Bertrand, G.,
Malandain, G.,
A Note on Building Skeleton Models Via 3-D Medial Surface Axis
Thinning Algorithms,
GMIP(57), No. 6, November 1995, pp. 537-538.
BibRef
9511
Turkiyyah, G.M.,
Storti, D.W.,
Ganter, M.,
Chen, H.,
Vimawala, M.,
An Accelerated Triangulation Method for Computing the Skeletons of
Free-Form Solid Models,
CAD(29), No. 1, January 1997, pp. 5-19.
9702
BibRef
Pudney, C.,
Distance-Ordered Homotopic Thinning:
A Skeletonization Algorithm for 3D Digital Images,
CVIU(72), No. 3, December 1998, pp. 404-413.
DOI Link
BibRef
9812
Borgefors, G.[Gunilla],
Nyström, I.[Ingela],
Sanniti di Baja, G.[Gabriella],
Computing skeletons in three dimensions,
PR(32), No. 7, July 1999, pp. 1225-1236.
Elsevier DOI
BibRef
9907
Sanniti di Baja, G.[Gabriella],
Nyström, I.[Ingela],
Borgefors, G.[Gunilla],
Discrete 3D Tools Applied to 2D Grey-Level Images,
CIAP05(229-236).
Springer DOI
0509
BibRef
Svensson, S.[Stina],
Borgefors, G.[Gunilla],
Nyström, I.[Ingela],
On Reversible Skeletonization Using Anchor-Points from Distance
Transforms,
JVCIR(10), No. 4, December 1999, pp. 379-397.
0010
BibRef
Svensson, S.[Stina],
Nyström, I.[Ingela],
Borgefors, G.[Gunilla],
Fully Reversible Skeletonization for Volume Images Based on
Anchor-Points from the D^26 Distance Transform,
SCIA99(Image Analysis).
BibRef
9900
Svensson, S.[Stina],
Borgefors, G.[Gunilla],
Digital Distance Transforms in 3D Images Using Information from
Neighbourhoods up to 5×5×5,
CVIU(88), No. 1, October 2002, pp. 24-53.
DOI Link
0301
BibRef
Earlier: A2, A1:
Fuzzy border distance transforms and their use in 2d skeletonization,
ICPR02(I: 180-183).
IEEE DOI
0211
BibRef
Ma, C.M.[Cherng-Min],
Wan, S.Y.[Shu-Yen],
A medial-surface oriented 3-d two-subfield thinning algorithm,
PRL(22), No. 13, November 2001, pp. 1439-1446.
Elsevier DOI
0108
BibRef
Chatzis, V.,
Pitas, I.,
Interpolation of 3-D binary images based on morphological
skeletonization,
MedImg(19), No. 7, July 2000, pp. 699-710.
IEEE Top Reference.
0110
BibRef
Lee, T.Y.[Tong-Yee],
Wang, W.H.[Wen-Hsiu],
Morphology-based three-dimensional interpolation,
MedImg(19), No. 7, July 2000, pp. 711-721.
IEEE Top Reference.
0110
BibRef
Jonker, P.P.[Pieter P.],
Skeletons in N dimensions using shape primitives,
PRL(23), No. 6, April 2002, pp. 677-686.
Elsevier DOI
0202
BibRef
Ma, C.M.[Cherng-Min],
Wan, S.Y.[Shu-Yen],
Chang, H.K.[Her-Kun],
Extracting medial curves on 3D images,
PRL(23), No. 8, June 2002, pp. 895-904.
Elsevier DOI
0204
BibRef
Giblin, P.J.[Peter J.],
Kimia, B.B.[Benjamin B.],
On the Local Form and Transitions of Symmetry Sets, Medial Axes, and
Shocks,
IJCV(54), No. 1-3, August 2003, pp. 143-157.
DOI Link
0306
BibRef
Earlier:
ICCV99(385-391).
IEEE DOI
BibRef
Giblin, P.J.[Peter J.],
Kimia, B.B.[Benjamin B.],
A Formal Classification of 3D Medial Axis Points and their Local
Geometry,
PAMI(26), No. 2, February 2004, pp. 238-251.
IEEE Abstract.
0402
BibRef
Earlier:
CVPR00(I: 566-573).
