Raimondo, F.,
Gavrielides, M.A.,
Karayannopoulou, G.,
Lyroudia, K.,
Pitas, I.,
Kostopoulos, I.,
Automated Evaluation of Her-2/neu Status in Breast Tissue From
Fluorescent In Situ Hybridization Images,
IP(14), No. 9, September 2005, pp. 1288-1299.
IEEE DOI
0508
BibRef
Harrabi, R.,
Ben Braiek, E.,
Color image segmentation using multi-level thresholding approach and
data fusion techniques: application in the breast cancer cells images,
JIVP(2012), No. 1 2012, pp. xx-yy.
DOI Link
1205
BibRef
Zhang, X.F.[Xiao-Fan],
Liu, W.[Wei],
Dundar, M.[Murat],
Badve, S.I.[Sun-Il],
Zhang, S.T.[Shao-Ting],
Towards Large-Scale Histopathological Image Analysis:
Hashing-Based Image Retrieval,
MedImg(34), No. 2, February 2015, pp. 496-506.
IEEE DOI
1502
Breast cancer
BibRef
Zhang, X.F.[Xiao-Fan],
Su, H.[Hai],
Yang, L.[Lin],
Zhang, S.T.[Shao-Ting],
Fine-grained histopathological image analysis via robust segmentation
and large-scale retrieval,
CVPR15(5361-5368)
IEEE DOI
1510
BibRef
Xu, J.,
Xiang, L.,
Liu, Q.,
Gilmore, H.,
Wu, J.,
Tang, J.,
Madabhushi, A.,
Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast
Cancer Histopathology Images,
MedImg(35), No. 1, January 2016, pp. 119-130.
IEEE DOI
1601
Breast cancer
BibRef
Ehteshami Bejnordi, B.,
Balkenhol, M.,
Litjens, G.,
Holland, R.,
Bult, P.,
Karssemeijer, N.,
van der Laak, J.A.W.M.,
Automated Detection of DCIS in Whole-Slide H E Stained Breast
Histopathology Images,
MedImg(35), No. 9, September 2016, pp. 2141-2150.
IEEE DOI
1609
Breast tissue
BibRef
Wdowiak, M.[Marek],
Markiewicz, T.[Tomasz],
Osowski, S.[Stanislaw],
Patera, J.[Janusz],
Kozlowski, W.[Wojciech],
Novel segmentation algorithm for identification of cell membrane
staining in HER2 images,
PRL(84), No. 1, 2016, pp. 225-231.
Elsevier DOI
1612
Pattern recognition
BibRef
Xing, F.,
Xie, Y.,
Yang, L.,
An Automatic Learning-Based Framework for Robust Nucleus Segmentation,
MedImg(35), No. 2, February 2016, pp. 550-566.
IEEE DOI
1602
Breast cancer
BibRef
Albarqouni, S.,
Baur, C.,
Achilles, F.,
Belagiannis, V.,
Demirci, S.,
Navab, N.,
AggNet: Deep Learning From Crowds for Mitosis Detection in Breast
Cancer Histology Images,
MedImg(35), No. 5, May 2016, pp. 1313-1321.
IEEE DOI
1605
Biomedical imaging
BibRef
Mercan, C.,
Aksoy, S.[Selim],
Mercan, E.[Ezgi],
Shapiro, L.G.[Linda G.],
Weaver, D.L.[Donald L.],
Elmore, J.G.[Joann G.],
Multi-Instance Multi-Label Learning for Multi-Class Classification of
Whole Slide Breast Histopathology Images,
MedImg(37), No. 1, January 2018, pp. 316-325.
IEEE DOI
1801
biomedical optical imaging, cancer, image classification,
learning (artificial intelligence), medical image processing,
whole slide imaging
BibRef
Mercan, E.[Ezgi],
Aksoy, S.[Selim],
Shapiro, L.G.[Linda G.],
Weaver, D.L.[Donald L.],
Brunye, T.[Tad],
Elmore, J.G.[Joann G.],
Localization of Diagnostically Relevant Regions of Interest in Whole
Slide Images,
ICPR14(1179-1184)
IEEE DOI
1412
Accuracy
BibRef
Saha, M.,
Chakraborty, C.,
Her2Net: A Deep Framework for Semantic Segmentation and
Classification of Cell Membranes and Nuclei in Breast Cancer
Evaluation,
IP(27), No. 5, May 2018, pp. 2189-2200.
