22.1.5.1 Gravity Measurements

Chapter Contents (Back)
Gravity.

Anderson, D.S., Makela, J.J., Kanwar, U.,
Experimental Validation of a Technique to Estimate Vertical Wavelength Parameters From Gravity Wave Perturbations on Mesospheric Airglows,
GeoRS(52), No. 4, April 2014, pp. 1982-1990.
IEEE DOI 1403
airglow BibRef

Cao, Y.P.[Yan-Ping], Nan, Z.T.[Zhuo-Tong], Cheng, G.D.[Guo-Dong],
GRACE Gravity Satellite Observations of Terrestrial Water Storage Changes for Drought Characterization in the Arid Land of Northwestern China,
RS(7), No. 1, 2015, pp. 1021-1047.
DOI Link 1502
BibRef

Zhao, L.[Lei], Wu, M.P.[Mei-Ping], Forsberg, R.[René], Olesen, A.V.[Arne Vestergaard], Zhang, K.D.[Kai-Dong], Cao, J.L.[Ju-Liang],
Airborne Gravity Data Denoising Based on Empirical Mode Decomposition: A Case Study for SGA-WZ Greenland Test Data,
IJGI(4), No. 4, 2015, pp. 2205.
DOI Link 1511
BibRef

Eshagh, M.[Mehdi], Hussain, M.[Matloob], Tenzer, R.[Robert], Romeshkani, M.[Mohsen],
Moho Density Contrast in Central Eurasia from GOCE Gravity Gradients,
RS(8), No. 5, 2016, pp. 418.
DOI Link 1606
BibRef

Chen, T.[Tianyi], Shen, Y.Z.[Yun-Zhong], Chen, Q.J.[Qiu-Jie],
Mass Flux Solution in the Tibetan Plateau Using Mascon Modeling,
RS(8), No. 5, 2016, pp. 439.
DOI Link 1606
Gravity fields. BibRef

Melzer, B.A., Subrahmanyam, B.,
Evaluation of GRACE Mascon Gravity Solution in Relation to Interannual Oceanic Water Mass Variations,
GeoRS(55), No. 2, February 2017, pp. 907-914.
IEEE DOI 1702
gravity BibRef

Laxague, N.J.M., Curcic, M., Björkqvist, J.V., Haus, B.K.,
Gravity-Capillary Wave Spectral Modulation by Gravity Waves,
GeoRS(55), No. 5, May 2017, pp. 2477-2485.
IEEE DOI 1705
cameras, geophysical signal processing, gravity waves, ocean waves, oceanographic techniques, remote sensing by radar, wind, University of Miami surge-structure-atmosphere interaction facility, air-sea interaction saltwater tank wind-wave tank, gravity-capillary wave spectral modulation, Surface waves, Wind speed, Remote sensing, surface, waves BibRef

Zhou, X.[Xuan], Chong, J.S.[Jin-Song], Bi, H.B.[Hai-Bo], Yu, X.Z.[Xiang-Zhen], Shi, Y.N.[Ying-Ni], Ye, X.M.[Xiao-Min],
Directional Spreading Function of the Gravity-Capillary Wave Spectrum Derived from Radar Observations,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link 1705
BibRef

Sun, M.[Miao], Dong, Q.[Qin'ge], Jiao, M.Y.[Meng-Yan], Zhao, X.N.[Xi-Ning], Gao, X.R.[Xue-Rui], Wu, P.[Pute], Wang, A.[Ai],
Estimation of Actual Evapotranspiration in a Semiarid Region Based on GRACE Gravity Satellite Data: A Case Study in Loess Plateau,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Zhao, Q.L.[Qi-Long], Xu, X.Y.[Xin-Yu], Forsberg, R.[Rene], Strykowski, G.[Gabriel],
Improvement of Downward Continuation Values of Airborne Gravity Data in Taiwan,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Ciracì, E.[Enrico], Velicogna, I.[Isabella], Sutterley, T.C.[Tyler Clark],
Mass Balance of Novaya Zemlya Archipelago, Russian High Arctic, Using Time-Variable Gravity from GRACE and Altimetry Data from ICESat and CryoSat-2,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Qing, H., Zhou, C., Zhao, Z.,
Characteristics of Gravity Waves During the Occurrence of the Small-Scale Strong Convection Observed by MST Radar,
GeoRS(57), No. 1, January 2019, pp. 554-560.
IEEE DOI 1901
Convection, Gravity, Doppler effect, Spaceborne radar, Terrestrial atmosphere, Doppler radar, Convection, gravity wave, wind BibRef

