Tversky, A.,
Features of Similarity,
PsychR(84), No. 4, July 1977, pp. 327-352.
Feature Contrast model.
Relevant to database queries.
BibRef
7707
Price, K.E., and
Reddy, R.,
Matching Segments of Images,
PAMI(1), No. 1, January 1979, pp. 110-116.
BibRef
7901
Earlier:
Symbolic Image Registration and Change Detection,
DARPA77(28-31).
Matching, Regions.
Change Detection.
The original matching paper of this sequence. Image to image matching.
Using graph descriptions where nodes have descriptions (size, location, color,
shape, texture, etc.) and links to other nodes using relations
(above, below, adjacent, inside, etc.)
BibRef
Price, K.E.[Keith E.],
Reddy, R.,
Change Detection and Analysis in Multi-Spectral Images,
IJCAI77(619-625).
BibRef
7700
Earlier: A1 Only:
CMU-CS-TRDecember 1976.
BibRef
Ph.D.Thesis, CS.
Change Detection. Change detection, at the symbolic level applied to aerial images,
color ground level images, and SAR.
BibRef
Nevatia, R., and
Price, K.E.,
Locating Structures in Aerial Images,
PAMI(4), No. 5, September 1982, pp. 476-484.
BibRef
8209
USC Computer Vision
BibRef
Earlier:
ICPR78(686-690).
Matching, Lines. The matching procedure assumes that regions are extracted and property
values such as size, average intensity, position, and shape parameters
are computed. Additionally, relations between regions such as
relative position, adjacency, closeness, etc. are computed. This
description is given in the form of a semantic network where regions
are nodes and relations are the links. These systems find the
matching regions one at a time (without backtracking), with the order
either determined by the user or by sorting on some feature
(e.g. largest first). Features and relations are given three
different weights (strong, average and weak) that determines their
contribution to the match rating function.
BibRef
Rosenfeld, A.,
Distances Between Fuzzy Sets,
PRL(3), 1985, pp. 229-233.
Fuzzy Sets.
BibRef
8500
Chaudhuri, B.B.,
Rosenfeld, A.,
On a Metric Distance Between Fuzzy-Sets,
PRL(17), No. 11, September 16 1996, pp. 1157-1160.
9611
BibRef
Sanfeliu, A.,
Syntactic and Structural Methods in Document Image Analysis,
SDIA92(xx-yy).
0905
BibRef
Earlier:
Structural Similarity Measures for Classifying 2D and 3D
Partially Hidden, Occluded and Deformed Objects,
ICPR86(1294-1296).
See also TC2: Structural and Syntactic Pattern-Recognition: Aims, Scope, History and Activities.
BibRef
Feustel, C.D.,
Shapiro, L.G.,
The Nearest Neighbor Problem in an Abstract Metric Space,
PRL(1), No. 2, 1982, 125-128.
BibRef
8200
Shapiro, L.G., and
Haralick, R.M.,
A Metric for Comparing Relational Descriptions,
PAMI(7), No. 1, January 1985, pp. 90-94.
Distance Metric. The paper discusses a technique for generating a metric which
compares two relational structures. Some background is given, but
it does not mention some that are in use in real programs.
Structural_Error = (Relations in Image A not in Image B) +
(Relations in Image B not in Image A).
BibRef
8501
Shapiro, L.G.,
Relational Matching,
HPRIP-CV94(475-496).
BibRef
9400
Earlier:
With:
Haralick, R.M.,
AppOpt(26), No. 10, May 15, 1987, pp. 1845-1851.
Survey, Matching.
Matching, Survey. A survey (overview) of relational matching with only their references.
BibRef
Shapiro, L.G., and
Haralick, R.M.,
Organization of Relational Models for Scene Analysis,
PAMI(4), No. 6, November 1982, pp. 595-602.
An earlier 2-D version is under the 2-D analysis chapter. A large
data base can be organized by using a simple relational distance
metric, followed by either clustering by similar values of the
metric or a binary decision tree arrangement.