IEEE DOI
1804
cancer, feature extraction, image classification,
image segmentation, learning (artificial intelligence),
nuclei
BibRef
Gecer, B.[Baris],
Aksoy, S.[Selim],
Mercan, E.[Ezgi],
Shapiro, L.G.[Linda G.],
Weaver, D.L.[Donald L.],
Elmore, J.G.[Joann G.],
Detection and classification of cancer in whole slide breast
histopathology images using deep convolutional networks,
PR(84), 2018, pp. 345-356.
Elsevier DOI
1809
Digital pathology, Breast histopathology, Whole slide imaging,
Region of interest detection, Saliency detection,
Deep learning
BibRef
Tellez, D.,
Balkenhol, M.,
Otte-Höller, I.,
van de Loo, R.,
Vogels, R.,
Bult, P.,
Wauters, C.,
Vreuls, W.,
Mol, S.,
Karssemeijer, N.,
Litjens, G.,
van der Laak, J.,
Ciompi, F.,
Whole-Slide Mitosis Detection in H&E Breast Histology Using PHH3
as a Reference to Train Distilled Stain-Invariant Convolutional
Networks,
MedImg(37), No. 9, September 2018, pp. 2126-2136.
IEEE DOI
1809
Breast cancer, Standards, Tumors, Pathology, Training, Image analysis,
Image color analysis, Breast cancer, mitosis detection,
knowledge distillation
BibRef
Tellez, D.[David],
Litjens, G.[Geert],
van der Laak, J.[Jeroen],
Ciompi, F.[Francesco],
Neural Image Compression for Gigapixel Histopathology Image Analysis,
PAMI(43), No. 2, February 2021, pp. 567-578.
IEEE DOI
2101
Image coding, Training, Image reconstruction, Image analysis,
Neural networks, Visualization, Task analysis,
representation learning
BibRef
Yang, H.,
Kim, J.,
Kim, H.,
Adhikari, S.P.,
Guided Soft Attention Network for Classification of Breast Cancer
Histopathology Images,
MedImg(39), No. 5, May 2020, pp. 1306-1315.
IEEE DOI
2005
Breast cancer, Microscopy, Noise measurement, Neural networks,
Pathology, Training, Task analysis, Breast cancer, microscopy image,
pattern recognition and classification
BibRef
Saxena, S.[Shweta],
Shukla, S.[Sanyam],
Gyanchandani, M.[Manasi],
Breast cancer histopathology image classification using kernelized
weighted extreme learning machine,
IJIST(31), No. 1, 2021, pp. 168-179.
DOI Link
2102
breast cancer, computer-aided diagnosis, histopathology,
pretrained convolutional neural network
BibRef
Alkassar, S.,
Jebur, B.A.[Bilal A.],
Abdullah, M.A.M.[Mohammed A. M.],
Al-Khalidy, J.H.[Joanna H.],
Chambers, J.A.,
Going deeper: magnification-invariant approach for breast cancer
classification using histopathological images,
IET-CV(15), No. 2, 2021, pp. 151-164.
DOI Link
2106
BibRef
Hu, C.H.[Chu-Han],
Sun, X.Y.[Xiao-Yan],
Yuan, Z.M.[Zhen-Ming],
Wu, Y.F.[Ying-Fei],
Classification of breast cancer histopathological image with deep
residual learning,
IJIST(31), No. 3, 2021, pp. 1583-1594.