Nie, Y.F.[Yu-Feng], Shen, Y.Z.[Yun-Zhong], Chen, Q.J.[Qiu-Jie],
Combination Analysis of Future Polar-Type Gravity Mission and GRACE Follow-On,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902
BibRef

An, L.[Lu], Rignot, E.[Eric], Millan, R.[Romain], Tinto, K.[Kirsty], Willis, J.[Josh],
Bathymetry of Northwest Greenland Using 'Ocean Melting Greenland' (OMG) High-Resolution Airborne Gravity and Other Data,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Hauk, M.[Markus], Pail, R.[Roland],
Gravity Field Recovery Using High-Precision, High-Low Inter-Satellite Links,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Wang, X.L.[Xiao-Long], Luo, Z.C.[Zhi-Cai], Zhong, B.[Bo], Wu, Y.[Yihao], Huang, Z.K.[Zheng-Kai], Zhou, H.[Hao], Li, Q.[Qiong],
Separation and Recovery of Geophysical Signals Based on the Kalman Filter with GRACE Gravity Data,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Meyer, U.[Ulrich], Sosnica, K.[Krzysztof], Arnold, D.[Daniel], Dahle, C.[Christoph], Thaller, D.[Daniela], Dach, R.[Rolf], Jäggi, A.[Adrian],
SLR, GRACE and Swarm Gravity Field Determination and Combination,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Xu, X.Y.[Xin-Yu], Ding, H.[Hao], Zhao, Y.Q.[Yong-Qi], Li, J.[Jin], Hu, M.Z.[Min-Zhang],
GOCE-Derived Coseismic Gravity Gradient Changes Caused by the 2011 Tohoku-Oki Earthquake,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Kim, E.[Eunhyouek], Han, S.Y.[Seung-Yeop], Sayegh, A.M.A.[Amer Mohammad Al],
Sensitivity of the Gravity Model and Orbital Frame for On-board Real-Time Orbit Determination: Operational Results of GPS-12 GPS Receiver,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Wan, J.[Jiakuan], Xu, C.[Chuang], Luo, Z.C.[Zhi-Cai], Wu, Y.[Yihao], Zhou, B.[Boyang], Yan, J.G.[Jian-Guo],
An Approach to Moho Topography Recovery Using the On-Orbit GOCE Gravity Gradients and Its Applications in Tibet,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Wu, T.T.[Tang-Ting], Li, J.C.[Jian-Cheng], Xu, X.Y.[Xin-Yu], Wei, H.[Hui], Kuang, K.[Kaifa], Zhao, Y.Q.[Yong-Qi],
Gravity Field Model Determination Based on GOCE Satellite Point-Wise Accelerations Estimated from Onboard Carrier Phase Observations,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Lai, C.[Chang], Xu, J.[Jiyao], Yue, J.[Jia], Yuan, W.[Wei], Liu, X.[Xiao], Li, W.[Wei], Li, Q.Z.[Qin-Zeng],
Automatic Extraction of Gravity Waves from All-Sky Airglow Image Based on Machine Learning,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef


Yazid, N.M., Din, A.H.M., Omar, K.M., Som, Z.A.M., Omar, A.H., Yahaya, N.A.Z., Tugi, A.,
Marine Geoid Undulation Assessment over South China Sea Using Global Geopotential Models and Airborne Gravity Data,
GGT16(253-263).
DOI Link 1612
BibRef

Tugi, A., Din, A.H.M., Omar, K.M., Mardi, A.S., Som, Z.A.M., Omar, A.H., Yahaya, N.A.Z., Yazid, N.,
Gravity Anomaly Assessment Using GGMS and Airborne Gravity Data Towards Bathymetry Estimation,
GGT16(287-297).
DOI Link 1612
BibRef

Wedge, D.,
Mass anomaly depth estimation from Full Tensor Gradient gravity data,
WACV13(526-533).
IEEE DOI 1303
BibRef

Akhoondzadeh, M., Sharifi, M.A., Shahrisvand, M.,
Coseismic and Poseismic Gravity Changes Obtained from Grace Satellite Data During the Powerful Tohoku-Oki Earthquake of 11 March 2011,
SMPR13(377-381).
HTML Version. 1311
BibRef

Gates, A.Q.[Ann Q.], Keller, G.R.[G. Randy], Salayandia, L.[Leonardo], da Silva, P.P.[Paulo Pinheiro], Salcedo, F.[Flor],
The Gravity Data Ontology: Laying the Foundation for Workflow-Driven Ontologies,
GS07(278-287).
Springer DOI 0711
BibRef

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Land Cover, Land Use, General Problems, Remote Sensing .


Last update:Jul 14, 2019 at 21:53:00