BibRef
8211
Haralick, R.M.,
Camps, O.I.[Octavia I.],
Shapiro, L.G., and
A Probabilistic Matching Algorithm for Computer Vision,
AMAI(10), 1994, pp. 85-124.
BibRef
9400
Shapiro, L.G., and
Lu, H.,
Accumulator-Based Inexact Matching Using Relational Summaries,
MVA(3), No. 3, 1990, pp. 143-158.
BibRef
9000
Shapiro, L.G.,
The Use of Numerical Relational Distance and Symbolic Differences
for Organizing Models and for Matching,
T3DMP86(255-270).
BibRef
8600
Earlier:
Using Symbolic Differences to Organize Relational Models,
CVPR839377-379).
BibRef
Boninsegna, M.,
Rossi, M.,
Similarity Measures In Computer Vision,
PRL(15), No. 12, December 1994, pp. 1255-1260.
BibRef
9412
Oflazer, K.,
Error Tolerant Retrieval of Trees,
PAMI(19), No. 12, December 1997, pp. 1376-1380.
IEEE DOI
9712
Actually matching of trees to find the closest one. Used in
machine translation, NL work.
BibRef
Tanaka, E.,
Takemasa, K.,
Masuda, S.,
A Distance Measure for Molecular Structures and Its Computing Method,
PRL(19), No. 3-4, March 1998, pp. 373-381.
9807
BibRef
Sim, D.G.[Dong-Gyu],
Kwon, O.K.[Oh-Kyu],
Park, R.H.[Rae-Hong],
Object Matching Algorithms Using Robust Hausdorff Distance Measures,
IP(8), No. 3, March 1999, pp. 425-429.
IEEE DOI
BibRef
9903
Earlier: A2, A1, A3:
New Hausdorff distances based on robust statistics for comparing images,
ICIP96(III: 21-24).
IEEE DOI
9610
BibRef
Kwon, O.K.[Oh-Kyu],
Sim, D.G.[Dong-Gyu],
Park, R.H.[Rae-Hong],
Robust Hausdorff distance matching algorithms using pyramidal
structures,
PR(34), No. 10, October 2001, pp. 2005-2013.
Elsevier DOI
0108
BibRef
Earlier:
Pyramidal Robust Hausdorff Distance for Object Matching,
ICIP99(IV:88-92).
IEEE DOI
BibRef
Kwon, O.K.[Oh-Kyu],
Kim, D.S.[Dong-Soo],
Suh, J.W.[Jung Wook],
Accurate M-hausdorff distance similarity combining distance orientation
for matching multi-modal sensor images,
PRL(32), No. 7, 1 May 2011, pp. 903-909.
Elsevier DOI
1101
M-Hausdorff distance; Distance orientation map; Multi-modal image alignment
BibRef
Foggia, P.,
Sansone, C.,
Tortorella, F.,
Vento, M.,
Definition and Validation of a Distance Measure Between Structural
Primitives,
PAA(2), No. 3, 1999, pp. 215-227.
BibRef
9900
de Stefano, C.,
Foggia, P.,
Tortorella, F.,
Vento, M.,
A Distance Measure for Structural Descriptions Using Circular Arcs
as Primitives,
ICPR96(II: 290-294).
IEEE DOI
9608
(Univ. di Napoli FedericoII, I)
BibRef
Bunke, H.,
Jiang, X., and
Kandel, A.,
On the Minimum Common Supergraph of Two Graphs,
Computing(65), No. 1, 2000, pp. 13-25.
BibRef
0001
Bunke, H.,
Guidobaldi, C.,
Vento, M.,
Weighted minimum common supergraph for cluster representation,
ICIP03(II: 25-28).
IEEE DOI
0312
BibRef
Wang, J.T.L.[Jason T.L.],
Zhang, K.Z.[Kai-Zhong],
Finding Similar Consensus Between Trees:
An Algorithm and a Distance Hierarchy,
PR(34), No. 1, January 2001, pp. 127-137.
Elsevier DOI
0010
BibRef
Wallis, W.D.,
Shoubridge, P.,
Kraetz, M.,
Ray, D.,
Graph distances using graph union,
PRL(22), No. 6-7, May 2001, pp. 701-704.