DOI Link
2108
data augmentation, histopathological image, myResNet-34, stain normalization
BibRef
Gupta, A.P.[Amar Prasad],
Yeo, S.J.[Seung Jun],
Mativenga, M.[Mallory],
Jung, J.[Jaeik],
Kim, W.[Wooseob],
Lim, J.[Jongmin],
Park, J.Y.[Jun-Young],
Ahn, J.S.[Jeung Sun],
Kim, S.H.[Seung Hoon],
Chae, M.S.[Moon Shik],
Yeon, Y.H.[Yeong Heum],
Kim, N.[Namkug],
Ko, B.S.[Beom-Seok],
Ryu, J.[Jehwang],
A feasibility study of a portable intraoperative specimen imaging
X-ray system based on carbon nanotube field emitters,
IJIST(31), No. 3, 2021, pp. 1128-1135.
DOI Link
2108
breast cancer, carbon nanotube emitter, field emission,
pathological study, surgical margin, tumor, X-ray imaging
BibRef
Zou, Y.[Ying],
Zhang, J.X.[Jian-Xin],
Huang, S.[Shan],
Liu, B.[Bin],
Breast cancer histopathological image classification using attention
high-order deep network,
IJIST(32), No. 1, 2022, pp. 266-279.
DOI Link
2201
breast cancer histopathological image classification,
convolutional neural network, covariance pooling, second-order statistics
BibRef
Huang, H.[Hui],
Feng, X.[Xi'an],
Jiang, J.[Jionghui],
Chen, P.Y.[Pei-Yu],
Zhou, S.[Suying],
Mask RCNN algorithm for nuclei detection on breast cancer
histopathological images,
IJIST(32), No. 1, 2022, pp. 209-217.
DOI Link
2201
breast cancer histopathological, Mask R-CNN algorithm, nuclei detection
BibRef
Melekoodappattu, J.G.[Jayesh George],
Dhas, A.S.[Anto Sahaya],
Kumar, K.B.[K. Binil],
Adarsh, K.S.,
Malignancy detection on mammograms by integrating modified
convolutional neural network classifier and texture features,
IJIST(32), No. 2, 2022, pp. 564-574.
DOI Link
2203
accuracy, CNN, ensemble method, MVU, texture feature
BibRef
Thiagarajan, P.[Ponkrshnan],
Khairnar, P.[Pushkar],
Ghosh, S.[Susanta],
Explanation and Use of Uncertainty Quantified by Bayesian Neural
Network Classifiers for Breast Histopathology Images,
MedImg(41), No. 4, April 2022, pp. 815-825.
IEEE DOI
2204
Uncertainty, Bayes methods, Convolutional neural networks,
Breast cancer, Neural networks, Cancer, Transfer learning, t-SNE
BibRef
Abdelli, A.[Adel],
Saouli, R.[Rachida],
Djemal, K.[Khalifa],
Youkana, I.[Imane],
Multiple instance learning for classifying histopathological images
of the breast cancer using residual neural network,
IJIST(32), No. 3, 2022, pp. 1015-1029.
DOI Link
2205
breast cancer, convolutional neural networks,
histopathological images, multiple instances learning
BibRef
Mathew, T.[Tojo],
Ajith, B.,
Kini, J.R.[Jyoti R.],
Rajan, J.[Jeny],
Deep learning-based automated mitosis detection in histopathology
images for breast cancer grading,
IJIST(32), No. 4, 2022, pp. 1192-1208.
DOI Link
2207
breast cancer, cancer grading, deep learning, histopathology, mitosis detection
BibRef
Liu, K.[Kun],
Liu, Z.L.[Zhuo-Lin],
Liu, S.[Sidong],
Semi-Supervised Breast Histopathological Image Classification with
Self-Training Based on Non-Linear Distance Metric,
IET-IPR(16), No. 12, 2022, pp. 3164-3176.
DOI Link
2209
BibRef
Lu, Y.Y.[Yuan-Yue],
Zhang, J.[Jun],
Liu, X.[Xueyu],
Zhang, Z.H.[Zhi-Hong],
Li, W.X.[Wang-Xing],
Zhou, X.S.[Xiao-Shuang],
Li, R.S.[Rong-Shan],
Prediction of breast cancer metastasis by deep learning pathology,
IET-IPR(17), No. 2, 2023, pp. 533-543.