IEEE DOI
0005
BibRef
Pollitt, A.[Anthony],
Giblin, P.J.[Peter J.],
Kimia, B.B.[Benjamin B.],
Consistency Conditions on the Medial Axis,
ECCV04(Vol II: 530-541).
Springer DOI
0405
BibRef
Giblin, P.J.[Peter J.],
Kimia, B.B.[Benjamin B.],
On the Intrinsic Reconstruction of Shape from its Symmetries,
PAMI(25), No. 7, July 2003, pp. 895-911.
IEEE Abstract.
0307
BibRef
Earlier:
CVPR99(II: 79-84).
IEEE DOI
BibRef
Giblin, P.J.[Peter J.],
Kimia, B.B.[Benjamin B.],
Pollitt, A.J.[Anthony J.],
Transitions of the 3D Medial Axis under a One-Parameter Family of
Deformations,
PAMI(31), No. 5, May 2009, pp. 900-918.
IEEE DOI
0903
BibRef
Earlier: A1, A2, Only:
ECCV02(II: 718 ff.).
Springer DOI
0205
Minimal information to generate closed, non-intersecting boundaries.
BibRef
Diatta, A.[André],
Giblin, P.J.[Peter J.],
Geometry of Isophote Curves,
ScaleSpace05(50-61).
Springer DOI
0505
BibRef
Attali, D.,
Montanvert, A.,
Computing and Simplifying 2D and 3D Continuous Skeletons,
CVIU(67), No. 3, September 1997, pp. 261-273.
DOI Link
9710
BibRef
Earlier:
Modeling noise for a better simplification of skeletons,
ICIP96(III: 13-16).
IEEE DOI
9610
BibRef
Attali, D.,
Bertolino, P.,
Montanvert, A.,
Using Polyballs to Approximate Shapes and Skeletons,
ICPR94(A:626-628).
IEEE DOI
BibRef
9400
Bonnassie, A.,
Peyrin, F.,
Attali, D.,
A new method for analyzing local shape in three-dimensional images
based on medial axis transformation,
SMC-B(33), No. 4, August 2003, pp. 700-705.
IEEE Abstract.
0308
BibRef
Earlier:
Shape Description of Three-dimensional Images Based on Medial Axis,
ICIP01(III: 931-934).
IEEE DOI
0108
BibRef
Attali, D.,
Lachaud, J.O.[Jacques-Olivier],
Constructing iso-surfaces satisfying the Delaunay constraint.
Application to the skeleton computation,
CIAP99(382-387).
IEEE DOI
9909
BibRef
Fadili, M.J.,
Melkemi, M.,
El Moataz, A.,
Non-convex onion-peeling using a shape hull algorithm,
PRL(25), No. 14, 15 October 2004, pp. 1577-1585.
Elsevier DOI
0410
sequence of onvex polygons.
BibRef
Shah, J.[Jayant],
Gray skeletons and segmentation of shapes,
CVIU(99), No. 1, July 2005, pp. 96-109.
Elsevier DOI
0506
BibRef
And:
Skeletons of 3D Shapes,
ScaleSpace05(339-350).
Springer DOI
0505
No presmoothing required. Pruned skeleton.
BibRef
Strand, R.[Robin],
Borgefors, G.[Gunilla],
Distance transforms for three-dimensional grids with non-cubic voxels,
CVIU(100), No. 3, December 2005, pp. 294-311.
Elsevier DOI
0512
BibRef
Strand, R.[Robin],
Sampling and Ideal Reconstruction on the 3D Diamond Grid,
ICPR10(4609-4612).
IEEE DOI
1008
BibRef
Strand, R.[Robin],
Using the Hexagonal Grid for Three-Dimensional Images:
Direct Fourier Method Reconstruction and Weighted Distance Transform,
ICPR06(II: 1169-1172).
IEEE DOI
0609
BibRef
Earlier:
The Euclidean Distance Transform Applied to the FCC and BCC Grids,
IbPRIA05(I:243).
Springer DOI
0509
BibRef
Earlier:
Surface skeletons in grids with non-cubic voxels,
ICPR04(I: 548-551).
IEEE DOI
0409
BibRef
Strand, R.[Robin],
Weighted distances based on neighbourhood sequences,
PRL(28), No. 15, 1 November 2007, pp. 2029-2036.