Elsevier DOI
0105
BibRef
Miller, M.I.,
Younes, L.,
Group Actions, Homeomorphisms, and Matching: A General Framework,
IJCV(41), No. 1-2, January-February 2001, pp. 61-84.
DOI Link Metrics on images for matching.
0105
BibRef
Jiang, X.Y.[Xiao-Yi],
Münger, A.[Andreas],
Bunke, H.[Horst],
On Median Graphs: Properties, Algorithms, and Applications,
PAMI(23), No. 10, October 2001, pp. 1144-1151.
IEEE DOI
0110
Extend the concept of a median to graphs.
BibRef
Le Saux, B.[Bertrand],
Bunke, H.[Horst],
Combining SVM and Graph Matching in a Bayesian Multiple Classifier
System for Image Content Recognition,
SSPR06(696-704).
Springer DOI
0608
BibRef
Huet, B.[Benoit],
Hancock, E.R.[Edwin R.],
Relational object recognition from large structural libraries,
PR(35), No. 9, September 2002, pp. 1895-1915.
Elsevier DOI
0206
BibRef
Huet, B.,
Hancock, E.R.,
Sensitivity Analysis for Object Recognition from Large Structural
Libraries,
ICCV99(1137-1143).
IEEE DOI
BibRef
9900
Huet, B.[Benoit],
Hancock, E.R.[Edwin R.],
Fuzzy Relational Distance for Large-scale Object Recognition,
CVPR98(138-143).
IEEE DOI
BibRef
9800
Huet, B.[Benoit],
Hancock, E.R.[Edwin R.],
Line Pattern Retrieval Using Relational Histograms,
PAMI(21), No. 12, December 1999, pp. 1363-1370.
IEEE DOI
0001
BibRef
Earlier:
Relational Histograms for Shape Indexing,
ICCV98(563-569).
IEEE DOI Shape to retrieve line based patterns from a database.
BibRef
Huet, B.[Benoit],
Hancock, E.R.[Edwin R.],
Shape recognition from large image libraries by inexact graph matching,
PRL(20), No. 11-13, November 1999, pp. 1259-1269.
0001
BibRef
Earlier:
Inexact Graph Retrieval,
CBAIVL99(xx-yy).
BibRef
Huet, B.[Benoit],
Hancock, E.R.[Edwin R.],
Structurally Gated Pairwise Geometric Histograms for Shape Indexing,
BMVC97(xx-yy).
HTML Version.
0209
BibRef
Han, I.S.[In-Seo],
Yun, I.D.[Il Dong],
Lee, S.U.[Sang Uk],
Modified Hausdorff distance for model-based 3-D object recognition from
a single view,
JVCIR(15), No. 1, March 2004, pp. 27-43.
Elsevier DOI
0402
BibRef
Earlier:
Model-based object recognition Using the Hausdorff Distance with
Explicit Pairing,
ICIP99(IV:83-87).
IEEE DOI
BibRef
Guru, D.S.,
Kiranagi, B.B.[Bapu B.],
Nagabhushan, P.,
Multivalued type proximity measure and concept of mutual similarity
value useful for clustering symbolic patterns,
PRL(25), No. 10, 16 July 2004, pp. 1203-1213.
Elsevier DOI
0407
BibRef
Guru, D.S.,
Kiranagi, B.B.[Bapu B.],
Multivalued type dissimilarity measure and concept of mutual
dissimilarity value for clustering symbolic patterns,
PR(38), No. 1, January 2005, pp. 151-156.
Elsevier DOI
0410
BibRef
Wang, W.Q.[Wei-Qiong],
Xin, X.L.[Xiao-Long],
Distance measure between intuitionistic fuzzy sets,
PRL(26), No. 13, 1 October 2005, pp. 2063-2069.
Elsevier DOI
0509
BibRef
Boran, F.E.[Fatih Emre],
Erratum to Distance measure between intuitionistic fuzzy sets,
PRL(30), No. 4, 1 March 2009, pp. 468.
Elsevier DOI
0903
See also Distance measure between intuitionistic fuzzy sets.