DOI Link
2302
BibRef
Shi, J.B.[Jiang-Bo],
Tang, L.[Lufei],
Li, Y.[Yang],
Zhang, X.L.[Xian-Li],
Gao, Z.[Zeyu],
Zheng, Y.F.[Ye-Feng],
Wang, C.B.[Chun-Bao],
Gong, T.[Tieliang],
Li, C.[Chen],
A Structure-Aware Hierarchical Graph-Based Multiple Instance Learning
Framework for pT Staging in Histopathological Image,
MedImg(42), No. 10, October 2023, pp. 3000-3011.
IEEE DOI
2310
BibRef
Zhong, L.[Lanfeng],
Wang, G.[Guotai],
Liao, X.[Xin],
Zhang, S.T.[Shao-Ting],
HAMIL: High-Resolution Activation Maps and Interleaved Learning for
Weakly Supervised Segmentation of Histopathological Images,
MedImg(42), No. 10, October 2023, pp. 2912-2923.
IEEE DOI
2310
BibRef
Lou, W.[Wei],
Wan, X.[Xiang],
Li, G.B.[Guan-Bin],
Lou, X.Y.[Xiao-Ying],
Li, C.[Chenghang],
Gao, F.[Feng],
Li, H.F.[Hao-Feng],
Structure Embedded Nucleus Classification for Histopathology Images,
MedImg(43), No. 9, September 2024, pp. 3149-3160.
IEEE DOI Code:
WWW Link.
2409
Feature extraction, Shape, Graph neural networks, Histopathology,
Task analysis, Decoding, Image edge detection,
graph neural network
BibRef
Fernandes, S.L.[Steven L.],
Krivic, S.[Senka],
Sharma, P.[Poonam],
Jha, S.K.[Sumit K.],
Attribution-based Confidence Metric for Detection of Adversarial
Attacks on Breast Histopathological Images,
AdvRob22(501-516).
Springer DOI
2304
BibRef
Chhipa, P.C.[Prakash Chandra],
Upadhyay, R.[Richa],
Pihlgren, G.G.[Gustav Grund],
Saini, R.[Rajkumar],
Uchida, S.[Seiichi],
Liwicki, M.[Marcus],
Magnification Prior: A Self-Supervised Method for Learning
Representations on Breast Cancer Histopathological Images,
WACV23(2716-2726)
IEEE DOI
2302
Representation learning, Histopathology, Microscopy,
Supervised learning, Redundancy, Focusing, medical images
BibRef
Liu, S.J.[Sheng-Jie],
Zhu, C.[Chuang],
Xu, F.[Feng],
Jia, X.Y.[Xin-Yu],
Shi, Z.Y.[Zhong-Yue],
Jin, M.[Mulan],
BCI: Breast Cancer Immunohistochemical Image Generation through
Pyramid Pix2pix,
CVMI22(1814-1823)
IEEE DOI
2210
Pathology, Image synthesis, Breast tissue, Epidermis, Breast cancer
BibRef
Iheme, L.O.[Leonardo O.],
Solmaz, G.[Gizem],
Tokat, F.[Fatma],
Çayir, S.[Sercan],
Bozaba, E.[Engin],
Yazici, Ç.[Çisem],
Özsoy, G.[Gülsah],
Ayalti, S.[Samet],
Kayhan, C.K.[Cavit Kerem],
Ince, Ü.[Ümit],
Patch-Level Nuclear Pleomorphism Scoring Using Convolutional Neural
Networks,
CAIP21(I:185-194).
Springer DOI
2112
Examining Hematoxylin and Eosin stained breast tissue.