Elsevier DOI
0711
BibRef
Earlier:
Weighted Distances Based on Neighbourhood Sequences in Non-standard
Three-Dimensional Grids,
SCIA07(452-461).
Springer DOI
0706
Digital geometry; Distance functions; Neighbourhood sequences; Weighted distance; Discrete geometry
BibRef
Nagy, B.[Benedek],
Strand, R.[Robin],
Neighborhood sequences in the diamond grid:
Algorithms with two and three neighbors,
IJIST(19), No. 2, June 2009, pp. 146-157.
DOI Link
0905
BibRef
Earlier: A2, A2:
Weighted Neighborhood Sequences in Non-standard Three-Dimensional
Grids: Parameter Optimization,
IWCIA08(xx-yy).
Springer DOI
0804
BibRef
And: A2, A2:
Weighted Neighbourhood Sequences in Non-Standard Three-Dimensional
Grids: Metricity and Algorithms,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Earlier: A1, A2:
Approximating Euclidean Distance Using Distances Based on Neighbourhood
Sequences in Non-standard Three-Dimensional Grids,
IWCIA06(89-100).
Springer DOI
0606
See also Isoperimetrically Optimal Polygons in the Triangular Grid.
BibRef
Nagy, B.[Benedek],
Strand, R.[Robin],
Normand, N.[Nicolas],
A Weight Sequence Distance Function,
ISMM13(292-301).
Springer DOI
1305
BibRef
Nagy, B.[Benedek],
Strand, R.[Robin],
Neighborhood Sequences on nD Hexagonal/Face-Centered-Cubic Grids,
IWCIA09(96-108).
Springer DOI
0911
BibRef
Nagy, B.[Benedek],
Strand, R.[Robin],
A Connection between Z n and Generalized Triangular Grids,
ISVC08(II: 1157-1166).
Springer DOI
0812
See also Distances with neighbourhood sequences in cubic and triangular grids.
BibRef
Nagy, B.[Benedek],
Strand, R.[Robin],
Neighborhood Sequences in the Diamond Grid:
Algorithms with Four Neighbors,
IWCIA09(109-121).
Springer DOI
0911
BibRef
Cornea, N.D.[Nicu D.],
Silver, D.[Deborah],
Yuan, X.S.[Xiao-Song],
Balasubramanian, R.[Raman],
Computing hierarchical curve-skeletons of 3D objects,
VC(21), No. 11, October 2005, pp. 945-955.
Springer DOI
0511
BibRef
Biasotti, S.[Silvia],
Attali, D.[Dominique],
Boissonnat, J.D.[Jean-Daniel],
Edelsbrunner, H.[Herbert],
Elber, G.[Gershon],
Mortara, M.[Michela],
Sanniti di Baja, G.[Gabriella],
Spagnuolo, M.[Michela],
Tanase, M.[Mirela],
Veltkamp, R.C.[Remco C.],
Skeletal Structures,
ShapeAnalysis08(5).
0802
BibRef
Huang, A.,
Liu, H.M.,
Lee, C.W.,
Yang, C.Y.,
Tsang, Y.M.,
On Concise 3-D Simple Point Characterizations:
A Marching Cubes Paradigm,
MedImg(28), No. 1, January 2009, pp. 43-51.
IEEE DOI
0901
Skeletonization, center line extraction
BibRef
Saude, A.V.[Andre V.],
Couprie, M.[Michel],
Lotufo, R.A.[Roberto A.],
Discrete 2D and 3D euclidean medial axis in higher resolution,
IVC(27), No. 4, 3 March 2009, pp. 354-363.
Elsevier DOI
0804
Medial axis; Skeleton; Euclidean distance
See also Two-Dimensional Parallel Thinning Algorithms Based on Critical Kernels.
BibRef
Couprie, M.[Michel],
Hierarchic Euclidean Skeletons in Cubical Complexes,
DGCI11(141-152).
Springer DOI
1104
BibRef
Tierny, J.[Julien],
Vandeborre, J.P.[Jean-Philippe],
Daoudi, M.[Mohamed],
Enhancing 3D mesh topological skeletons with discrete contour
constrictions,
VC(24), No. 3, March 2008, pp. 155-172.