BibRef
Chávez, E.[Edgar],
Navarro, G.[Gonzalo],
Baeza-Yates, R.[Ricardo],
Marroquín, J.L.[José Luis],
Searching in metric spaces,
Surveys(33), No. 3, September 2001, pp. 273-321.
WWW Link.
0805
Survey, Distance Measures.
BibRef
Bustos, B.[Benjamin],
Navarro, G.[Gonzalo],
Chávez, E.[Edgar],
Pivot selection techniques for proximity searching in metric spaces,
PRL(24), No. 14, October 2003, pp. 2357-2366.
Elsevier DOI
0307
BibRef
Chávez, E.[Edgar],
Navarro, G.[Gonzalo],
A compact space decomposition for effective metric indexing,
PRL(26), No. 9, 1 July 2005, pp. 1363-1376.
Elsevier DOI
0506
BibRef
Téllez, E.S.[Eric Sadit],
Chávez, E.[Edgar],
Camarena-Ibarrola, A.[Antonio],
A Brief Index for Proximity Searching,
CIARP09(529-536).
Springer DOI
0911
BibRef
Xiao, Y.H.[Yang-Hua],
Dong, H.[Hua],
Wu, W.T.[Wen-Tao],
Xiong, M.[Momiao],
Wang, W.[Wei],
Shi, B.[Baile],
Structure-based graph distance measures of high degree of precision,
PR(41), No. 12, December 2008, pp. 3547-3561.
Elsevier DOI
0810
Graph distance; Distance metric; Structure-based graph distance; SNP
linkage disequilibrium
BibRef
Chen, D.C.[De-Chang],
Lu, C.T.[Chang-Tien],
Kou, Y.F.[Yu-Feng],
Chen, F.[Feng],
On Detecting Spatial Outliers,
GeoInfo(12), No. 4, December 2008, pp. xx-yy.
Springer DOI
0804
Find the objects whose non-spatial attribute values are
significantly different from the values of their spatial neighbors.
BibRef
Kim, D.H.[Duck Hoon],
Yun, I.D.[Il Dong],
Lee, S.U.[Sang Uk],
Attributed relational graph matching based on the nested assignment
structure,
PR(43), No. 3, March 2010, pp. 914-928.
Elsevier DOI
1001
BibRef
Earlier:
A new attributed relational graph matching algorithm using the nested
structure of earth mover's distance,
ICPR04(I: 48-51).
IEEE DOI
0409
Attributed relational graph (ARG); ARG matching; Assignment; Nested
assignment structure; Relation vector space
BibRef
Rezazadeh, S.[Soroosh],
Coulombe, S.[Stéphane],
A novel discrete wavelet transform framework for full reference image
quality assessment,
SIViP(7), No. 3, May 2013, pp. 559-573.
1305
BibRef
Earlier:
A novel approach for computing and pooling Structural SIMilarity index
in the discrete wavelet domain,
ICIP09(2209-2212).
IEEE DOI
0911
BibRef
Salamat, N.[Nadeem],
Zahzah, E.H.[El-Hadi],
On the improvement of combined fuzzy topological and directional
relations information,
PR(45), No. 4, 2012, pp. 1559-1568.
Elsevier DOI
1410
Fuzzy Allen relations
BibRef
Alioscha-Perez, M.[Mitchel],
Sahli, H.[Hichem],
Efficient Learning of Spatial Patterns with Multi-Scale Conditional
Random Fields for Region-Based Classification,
RS(6), No. 8, 2014, pp. 6727-6764.
DOI Link
1410
BibRef
Chai, L.[Li],
Sheng, Y.X.[Yu-Xia],
Optimal Design of Multichannel Equalizers for the Structural
Similarity Index,
IP(23), No. 12, December 2014, pp. 5626-5637.
IEEE DOI
1412
image restoration
BibRef
Chai, L.[Li],
Sheng, Y.X.[Yu-Xia],
Zhang, J.X.[Jing-Xin],
Design of synthesis filter banks for the structural similarity index,
ICIP13(849-853)
IEEE DOI
1402
Closed-form solutions
BibRef
Martinek, M.[Michael],
Grosso, R.[Roberto],
Greiner, G.[Günther],
Interactive partial 3D shape matching with geometric distance
optimization,
VC(31), No. 2, February 2015, pp. 223-233.