BibRef
Li, Z.Q.[Zi-Qiang],
Tao, R.[Rentuo],
Wu, Q.[Qianrun],
Li, B.[Bin],
DA-RefineNet: Dual-inputs Attention RefineNet for Whole Slide Image
Segmentation,
ICPR21(1918-1925)
IEEE DOI
2105
Knowledge engineering, Image segmentation, Semantics, Breast,
Feature extraction, Optical imaging, Pattern recognition
BibRef
Li, B.[Beibin],
Mercan, E.[Ezgi],
Mehta, S.[Sachin],
Knezevich, S.[Stevan],
Arnold, C.W.[Corey W.],
Weaver, D.L.[Donald L.],
Elmore, J.G.[Joann G.],
Shapiro, L.G.[Linda G.],
Classifying Breast Histopathology Images with a Ductal
Instance-Oriented Pipeline,
ICPR21(8727-8734)
IEEE DOI
2105
Image segmentation, Annotations, Histopathology, Pipelines,
Semantics, Training data, Breast, biomedical imaging, deep learning,
whole slide images
BibRef
Ma, X.[Xuru],
A Classification Method of Breast Pathological Image Based on
Residual Learning,
CVIDL20(135-139)
IEEE DOI
2102
cancer, convolutional neural nets, diseases, feature extraction,
image classification, image segmentation, image texture,
data augmentation
BibRef
Roszkowiak, L.[Lukasz],
Zak, J.[Jakub],
Siemion, K.[Krzysztof],
Pijanowska, D.[Dorota],
Korzynska, A.[Anna],
Nuclei Detection with Local Threshold Processing in Dab&h Stained
Breast Cancer Biopsy Images,
ICCVG20(164-175).
Springer DOI
2009
BibRef
Ma, M.,
Shi, Y.,
Li, W.,
Gao, Y.,
Xu, J.,
A Novel Two-Stage Deep Method for Mitosis Detection in Breast Cancer
Histology Images,
ICPR18(3892-3897)
IEEE DOI
1812
Feature extraction, Task analysis, Convolution, Training,
Breast cancer, Shape
BibRef
Rakhlin, A.[Alexander],
Shvets, A.[Alexey],
Iglovikov, V.[Vladimir],
Kalinin, A.A.[Alexandr A.],
Deep Convolutional Neural Networks for Breast Cancer Histology Image
Analysis,
ICIAR18(737-744).
Springer DOI
1807
BibRef
Wang, Z.[Zeya],
Dong, N.Q.[Nan-Qing],
Dai, W.[Wei],
Rosario, S.D.[Sean D.],
Xing, E.P.[Eric P.],
Classification of Breast Cancer Histopathological Images using
Convolutional Neural Networks with Hierarchical Loss and Global Pooling,
ICIAR18(745-753).
Springer DOI
1807
BibRef
Mahbod, A.[Amirreza],
Ellinger, I.[Isabella],
Ecker, R.[Rupert],
Smedby, Ö.[Örjan],
Wang, C.L.[Chun-Liang],
Breast Cancer Histological Image Classification Using Fine-Tuned Deep
Network Fusion,
ICIAR18(754-762).
Springer DOI
1807
BibRef
Ferreira, C.A.[Carlos A.],
Melo, T.[Tânia],
Sousa, P.[Patrick],
Meyer, M.I.[Maria Inęs],
Shakibapour, E.[Elham],
Costa, P.[Pedro],
Campilho, A.[Aurélio],
Classification of Breast Cancer Histology Images Through Transfer
Learning Using a Pre-trained Inception Resnet V2,
ICIAR18(763-770).
Springer DOI
1807
BibRef
Brancati, N.[Nadia],
Frucci, M.[Maria],
Riccio, D.[Daniel],
Multi-classification of Breast Cancer Histology Images by Using a
Fine-Tuning Strategy,
ICIAR18(771-778).
Springer DOI
1807
BibRef
Cao, H.[Hongliu],
Bernard, S.[Simon],
Heutte, L.[Laurent],
Sabourin, R.[Robert],
Improve the Performance of Transfer Learning Without Fine-Tuning Using
Dissimilarity-Based Multi-view Learning for Breast Cancer Histology
Images,
ICIAR18(779-787).
Springer DOI
1807
BibRef
Awan, R.[Ruqayya],
Koohbanani, N.A.[Navid Alemi],
Shaban, M.[Muhammad],
Lisowska, A.[Anna],
Rajpoot, N.[Nasir],
Context-Aware Learning Using Transferable Features for Classification
of Breast Cancer Histology Images,
ICIAR18(788-795).