Springer DOI
0802
BibRef
And:
Fast and precise kinematic skeleton extraction of 3D dynamic meshes,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Earlier:
Invariant High Level Reeb Graphs of 3D Polygonal Meshes,
3DPVT06(105-112).
IEEE DOI
0606
BibRef
Arcelli, C.[Carlo],
Sanniti di Baja, G.[Gabriella],
Serino, L.[Luca],
A parallel algorithm to skeletonize the distance transform of 3D
objects,
IVC(27), No. 6, 4 May 2009, pp. 666-672.
Elsevier DOI
0904
BibRef
Earlier:
From 3D Discrete Surface Skeletons to Curve Skeletons,
ICIAR08(xx-yy).
Springer DOI
0806
3D Object; Surface skeleton; Distance transform; Topology
preservation; Reversibility
BibRef
Serino, L.[Luca],
Sanniti di Baja, G.[Gabriella],
Pruning the 3D Curve Skeleton,
ICPR14(2269-2274)
IEEE DOI
1412
Context
BibRef
Serino, L.[Luca],
Arcelli, C.[Carlo],
Sanniti di Baja, G.[Gabriella],
Decomposing and Sketching 3D Objects by Curve Skeleton Processing,
CIARP13(I:25-32).
Springer DOI
1311
BibRef
Arcelli, C.[Carlo],
Sanniti di Baja, G.[Gabriella],
Serino, L.[Luca],
Distance-Driven Skeletonization in Voxel Images,
PAMI(33), No. 4, April 2011, pp. 709-720.
IEEE DOI
1103
BibRef
Earlier:
The (3,4,5) Curvilinear Skeleton,
DGCI09(409-420).
Springer DOI
0909
BibRef
Earlier:
A New Set of Topology Preserving Removal Operations in the 3D Space,
ICPR06(III: 1055-1058).
IEEE DOI
0609
Compute surface and curve skeletons. Use the 3,4,5 weighted distance, anchor
points. Skeletons centered within object.
See also Approximating the Skeleton for Fine-to-Coarse Shape Representation.
BibRef
Serino, L.[Luca],
Arcelli, C.[Carlo],
Sanniti di Baja, G.[Gabriella],
On the computation of the (3, 4, 5) curve skeleton of 3D objects,
PRL(32), No. 9, 1 July 2011, pp. 1406-1414.
Elsevier DOI
1101
(3, 4, 5) weighted distance transform; Anchor point; Simple point;
Skeletonization
BibRef
Serino, L.[Luca],
Arcelli, C.[Carlo],
Sanniti di Baja, G.[Gabriella],
From skeleton branches to object parts,
CVIU(129), No. 1, 2014, pp. 42-51.
Elsevier DOI
1411
BibRef
Earlier: A3, A1, A2:
From Linear Representations to Object Parts,
MCPR12(1-12).
Springer DOI
1208
BibRef
Earlier: A1, A3, A2:
Using the Skeleton for 3D Object Decomposition,
SCIA11(447-456).
Springer DOI
1105
3D object decomposition
BibRef
Serino, L.[Luca],
Sanniti di Baja, G.[Gabriella],
A new strategy for skeleton pruning,
PRL(76), No. 1, 2016, pp. 41-48.
Elsevier DOI
1605
2D Skeleton
BibRef
Serino, L.[Luca],
Sanniti di Baja, G.[Gabriella],
Selecting Anchor Points for 2D Skeletonization,
ICIAR11(I: 344-353).
Springer DOI
1106
BibRef
Abeysinghe, S.S.[Sasakthi S.],
Ju, T.[Tao],
Interactive skeletonization of intensity volumes,
VC(25), No. 5-7, May 2009, pp. xx-yy.
Springer DOI
0905
BibRef
Ju, T.[Tao],
Baker, M.L.[Matthew L.],
Chiu, W.[Wah],
Computing a Family of Skeletons of Volumetric Models for Shape
Description,
GMP06(235-247).
Springer DOI
0607
BibRef
Saude, A.V.[Andre Vital],
New reduced discrete Euclidean nD medial axis with optimal algorithm,
PRL(31), No. 1, January 2010, pp. 91-99.
