ICIP06(1037-1040).
IEEE DOI
0610
BibRef
Zhou, W.[Wei],
Kambhamettu, C.[Chandra],
Binocular Stereo Dense Matching in the Presence of Specular Reflections,
CVPR06(II: 2363-2370).
IEEE DOI
0606
BibRef
Schlesinger, D.[Dmitrij],
Flach, B.[Boris],
Shekhovtsov, A.[Alexander],
A Higher Order MRF-Model for Stereo-Reconstruction,
DAGM04(440-446).
Springer DOI
0505
BibRef
Falkenhagen, L.[Lutz],
Wedi, T.[Thomas],
Improving Block-Based Disparity Estimation by Considering the
Non-uniform Distribution of the Estimation Error,
SMILE98(xx-yy).
BibRef
9800
El Zaart, A.,
Ziou, D.[Djemel],
Dubeau, F.[Francois],
Phase-Based Disparity Estimation: a Spatial Approach,
ICIP97(III: 244-247).
IEEE DOI
BibRef
9700
Maimone, M.W.[Mark W.], and
Shafer, S.A.[Steven A.],
Modeling Foreshortening in Stereo Vision using Local Spatial Frequency,
IROS95(xx).
BibRef
9500
And:
CMU-CS-TR-95-104, January 1995.
Gabor Filter.
Phase-Based.
HTML Version. (Html based)
and
PS File. (postscript). Plus Errata:
PS File.
BibRef
Maimone, M.W.[Mark W.],
Characterizing Stereo Matching Problems using Local Spatial Frequency,
CMU-CS-TR-96-125, May 1996.
BibRef
9605
Ph.D.Thesis.
PS File.
BibRef
Hannah, M.J.,
Computer Matching of Areas in Stereo Imagery,
Ph.D.Thesis (CS), 1978.
BibRef
7800
Stanford AIMemo 239
BibRef
And:
Stanford CS Memo
STAN-CS-74-438, July 1978.
Precursor of Gennery and follower of Quam. Stereo analysis with
arbitrary initial camera locations. Computes the camera model by
least squares error analysis from a set of matching points.
Extends the area of matching points by growing regions which have
the same or close disparities.
BibRef
Hannah, M.J.,
Bootstrap Stereo,
AAAI-80(38-40).
BibRef
8000
And:
DARPA80(201-208).
BibRef
And:
Bootstrap Stereo Error Simulations,
DARPA81(131-135).
A sequence of images is used to generate motion and depth
information. The first pair is used to provide an estimate of the
camera changes and to give some 3-D information to be used in the
sequence. The new areas of the images are analyzed to find new
feature points for the next image in the sequence.
BibRef
Hannah, M.J.,
SRI's Baseline Stereo System,
DARPA85(149-155). Find matches at different scales using lower levels
to guide the higher resolution matches.
BibRef
8500
Hannah, M.J.,
Test Results from SRI's Stereo System,
DARPA88(740-744).
Results on the photogrammetry data set for the stereo program.
BibRef
8800
Hannah, M.J.,
Detection of Errors in Match Disparities,
DARPA82(283-285).
BibRef
8200
Gennery, D.B.,
Modelling the Environment of an Exploring Vehicle by Means of
Stereo Vision,
Ph.D.June 1980.
BibRef
8006
Stanford
BibRef
Gennery, D.B.,
Object Detection and Measurement Using Stereo Vision,
DARPA80(161-167).
BibRef
8000
And:
IJCAI79(320-327).
BibRef
Earlier:
A Stereo Vision System for an Autonomous Vehicle,
IJCAI77(576-582).
BibRef
And:
A Stereo Vision System,
DARPAO77(31-46).
See also Visual Tracking of Known Three-Dimensional Objects.
BibRef
Arnold, R.D., and
Binford, T.O.,
Geometric Constraints in Stereo Vision,
SPIE(238), San Diego, CA, July 1980, pp. 281-292.
BibRef
8007
Arnold, R.D.,
Automated Stereo Perception,
Ph.D.Thesis (cs), 1983.
BibRef
8300
Stanford AIMemo 351
BibRef
And:
Stanford CS Memo
STAN-CS-83-961.
BibRef
Earlier:
Local Context in Matching Edges for Stereo Vision,
DARPA78(65-72).
BibRef
Earlier:
Spatial Understanding,
DARPA77(1-4).
Combines the work of Moravec and Gennery to do a match
using corner type features.
BibRef
Szeliski, R.S.[Richard S.], and
Hinton, G.E.[Geoffrey E.],
Solving Random-Dot Stereograms Using the Heat Equation,
CVPR85(284-288).
Simplification of the new work of Prazdny, by implementing as
Heat equation.
BibRef
8500
Essafi, H.,
Mazzoni, C.,
Julien, P.,
Satellite Digital Elevation Model on the Heterogeneous
OPENVISION Parallel Computer,
CAMP95(xx).
BibRef
9500
Shah, J.,
A Nonlinear Diffusion Model for Discontinuous Disparity
and Half-Occlusions in Stereo,
CVPR93(34-40).
IEEE DOI An approach to stereo correspondence.
BibRef
9300
Xie, M.[Ming],
Thonnat, M.[Monique],
A theory of 3D reconstruction of heterogeneous edge primitives from two
perspective views,
ECCV92(715-719).
Springer DOI
9205
BibRef
Bandopadhy, A.,
Interest Points, Disparities and Correspondence,
DARPA84(184-187).
(U. of Rochester)
BibRef
8400
Shizawa, M.,
Direct Estimation of Multiple Disparities for
Transparent Multiple Surfaces in Binocular Stereo,
ICCV93(447-454).
IEEE DOI Developed from work in motion section on transparent surfaces.
See also On visual ambiguities due to transparency in motion and stereo.
BibRef
9300
Gennert, M.A.,
Brightness-Based Stereo Matching,
ICCV88(139-143).
IEEE DOI
BibRef
8800
Sato, T.,
Automotive Stereo Vision Using Deconvolution Technique,
IJCAI79(763-765).
BibRef
7900
Chapter on Stereo: Three Dimensional Descriptions from Two or More Views, Binocular, Trinocular continues in
Edge Based Stereo Analysis: Scan Line Oriented .