Springer DOI
1807
BibRef
Koné, I.[Ismaël],
Boulmane, L.[Lahsen],
Hierarchical ResNeXt Models for Breast Cancer Histology Image
Classification,
ICIAR18(796-803).
Springer DOI
1807
BibRef
Chennamsetty, S.S.[Sai Saketh],
Safwan, M.[Mohammed],
Alex, V.[Varghese],
Classification of Breast Cancer Histology Image using Ensemble of
Pre-trained Neural Networks,
ICIAR18(804-811).
Springer DOI
1807
BibRef
Vesal, S.[Sulaiman],
Ravikumar, N.[Nishant],
Davari, A.[AmirAbbas],
Ellmann, S.[Stephan],
Maier, A.[Andreas],
Classification of Breast Cancer Histology Images Using Transfer
Learning,
ICIAR18(812-819).
Springer DOI
1807
BibRef
Galal, S.[Sameh],
Sanchez-Freire, V.[Veronica],
Candy Cane: Breast Cancer Pixel-Wise Labeling with Fully Convolutional
Densenets,
ICIAR18(820-826).
Springer DOI
1807
BibRef
Guo, Y.[Yao],
Dong, H.[Huihui],
Song, F.[Fangzhou],
Zhu, C.[Chuang],
Liu, J.[Jun],
Breast Cancer Histology Image Classification Based on Deep Neural
Networks,
ICIAR18(827-836).
Springer DOI
1807
BibRef
Golatkar, A.[Aditya],
Anand, D.[Deepak],
Sethi, A.[Amit],
Classification of Breast Cancer Histology Using Deep Learning,
ICIAR18(837-844).
Springer DOI
1807
BibRef
Wang, Y.Q.[Ya-Qi],
Sun, L.L.[Ling-Ling],
Ma, K.Q.[Kai-Qiang],
Fang, J.N.[Jian-Nan],
Breast Cancer Microscope Image Classification Based on CNN with Image
Deformation,
ICIAR18(845-852).
Springer DOI
1807
BibRef
Iesmantas, T.[Tomas],
Alzbutas, R.[Robertas],
Convolutional Capsule Network for Classification of Breast Cancer
Histology Images,
ICIAR18(853-860).
Springer DOI
1807
BibRef
Marami, B.[Bahram],
Prastawa, M.[Marcel],
Chan, M.[Monica],
Donovan, M.[Michael],
Fernandez, G.[Gerardo],
Zeineh, J.[Jack],
Ensemble Network for Region Identification in Breast Histopathology
Slides,
ICIAR18(861-868).
Springer DOI
1807
BibRef
Nawaz, W.[Wajahat],
Ahmed, S.[Sagheer],
Tahir, A.[Ali],
Khan, H.A.[Hassan Aqeel],
Classification Of Breast Cancer Histology Images Using ALEXNET,
ICIAR18(869-876).
Springer DOI
1807
BibRef
Pimkin, A.[Artem],
Makarchuk, G.[Gleb],
Kondratenko, V.[Vladimir],
Pisov, M.[Maxim],
Krivov, E.[Egor],
Belyaev, M.[Mikhail],
Ensembling Neural Networks for Digital Pathology Images Classification
and Segmentation,
ICIAR18(877-886).
Springer DOI
1807
BibRef
Sarmiento, A.[Auxiliadora],
Fondón, I.[Irene],
Automatic Breast Cancer Grading of Histological Images Based on Colour
and Texture Descriptors,
ICIAR18(887-894).
Springer DOI
1807
BibRef
Vu, Q.D.[Quoc Dang],
To, M.N.N.[Minh Nguyen Nhat],
Kim, E.[Eal],
Kwak, J.T.[Jin Tae],
Micro and Macro Breast Histology Image Analysis by Partial Network
Re-use,
ICIAR18(895-902).