Elsevier DOI
1011
Medial axis; Skeleton; Euclidean distance; Shape representation
BibRef
Lin, S.Y.[Shih-Ying],
Horng, S.J.[Shi-Jinn],
Kao, T.W.[Tzong-Wann],
Fahn, C.S.[Chin-Shyurng],
Fan, P.Z.[Ping-Zhi],
Chen, Y.H.[Yuan-Hsin],
Khan, M.K.[Muhammad Khurram],
Bourgeois, A.[Anu],
Terano, T.[Takao],
3D block-based medial axis transform and chessboard distance transform
based on dominance,
IVC(29), No. 4, March 2011, pp. 272-285.
Elsevier DOI
1102
Parallel algorithm; Image processing; CREW; PRAM model; Block-based
medial axis transform; Chessboard distance transform; Euclidean
distance transform
BibRef
Ma, J.[Jaehwan],
Bae, S.W.[Sang Won],
Choi, S.[Sunghee],
3D medial axis point approximation using nearest neighbors and the
normal field,
VC(28), No. 1, January 2012, pp. 7-19.
WWW Link.
1201
BibRef
Bucksch, A.[Alexander],
Lindenbergh, R.C.[Roderik C.],
Menenti, M.,
Skeltre: Fast Skeletonisation For Imperfect Point Cloud Data
of Botanic Trees,
3DOR09(13-20)
PDF File.
DOI Link
1301
BibRef
Jalba, A.C.[Andrei C.],
Kustra, J.[Jacek],
Telea, A.C.[Alexandru C.],
Surface and Curve Skeletonization of Large 3D Models on the GPU,
PAMI(35), No. 6, June 2013, pp. 1495-1508.
IEEE DOI
1305
Shapes as meshes.
BibRef
Vera, S.[Sergio],
Gil, D.[Debora],
Borràs, A.[Agnés],
Linguraru, M.G.[Marius George],
González Ballester, M.A.[Miguel Angel],
Geometric steerable medial maps,
MVA(24), No. 6, August 2013, pp. 1255-1266.
Springer DOI
1307
for volumes.
BibRef
Sobiecki, A.[André],
Jalba, A.[Andrei],
Telea, A.[Alexandru],
Comparison of curve and surface skeletonization methods for voxel
shapes,
PRL(47), No. 1, 2014, pp. 147-156.
Elsevier DOI
1408
Surface and curve skeletons
BibRef
Martínez, J.[Jonàs],
Pla, N.[Núria],
Vigo, M.[Marc],
The three-dimensional cube and scale cube skeleton,
VC(31), No. 9, September 2015, pp. 1233-1252.
WWW Link.
1508
BibRef
Zhang, D.J.[De-Jia],
Xie, N.[Ning],
Liang, S.[Shuang],
Jia, J.Y.[Jin-Yuan],
3D tree skeletonization from multiple images based on PyrLK optical
flow,
PRL(76), No. 1, 2016, pp. 49-58.
Elsevier DOI
1605
Tree skeletonization
BibRef
Ziamtsov, I.[Illia],
Faizi, K.[Kian],
Navlakha, S.[Saket],
Branch-Pipe: Improving Graph Skeletonization around Branch Points in
3D Point Clouds,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Matejek, B.[Brian],
Franzmeyer, T.[Tim],
Wei, D.L.[Dong-Lai],
Wang, X.Y.[Xue-Ying],
Zhao, J.L.[Jing-Lin],
Palágyi, K.[Kálmán],
Lichtman, J.W.[Jeff W.],
Pfister, H.[Hanspeter],
Scalable Biologically-Aware Skeleton Generation for Connectomic
Volumes,
MedImg(41), No. 9, September 2022, pp. 2360-2370.