WWW Link.
1503
BibRef
Berkels, B.,
Effland, A.,
Rumpf, M.,
Time Discrete Geodesic Paths in the Space of Images,
SIIMS(8), No. 3, 2015, pp. 1457-1488.
DOI Link
1511
See also Group Actions, Homeomorphisms, and Matching: A General Framework.
BibRef
Nguyen, B.[Bac],
Morell, C.[Carlos],
de Baets, B.[Bernard],
Supervised distance metric learning through maximization of the
Jeffrey divergence,
PR(64), No. 1, 2017, pp. 215-225.
Elsevier DOI
1701
Distance metric learning
BibRef
Nguyen, B.[Bac],
Morell, C.[Carlos],
de Baets, B.[Bernard],
Distance metric learning with the Universum,
PRL(100), No. 1, 2017, pp. 37-43.
Elsevier DOI
1712
Metric learning
BibRef
Sanakoyeu, A.[Artsiom],
Bautista, M.A.[Miguel A.],
Ommer, B.[Bjorn],
Deep unsupervised learning of visual similarities,
PR(78), 2018, pp. 331-343.
Elsevier DOI
1804
BibRef
Earlier: A2, A1, A3:
Deep Unsupervised Similarity Learning Using Partially Ordered Sets,
CVPR17(1923-1932)
IEEE DOI
1711
Visual similarity learning, Deep learning,
Self-supervised learning, Human pose analysis, Object retrieval.
Computational modeling, Standards, Training,
Unsupervised learning, Visualization
BibRef
Bay-Ahmed, H.A.[Hadj-Ahmed],
Boudraa, A.O.[Abdel-Ouahab],
Dare-Emzivat, D.[Delphine],
A Joint Spectral Similarity Measure for Graphs Classification,
PRL(120), 2019, pp. 1-7.
Elsevier DOI
1904
BibRef
Fishkind, D.E.[Donniell E.],
Meng, L.Y.[Ling-Yao],
Sun, A.[Ao],
Priebe, C.E.[Carey E.],
Lyzinski, V.[Vince],
Alignment strength and correlation for graphs,
PRL(125), 2019, pp. 295-302.
Elsevier DOI
1909
Correlated Bernoulli random graphs, Alignment strength,
Graph correlation, Graph matchability, Complexity of graph matching
BibRef
Moreno-García, C.F.[Carlos Francisco],
Serratosa, F.[Francesc],
Generalised median of graph correspondences,
PRL(125), 2019, pp. 389-395.
Elsevier DOI
1909
BibRef
Ergün, A.[Asli],
Ergun, S.[Serkan],
Ünlü, M.Z.[Mehmet Zübeyir],
Güngör, C.[Cengiz],
A saliency-weighted orthogonal regression-based similarity measure for
entropic graphs,
SIViP(13), No. 7, October 2019, pp. 1377-1385.
Springer DOI
1911
BibRef
Ma, L.[Lin],
Jiang, W.H.[Wen-Hao],
Jie, Z.Q.[Ze-Qun],
Jiang, Y.G.[Yu-Gang],
Liu, W.[Wei],
Matching Image and Sentence With Multi-Faceted Representations,
CirSysVideo(30), No. 7, July 2020, pp. 2250-2261.
IEEE DOI
2007
Semantics, Neural networks, Vegetation, Forestry, Correlation,
Stacking, Image retrieval,
multi-faceted representations
BibRef
Yu, T.[Tan],
Meng, J.J.[Jing-Jing],
Yang, M.[Ming],
Yuan, J.S.[Jun-Song],
3D Object Representation Learning: A Set-to-Set Matching Perspective,
IP(30), 2021, pp. 2168-2179.
IEEE DOI
2102
3D object similarity measure.