Springer DOI
1807
BibRef
Kohl, M.[Matthias],
Walz, C.[Christoph],
Ludwig, F.[Florian],
Braunewell, S.[Stefan],
Baust, M.[Maximilian],
Assessment of Breast Cancer Histology Using Densely Connected
Convolutional Networks,
ICIAR18(903-913).
Springer DOI
1807
BibRef
Vang, Y.S.[Yeeleng S.],
Chen, Z.[Zhen],
Xie, X.H.[Xiao-Hui],
Deep Learning Framework for Multi-class Breast Cancer Histology Image
Classification,
ICIAR18(914-922).
Springer DOI
1807
BibRef
Huang, C.H.[Chao-Hui],
Brodbeck, J.[Jens],
Dimaano, N.M.[Nena M.],
Kang, J.[John],
Dogdas, B.[Belma],
Rollins, D.[Douglas],
Gifford, E.M.[Eric M.],
Automated Breast Cancer Image Classification Based on Integration of
Noisy-And Model and Fully Connected Network,
ICIAR18(923-930).
Springer DOI
1807
BibRef
Nazeri, K.[Kamyar],
Aminpour, A.[Azad],
Ebrahimi, M.[Mehran],
Two-Stage Convolutional Neural Network for Breast Cancer Histology
Image Classification,
ICIAR18(717-726).
Springer DOI
1807
BibRef
Kwok, S.[Scotty],
Multiclass Classification of Breast Cancer in Whole-Slide Images,
ICIAR18(931-940).
Springer DOI
1807
BibRef
Garud, H.,
Karri, S.P.K.,
Sheet, D.,
Chatterjee, J.,
Mahadevappa, M.,
Ray, A.K.,
Ghosh, A.,
Maity, A.K.,
High-Magnification Multi-views Based Classification of Breast Fine
Needle Aspiration Cytology Cell Samples Using Fusion of Decisions
from Deep Convolutional Networks,
Microscopy17(828-833)
IEEE DOI
1709
Breast cancer, Computer architecture, Microprocessors, Microscopy, Training
BibRef
Bhandari, S.H.[Smriti H.],
A bag-of-features approach for malignancy detection in breast
histopathology images,
ICIP15(4932-4936)
IEEE DOI
1512
bag-of-features; breast histopathology; cancer detection
BibRef
Moncayo, R.[Ricardo],
Romo-Bucheli, D.[David],
Romero, E.[Eduardo],
A Grading Strategy for Nuclear Pleomorphism in Histopathological Breast
Cancer Images Using a Bag of Features (BOF),
CIARP15(75-82).
Springer DOI
1511
BibRef
Wdowiak, M.[Marek],
Markiewicz, T.[Tomasz],
Osowski, S.[Stanislaw],
Patera, J.[Janusz],
Kozlowski, W.[Wojciech],
Gradients and Active Contour Models for Localization of Cell Membrane
in HER2/neu Images,
CAIP15(I:432-444).
Springer DOI
1511
BibRef
Wdowiak, M.[Marek],
Markiewicz, T.[Tomasz],
Osowski, S.[Stanislaw],
Swiderska, Z.[Zaneta],
Patera, J.[Janusz],
Kozlowski, W.[Wojciech],
Hourglass Shapes in Rank Grey-Level Hit-or-miss Transform for Membrane
Segmentation in HER2/neu Images,
ISMM15(3-14).
Springer DOI
1506
BibRef
Khan, A.M.[Adnan Mujahid],
Sirinukunwattana, K.[Korsuk],
Rajpoot, N.[Nasir],
Geodesic Geometric Mean of Regional Covariance Descriptors as an
Image-Level Descriptor for Nuclear Atypia Grading in Breast Histology
Images,
MLMI14(101-108).