IEEE DOI
2209
Skeleton, Neurons, Synapses, Biology, Soma, Neurites, Image segmentation,
Skeleton generation, connectomics, biologically-constrained algorithms
BibRef
Keller, M.[Marilyn],
Zuffi, S.[Silvia],
Black, M.J.[Michael J.],
Pujades, S.[Sergi],
OSSO: Obtaining Skeletal Shape from Outside,
CVPR22(20460-20469)
IEEE DOI
2210
Biomechanics, Solid modeling, Shape, Stars, Bones, Face and gestures,
3D from single images, Biometrics, Medical, biological and cell microscopy
BibRef
Lin, C.[Cheng],
Li, C.J.[Chang-Jian],
Liu, Y.[Yuan],
Chen, N.[Nenglun],
Choi, Y.K.[Yi-King],
Wang, W.P.[Wen-Ping],
Point2Skeleton: Learning Skeletal Representations from Point Clouds,
CVPR21(4275-4284)
IEEE DOI
2111
Surface reconstruction,
Shape, Semantics, Transforms, Skeleton
BibRef
Zasinski, P.,
Kocinski, M.,
Materka, A.,
On extracting skeletons from binary 3D images,
WSSIP17(1-5)
IEEE DOI
1707
Algorithm design and analysis, Digital images, Image processing,
Shape, Skeleton, Topology, 3D images,
Binary images, Morphology, Skeletonization
BibRef
Chaussard, J.[John],
Noël, L.[Laurent],
Biri, V.[Venceslas],
Couprie, M.[Michel],
A 3D Curvilinear Skeletonization Algorithm with Application to Path
Tracing,
DGCI13(119-130).
Springer DOI
1304
BibRef
Rossi, L.[Luca],
Torsello, A.[Andrea],
An Adaptive Hierarchical Approach to the Extraction of High Resolution
Medial Surfaces,
3DIMPVT12(371-378).
IEEE DOI
1212
BibRef
Szilágyi, L.[László],
Szilágyi, S.M.[Sándor Miklós],
Iclanzan, D.[David],
Szabó, L.[Lehel],
Efficient 3D Curve Skeleton Extraction from Large Objects,
CIARP11(133-140).
Springer DOI
1111
BibRef
Khromov, D.[Denis],
Curve-Skeletons Based on the Fat Graph Approximation,
ACIVS11(239-248).
Springer DOI
1108
BibRef
Antunez, E.[Emilio],
Guibas, L.J.[Leonidas J.],
Robust extraction of 1D skeletons from grayscale 3D images,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Rizvandi, N.B.[Nikzad Babaii],
Pižurica, A.[Aleksandra],
Philips, W.[Wilfried],
Machine vision detection of isolated and overlapped nematode worms
using skeleton analysis,
ICIP08(2972-2975).
IEEE DOI
0810
BibRef
And:
Automatic Individual Detection and Separation of Multiple Overlapped
Nematode Worms Using Skeleton Analysis,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Wattuya, P.[Pakaket],
Jiang, X.Y.[Xiao-Yi],
A Class of Generalized Median Contour Problem with Exact Solution,
SSPR06(109-117).
Springer DOI
0608
Finding average set of contours.
BibRef
Ferchichi, S.[Seifeddine],
Wang, S.R.[Sheng-Rui],
Grira, S.[Sofiane],
New Algorithm to Extract Centerline of 2D Objects Based on Clustering,
ICIAR07(364-374).
Springer DOI
0708
BibRef
Earlier: A1, A2, Only:
A Clustering-based Algorithm for Extracting the Centerlines of 2D and
3D Objects,
ICPR06(II: 296-299).
IEEE DOI
0609
BibRef
Styner, M.[Martin],
Gerig, G.[Guido],
Three-Dimensional Medial Shape Representation Incorporating
Object Variability,
CVPR01(II:651-656).
IEEE DOI
0110
BibRef
Bouix, S.,
Siddiqi, K.,
Divergence-Based Medial Surfaces,
ECCV00(I: 603-618).
Springer DOI
0003
BibRef
Giannitrapani, R.[Riccardo],
Murino, V.[Vittorio],
Three-Dimensional Skeleton Extraction by Point Set Contraction,
ICIP99(I:565-569).
IEEE DOI
BibRef
9900
Borgefors, G.[Gunilla],
Sanniti di Baja, G.[Gabriella],
Multiresolution Skeletonization in Binary Pyramids,
ICPR96(IV: 570-574).
IEEE DOI
9608
(Univ. of Agricultural Sciences, S)
BibRef
Vaillant, M.,
Davatzikos, C.,
Brya, R.,
Finding 3D Parametric Representation of the Deep Cortical Folds,
MMBIA96(MEDIAL AXES)
BibRef
9600
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Processing of Skeletons for Descriptions .