Kernel, Object recognition,
Neural networks, Feature extraction, bilinear pooling
BibRef
Xiao, F.Y.[Fu-Yuan],
A Distance Measure for Intuitionistic Fuzzy Sets and Its Application
to Pattern Classification Problems,
SMCS(51), No. 6, June 2021, pp. 3980-3992.
IEEE DOI
2106
Q measurement, Fuzzy sets, Decision making, Task analysis,
Measurement uncertainty, Distance measure, inference problems,
uncertainty
BibRef
Nguyen, D.H.[Dai Hai],
Tsuda, K.[Koji],
On a linear fused Gromov-Wasserstein distance for graph structured
data,
PR(138), 2023, pp. 109351.
Elsevier DOI
2303
Linear optimal transport, Graph structured data, Kernel method
BibRef
Dong, Y.H.[Yi-Hao],
Xu, X.L.[Xiao-Long],
Relational distance and document-level contrastive pre-training based
relation extraction model,
PRL(167), 2023, pp. 132-140.
Elsevier DOI
2303
BibRef
Boria, N.[Nicolas],
Kiederle, J.[Jana],
Yger, F.[Florian],
Blumenthal, D.B.[David B.],
The edge-preservation similarity for comparing rooted, unordered,
node-labeled trees,
PRL(167), 2023, pp. 189-195.
Elsevier DOI
2303
Tree similarity measures, Integer quadratic programming,
Approximation algorithms, RNA secondary structures
BibRef
Lin, Y.J.[Yi-Jie],
Yang, M.[Mouxing],
Yu, J.[Jun],
Hu, P.[Peng],
Zhang, C.Q.[Chang-Qing],
Peng, X.[Xi],
Graph Matching with Bi-level Noisy Correspondence,
ICCV23(23305-23314)
IEEE DOI Code:
WWW Link.
2401
BibRef
Wang, R.Z.[Run-Zhong],
Guo, Z.[Ziao],
Jiang, S.F.[Shao-Fei],
Yang, X.K.[Xiao-Kang],
Yan, J.C.[Jun-Chi],
Deep Learning of Partial Graph Matching via Differentiable Top-K,
CVPR23(6272-6281)
IEEE DOI
2309
BibRef
Naumann, A.[Alexander],
Hertlein, F.[Felix],
Grimm, D.[Daniel],
Zipfl, M.[Maximilian],
Thoma, S.[Steffen],
Rettinger, A.[Achim],
Halilaj, L.[Lavdim],
Luettin, J.[Juergen],
Schmid, S.[Stefan],
Caesar, H.[Holger],
Lanelet2 for nuScenes: Enabling Spatial Semantic Relationships and
Diverse Map-based Anchor Paths,
E2EAD23(3248-3257)
IEEE DOI
2309
BibRef
Rica, E.[Elena],
Álvarez, S.[Susana],
Serratosa, F.[Francesc],
Learning Distances Between Graph Nodes and Edges,
SSSPR22(103-112).
Springer DOI
2301
BibRef
Sung, F.[Flood],
Yang, Y.X.[Yong-Xin],
Zhang, L.[Li],
Xiang, T.[Tao],
Torr, P.H.S.[Philip H.S.],
Hospedales, T.M.[Timothy M.],
Learning to Compare: Relation Network for Few-Shot Learning,
CVPR18(1199-1208)
IEEE DOI
1812
Training, Measurement, Task analysis, Image recognition,
Recurrent neural networks, Computer architecture
BibRef
Yang, X.[Xu],
Zhang, H.W.[Han-Wang],
Cai, J.F.[Jian-Fei],
Shuffle-Then-Assemble: Learning Object-Agnostic Visual Relationship
Features,
ECCV18(XII: 38-54).
Springer DOI
1810
BibRef
Yin, G.J.[Guo-Jun],
Sheng, L.[Lu],
Liu, B.[Bin],
Yu, N.H.[Neng-Hai],
Wang, X.G.[Xiao-Gang],
Shao, J.[Jing],
Loy, C.C.[Chen Change],
Zoom-Net: Mining Deep Feature Interactions for Visual Relationship
Recognition,
ECCV18(III: 330-347).