Springer DOI
1410
BibRef
Pollanen, I.,
Braithwaite, B.,
Ikonen, T.,
Niska, H.,
Haataja, K.,
Toivanen, P.,
Tolonen, T.,
Computer-aided breast cancer histopathological diagnosis:
Comparative analysis of three DTOCS-based features:
SW-DTOCS, SW-WDTOCS and SW-3-4-DTOCS,
IPTA14(1-6)
IEEE DOI
1503
cancer
BibRef
Zheng, Y.S.[Yu-Shan],
Jiang, Z.G.[Zhi-Guo],
Shi, J.[Jun],
Ma, Y.B.[Yi-Bing],
Retrieval of pathology image for breast cancer using PLSA model based
on texture and pathological features,
ICIP14(2304-2308)
IEEE DOI
1502
Breast cancer
BibRef
Paramanandam, M.[Maqlin],
Thamburaj, R.[Robinson],
Manipadam, M.T.[Marie Theresa],
Nagar, A.K.[Atulya K.],
Boundary Extraction for Imperfectly Segmented Nuclei in Breast
Histopathology Images: A Convex Edge Grouping Approach,
IWCIA14(250-261).
Springer DOI
1405
BibRef
Saha, B.N.[Baidya Nath],
Saini, A.[Amritpal],
Ray, N.[Nilanjan],
Greiner, R.[Russell],
Hugh, J.[Judith],
Tambasco, M.[Mauro],
A robust convergence index filter for breast cancer cell segmentation,
ICIP14(922-926)
IEEE DOI
1502
Convergence
BibRef
Wan, T.[Tao],
Liu, X.[Xu],
Chen, J.H.[Jian-Hui],
Qin, Z.C.[Zeng-Chang],
Wavelet-based statistical features for distinguishing mitotic and
non-mitotic cells in breast cancer histopathology,
ICIP14(2290-2294)
IEEE DOI
1502
Breast cancer
BibRef
Tripathi, A.S.[Ardhendu Shekhar],
Mathur, A.[Atin],
Daga, M.[Mohit],
Kuse, M.[Manohar],
Au, O.C.[Oscar C.],
2-SiMDoM: A 2-Sieve model for detection of mitosis in multispectral
breast cancer imagery,
ICIP13(611-615)
IEEE DOI
1402
Accuracy
BibRef
Khan, A.M.[Adnan M.],
El-Daly, H.[Hesham],
Rajpoot, N.M.[Nasir M.],
A Gamma-Gaussian mixture model for detection of mitotic cells in breast
cancer histopathology images,
ICPR12(149-152).
WWW Link.
1302
BibRef
Peskin, A.P.[Adele P.],
Hoeppner, D.J.[Daniel J.],
Stuelten, C.H.[Christina H.],
Segmentation and Cell Tracking of Breast Cancer Cells,
ISVC11(I: 381-391).
Springer DOI
1109
BibRef
Roullier, V.[Vincent],
Lézoray, O.[Olivier],
Ta, V.T.[Vinh-Thong],
El Moataz, A.[Abderrahim],
Mitosis Extraction in Breast-Cancer Histopathological Whole Slide
Images,
ISVC10(I: 539-548).
Springer DOI
1011
Not mammogram, but analysis of tissue samples.
BibRef
Tsapatsoulis, N.,
Schnorrenberg, F.,
Pattichis, C.S., and
Kollias, S.,
An Image Analysis System for Automated Detection of
Breast Cancer Nuclei,
ICIP97(III: 512-515).
IEEE DOI
BibRef
9700
Dias, A.V.,
Bortolozzi, F.,
Delgado, M.R.B.S.,
Results of the Use of Bayesian Classifiers for Identification of
Breast Cancer Cell Nuclei,
ICPR96(III: 508-512).
IEEE DOI
9608
(Centro Federal de Educacao, BR)
BibRef
Murshed, N.A.,
Bortolozzi, F.,
Sabourin, R.,
A fuzzy ARTMAP-based classification system for detecting cancerous
cells, based on the one-class problem approach,
ICPR96(IV: 478-482).
IEEE DOI
9608
(Centro Federal de Educacao, BR)
BibRef
Mea, V.D.[Vincenzo Della],
Beltrami, C.A.[Carlo Alberto],
Analysis of the spatial arrangement of cells in the proliferative
breast lesions,
CIAP95(247-252).
Springer DOI
9509
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Mammography, Microcalcifications, Detection, Analysis .