Springer DOI
1810
BibRef
Adamu, A.[Alhassan],
Zainon, W.M.N.W.[Wan Mohd Nazmee Wan],
Similarity Assessment of UML Sequence Diagrams Using Dynamic
Programming,
IVIC17(270-278).
Springer DOI
1711
BibRef
Veit, A.[Andreas],
Belongie, S.[Serge],
Karaletsos, T.[Theofanis],
Conditional Similarity Networks,
CVPR17(1781-1789)
IEEE DOI
1711
Extraterrestrial measurements, Kernel,
Neural networks, Semantics, Visualization
BibRef
Nagasawa, Y.[Yusuke],
Nakamura, K.[Kazuaki],
Nitta, N.[Naoko],
Babaguchi, N.[Noboru],
Effect of Junk Images on Inter-concept Distance Measurement:
Positive or Negative?,
MMMod17(II: 173-184).
Springer DOI
1701
BibRef
Piórkowski, R.[Rafal],
Mantiuk, R.[Radoslaw],
Calibration of Structural Similarity Index Metric to Detect Artefacts
in Game Engines,
ICCVG16(86-94).
Springer DOI
1611
BibRef
Zhu, P.F.[Peng-Fei],
Zhang, L.[Lei],
Zuo, W.M.[Wang-Meng],
Zhang, D.[David],
From Point to Set: Extend the Learning of Distance Metrics,
ICCV13(2664-2671)
IEEE DOI
1403
BibRef
Wang, B.[Bin],
Liu, Y.C.[Yun-Cai],
Discriminative probabilistic kernel learning for image retrieval,
ICIP13(2587-2591)
IEEE DOI
1402
GMMs
BibRef
Wang, B.[Bin],
Shen, Y.[Yi],
Liu, Y.C.[Yun-Cai],
Integrating distance metric learning into label propagation model for
multi-label image annotation,
ICIP11(3649-3652).
IEEE DOI
1201
BibRef
Fu, H.[Hao],
Qiu, G.P.[Guo-Ping],
He, H.[Hangen],
Feature Combination beyond Basic Arithmetics,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Duan, M.Y.,
Zang, Y.,
Pu, P.X.,
Shi, L.,
Geo-Info Graph Spectrum Analysis for Representing Distance Relations in
GIS,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
eelja, B.[Branimir],
Tepavcevic, A.[Andreja],
Weak Fuzzy Equivalence and Equality Relations,
PReMI09(134-139).
Springer DOI
0912
BibRef
Sanroma, G.[Gerard],
Serratosa, F.[Francesc],
Alquezar, R.[Rene],
Improving the matching of graphs generated from shapes by the use of
procrustes distances into a clique-based MAP formulation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Rothaus, K.[Kai],
Jiang, X.Y.[Xiao-Yi],
Constrained clustering by a novel graph-based distance transformation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
May, T.[Thorsten],
Kohlhammer, J.[Joern],
Visual Verification of Hypotheses,
ISVC08(II: 31-42).
Springer DOI
0812
Hypothesis verification. Match visual data with models.
BibRef
Ochoa, A.[Alberto],
Arco, L.[Leticia],
Differential Betweenness in Complex Networks Clustering,
CIARP08(227-234).
Springer DOI
0809
BibRef
Tian, Q.[Qi],
Xue, Q.[Qing],
Yu, J.[Jie],
Sebe, N.,
Huang, T.S.[Thomas S.],
Toward an improved error metric,
ICIP04(IV: 2199-2202).
IEEE DOI
0505
BibRef
Climent, J.,
Aranda, J.,
Grau, A.[Antoni],
Sanfeliu, A.,
Low Cost Architecture for Structure Measure Distance Computation,
ICPR98(Vol II: 1592-1594).
IEEE DOI
9808
BibRef
Azencott, R.,
Younes, L.,
Coldefy, F.,
A Distance for Elastic Matching in Object Recognition,
ICPR96(I: 687-691).
IEEE DOI
9608
(ENS Cachan CMLA, F)
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Evidence Theory, Combination Techniques, Optimization Techniques .